An introduction to Harmonic Analysis

Yi-Hsuan Lin

Abstract

The note is mainly for personal record, if you want to read it, please be careful. This lecture was given by Prof. Jenn-Nan Wang in National Taiwan University, during February to June 2016.

1 Introduction and Motivation

From Lebesgue's differentiation theorem. Let $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\lim _{r \rightarrow 0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f(y) d y=f(x) \text { a.e. }
$$

where $B_{r}(x)=\{y:|y-x| \leq r\}$ and $\left|B_{r}(x)\right|$ is the Lebesgue measure of $B_{r}(x)$. Instead of taking limit, we study

$$
\begin{aligned}
M f(x): & =\sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)| d y \\
& =\sup _{r>0} \frac{1}{\left|B_{r}(0)\right|} \int_{B_{r}(0)}|f(x-y)| d y
\end{aligned}
$$

which is called the Hardy-Littlewood maximal function and M is the HardyLittlewood maximal operator.

1.1 Basic properties for maximal functions

Problem 1.1. Boundedness of M.
Theorem 1.2. For $1 \leq p \leq \infty$, we have
(a) $M f(x)$ is finite a.e. for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$.
(b) $M f$ is weak $(1,1)$, i.e., $\forall \alpha>0, \exists A=A(n)$ such that

$$
|\{x: M f(x)>\alpha\}| \leq \frac{A}{\alpha}\|f\|_{L^{1}}
$$

(c) M is strong (p, p) for $1<p \leq \infty$, i.e., $\exists C_{p}$ such that

$$
\|M f\|_{L^{p}} \leq C_{p}\|f\|_{L^{p}} .
$$

Remark 1.3. (a) is a consequence from (b) and (c).
Why do we study $\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}\right|$ (the distribution function of $M f$).

Proposition 1.4. For $1 \leq p<\infty$, if $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f|^{p} d x=p \int_{0}^{\infty} \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right| d \alpha \tag{1}
\end{equation*}
$$

Notation: $\lambda_{f}(\alpha)=\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right|$.
Derivation of (??): We can see it by using Tonelli's theorem. Moreover, integration by parts will give

$$
p \int_{0}^{\infty} \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right| d \alpha=-\int_{0}^{\infty} \alpha^{p} d \lambda_{f}(\alpha)
$$

Remark 1.5. Chebyshev's inequality: $\lambda_{f}(\alpha) \leq \frac{1}{\alpha}\|f\|_{L^{1}}$. If $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then $\lambda_{f}(\alpha)$ is finite. Even for nonintegrable function, we still can estimate $\lambda_{f}(\alpha)$.

Example 1.6. Let $f(x)=\frac{1}{|x|^{n}}$ in \mathbb{R}^{n}, then $\lambda_{f}(\alpha)=\frac{c_{n}}{\alpha}$ for some constant c_{n}.
Remark 1.7. Strong $(1,1)$ implies weak $(1,1) .\|T f\|_{1} \leq C_{1}\|f\|_{1}$ implies

$$
|\{|T f|>\alpha\}| \leq \frac{1}{\alpha}\|T f\|_{1} \leq \frac{C_{1}}{\alpha}\|f\|_{1} .
$$

The Hardy-Littlewood maximal operator M is never strong $(1,1)$. For example, $f(x)=\chi_{B_{1}(0)} \in L^{1}\left(\mathbb{R}^{n}\right)$, but $M f(x) \approx \frac{1}{|x|^{n}}$.

Note that $M f \notin L^{1}$, but we still can bound $\lambda_{M_{f}}(\alpha)$. The proof of weak type $(1,1)$ for $M f$, i.e., $\forall \alpha>0, f \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}\right| \leq \frac{A}{\alpha}\|f\|_{1}
$$

where $A=A(n)$. Need a covering lemma.
Lemma 1.8. (Vitali's covering lemma) Let E be a measurable subset in \mathbb{R}^{n}. Assume that E is covered by a family of balls $\left\{B_{j}\right\}$ of bounded diameters. Then we can find a sequence of disjoint balls B_{1}, B_{2}, \cdots from $\left\{B_{j}\right\}^{\prime}$ s such that

$$
\begin{equation*}
\sum_{k}\left|B_{k}\right| \geq C_{n}|E|, \text { with } C_{n} \leq \frac{1}{5^{n}} \tag{2}
\end{equation*}
$$

and $E \subset \cup_{k} B_{k}^{*}$ where $B_{k}^{*}=5 B_{k}$.
Proof. Let B_{1} be the ball chosen from $\left\{B_{j}\right\}$ such that

$$
\operatorname{diam} B_{1} \geq \frac{1}{2} \sup \left\{\operatorname{diam} B_{j}\right\}
$$

Assume that we have chosen $B_{1}, B_{2}, \cdots, B_{k}$. Then B_{k+1} is chosen that

$$
\operatorname{diam} B_{k+1} \geq \frac{1}{2} \sup \left\{\operatorname{diam} B_{j}, B_{j} \cap B_{i}=\emptyset, \forall i=1,2, \cdots, k\right\} .
$$

So we have chosen a sequence of balls B_{1}, B_{2}, \cdots disjoint balls.

Now, if $\sum_{k}\left|B_{k}\right|=\infty,(? ?)$ holds automatically. So we consider the case $\sum_{k}\left|B_{k}\right|<\infty$, which implies $\operatorname{diam} B_{k} \rightarrow 0$ as $k \rightarrow \infty$. Let B_{j} be any ball which is not chosen. Since $\operatorname{diam} B_{k} \rightarrow 0$, there exists a first k such that

$$
\operatorname{diam} B_{k+1} \leq \frac{1}{2} \operatorname{diam} B_{j}
$$

Claim: $\quad B_{j}$ must intersect some balls of $B_{1}, B_{2}, \cdots, B_{k}$. If $B_{j} \cap B_{i}=\emptyset$ $\forall j=1, \cdots, k$, then B_{j} would have been chosen, since $\operatorname{diam} B_{j} \geq 2 \operatorname{diam} B_{k+1}$. Therefore, \exists smallest k_{0} with $1 \leq k_{0} \leq k$ such that $B_{j} \cap B_{k_{0}} \neq \emptyset$. Then we have $\frac{1}{2} \operatorname{diam} B_{j} \leq \operatorname{diam} B_{k_{0}}$, which implies $B_{j} \subset 5 B_{k_{0}}$.
(b) Proof of weak $(1,1)$. Let $E_{\alpha}=\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}$. For $x \in E_{\alpha}$, i.e., $M f(x)=\sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)| d y>\alpha, \exists B_{r}(x)$ such that $\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)| d y>\alpha \Leftrightarrow\left|B_{r}(x)\right| \leq \frac{1}{\alpha} \int_{B_{r}(x)}|f(y)| d y$. So $E_{\alpha} \subset \cup_{x \in E_{\alpha}} B_{r}(x)$. From the covering lemma, $\exists B_{1}, B_{2}, \cdots$ such that $\sum_{k}\left|B_{k}\right| \geq C\left|E_{\alpha}\right|$. Therefore,

$$
\begin{aligned}
\left|E_{\alpha}\right| & \leq C \sum_{k}\left|B_{k}\right| \leq \frac{C}{\alpha} \sum_{k} \int_{B_{k}}|f(y)| d y \\
& \leq \frac{C}{\alpha}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

(c) Proof of strong $(p, p), 1<p \leq \infty$. The proof is in fact a special case of Marcinkiewicz interpolation theorem.

Known fact: M is weak $(1,1)$ and M is strong (∞, ∞), i.e., $\|M f\|_{\infty} \leq\|f\|_{\infty}$ for a.e. x. By Marcinkiewicz, we have M is strong (p, p) for $1<p \leq \infty$. Let $f \in L^{p}, 1<p<\infty . \forall \alpha>0$, define

$$
f_{1}(x)= \begin{cases}f(x), & \text { if }|f(x)|>\frac{\alpha}{2} \\ 0, & \text { otherwise }\end{cases}
$$

Then $f=f_{1}(x)+f_{2}(x)$, where $\left|f_{2}(x)\right| \leq \frac{\alpha}{2}$ for all x. Note that $\left|M f_{2}(x)\right| \leq \frac{\alpha}{2}$ for all x. Also, M is subadditive, i.e.,

$$
M f \leq M f_{1}+M f_{2} \leq M f_{1}+\frac{\alpha}{2}
$$

and

$$
\left|E_{\alpha}\right|=\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}\right| \leq\left|\left\{x \in \mathbb{R}^{n}: M f_{1}(x)>\frac{\alpha}{2}\right\}\right|
$$

By the weak $(1,1)$ of M, we have

$$
\left|E_{\alpha}\right| \leq\left|\left\{x \in \mathbb{R}^{n}: M f_{1}(x)>\frac{\alpha}{2}\right\}\right| \leq \frac{2 A}{\alpha}\left\|f_{1}\right\|_{L^{1}}
$$

Now,

$$
\begin{aligned}
\|M f\|_{p}^{p} & =p \int_{0}^{\infty} \alpha^{p-1}\left|E_{\alpha}\right| d \alpha \\
& \leq 2 p A \int_{0}^{\infty} \alpha^{p-2} \int_{\left\{|f(x)|>\frac{\alpha}{2}\right\}}|f(x)| d x \\
& \leq 2 p A \int_{\mathbb{R}^{n}}|f(x)| \int_{0}^{2|f(x)|} \alpha^{p-2} d \alpha d x \\
& =\frac{2^{p} p A}{p-1} \int_{\mathbb{R}^{n}}|f(x)|^{p} d x .
\end{aligned}
$$

1.2 Proof of Lebesuge's differentiation theorem

$f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ implies $\lim _{r \rightarrow 0} f_{B_{r}(x)} f(y) d y=f(x)$ a.e.. We can assume $f \in$ $L^{1}\left(\mathbb{R}^{n}\right)$. Denote

$$
f_{r}(x)=f_{B_{r}(x)} f(y) d y
$$

then we claim that $\left\|f_{r}-f\right\|_{L^{1}} \rightarrow 0$ as $r \rightarrow 0$.
Proof. Prove it is true for $f \in C_{0}\left(\mathbb{R}^{n}\right)$. For $f \in L^{1}$, by density argument since $C_{0}\left(\mathbb{R}^{n}\right)$ is dense in $L^{1}\left(\mathbb{R}^{n}\right)$.
Goal. For a.e. $x, f_{r}(x) \rightarrow f(x)$ as $r \rightarrow 0$.
We have shown that $f_{r_{j}}(x) \rightarrow f(x)$ a.e. for some $r_{j} \rightarrow 0$. We only need to show that $\lim _{r \rightarrow 0} f_{r}(x)$ exists. Denote

$$
\Omega f(x):=\left|\limsup _{r \rightarrow 0} f_{r}(x)-\liminf _{r \rightarrow 0} f_{r}(x)\right| .
$$

It suffices to prove that $\forall \epsilon>0,|\{\Omega f(x)>\epsilon\}|=0$.
Note that $f \in C_{0}\left(\mathbb{R}^{n}\right)$, then $\Omega f(x)=0$ for all x. For any $f \in L^{1}\left(\mathbb{R}^{n}\right)$, $\exists h \in C_{0}\left(\mathbb{R}^{n}\right)$ and $g \in L^{1}\left(\mathbb{R}^{n}\right)$ with $\|g\|_{1}$ is as small as we wish such that $f=h+g$. Now,

$$
\left.\left.\left.|\{\Omega f(x)>\epsilon\}| \leq \left\lvert\, \Omega h(x)>\frac{\epsilon}{2}\right.\right\}|+| \Omega g(x)>\frac{\epsilon}{2}\right\}|=| \Omega g(x)>\frac{\epsilon}{2}\right\} \mid .
$$

Recall $\Omega g(x)=\left|\lim \sup _{r \rightarrow 0} g_{r}(x)-\liminf _{r \rightarrow 0} g_{r}(x)\right|$ will imply $\Omega g(x) \leq 2 M g(x)$. Therefore,

$$
\left|\left\{\Omega g(x)>\frac{\epsilon}{2}\right\}\right| \geq\left|\left\{M g(x)>\frac{\epsilon}{4}\right\}\right| \geq \frac{4 A}{\epsilon}\|g\|_{L^{1}}
$$

and $\|g\|_{L^{1}}$ can be small as we wish, which completes the proof.
Remark 1.9. The proof of Lebesgue's differentiation theorem only uses the weak type $(1,1)$ of the maximal functions.

1.3 Marcinkiewicz interpolation theorem for $L^{P}\left(\mathbb{R}^{n}\right)(1 \leq$ $p \leq \infty)$

Definition 1.10. For $f \in L^{p}$, an operator T is called strong $(p, q), 1 \leq q \leq \infty$ if

$$
\|T f\|_{q} \leq C_{p, q}\|f\|_{p}
$$

T is called weak (p, q) for $q<\infty$ if $\forall \alpha>0$,

$$
|\{|T f(x)|>\alpha\}| \leq\left(\frac{A\|f\|_{p}}{\alpha}\right)^{q}
$$

T is weak (p, ∞) if T is strong (p, ∞).
Proposition 1.11. T is strong (p, q) will imply that T is weak (p, q).
Proof. We have $\|T f\|_{q}^{q} \leq C\|f\|_{p}^{q}$ and

$$
\begin{aligned}
\|T f\|_{q}^{q} & =\int_{\mathbb{R}^{n}}|T f|^{q} d x=\int_{\{|T f(x)| \leq \alpha\}}|T f|^{q}+\int_{\{|T f(x)|>\alpha\}}|T f|^{q} \\
& \geq \alpha^{q} \mid\{|T f(x)|>\alpha\} .
\end{aligned}
$$

Then we are done.

1.4 Marcinkiewcz Interpolation Theorem for L^{p}

Definition 1.12. $f \in L^{p_{1}}+L^{p_{2}}$ iff $f=f_{1}+f_{2}, f_{1} \in L^{p_{1}}$ and $f_{2} \in L^{p_{2}}$.
Remark 1.13. Assume $p_{1}<p_{2}$. Then $f \in L^{p} \Rightarrow f \in L^{p_{1}}+L^{p_{2}}, p_{1} \leq p \leq p_{2}$.
Given any $\gamma>0$. Define

$$
\left.\begin{array}{l}
f_{1}(x)=\left\{\begin{array}{ll}
f(x) & |f(x)|>\gamma \\
0 & \text { otherwise }
\end{array}(|f(x)| \leq \gamma)\right.
\end{array}\right\} \begin{array}{ll}
0 & |f(x)|>\gamma \\
f(x) & \text { otherwise }(|f(x)| \leq \gamma)
\end{array}
$$

Then

$$
\begin{aligned}
\int\left|f_{1}(x)\right|^{p_{1}} d x & =\int_{\{|f(x)|>\gamma\}}|f(x)|^{p_{1}} d x=\int_{\{|f(x)|>\gamma\}}|f(x)|^{p}|f(x)|^{p_{1}-p} d x \\
& \leq \gamma^{p_{1}-p} \int_{\mathbb{R}^{n}}|f(x)|^{p} d x<\infty \\
\int\left|f_{2}(x)\right|^{p_{2}} d x & =\int_{\{|f(x)| \leq \gamma\}}|f(x)|^{p_{2}} d x=\int_{\{|f(x)| \leq \gamma\}}|f(x)|^{p}|f(x)|^{p_{2}-p} d x \\
& \leq \gamma^{p_{2}-p} \int_{\mathbb{R}^{n}}|f(x)|^{p} d x<\infty .
\end{aligned}
$$

Remark 1.14. The level γ is arbitrary.
Theorem 1.15. For $1 \leq r \leq \infty$. Assume that the operator T is sublinear, i.e.

$$
|T(f+g)(x)| \leq|T f(x)|+|T g(x)| ;
$$

moreover, T is weak(1,1) and weak(r,r). Then T is strong($p, p)$ for $1<p<r$, i.e. $\exists A_{p, r}>0$ s.t.

Remark 1.16. For $f \in L^{p}, 1<p<r$, we can write $f=f_{1}+f_{2}, f_{1} \in L^{1}$ and $f_{2} \in L^{r}$. Since

- T is weak $(1,1)$ i.e.

$$
\left|\left\{\left|T f_{1}(x)\right|>\alpha\right\}\right| \leq \frac{A_{1}}{\alpha}\left\|f_{1}\right\|_{1}
$$

- T is weak (r, r) i.e.

$$
\left|\left\{\left|T f_{2}(x)\right|>\alpha\right\}\right| \leq\left(\frac{A_{r}}{\alpha}\left\|f_{2}\right\|_{r}\right)^{r}
$$

Proof. Recall that

$$
\int|T f|^{p} d x=p \int_{0}^{\infty} \alpha^{p-1} \lambda_{T f}(\alpha) d \alpha
$$

Need to estimate $\lambda_{T f}(\alpha)$

$$
\lambda_{T f}(\alpha)=|\{|T f(x)|>\alpha\}| \leq\left|\left\{\left|T f_{1}(x)\right|>\alpha / 2\right\}\right|+\left|\left\{\left|T f_{2}(x)\right|>\alpha / 2\right\}\right|
$$

The inequality is from T is sublinear, $|T f(x)| \leq\left|T f_{1}(x)\right|+\left|T f_{2}(x)\right|$. To determine $f_{1}(x)$ and $f_{2}(x)$, we choose of the level $\gamma=\alpha$.

$$
\begin{aligned}
& \operatorname{weak}(1,1) \Rightarrow\left|\left\{\left|T f_{1}(x)\right|>\alpha / 2\right\}\right| \leq \frac{2 A_{1}}{\alpha}\left\|f_{1}\right\|_{1}=\frac{2 A_{1}}{\alpha} \int_{\{|f(x)|>\alpha\}}|f(x)| d x \\
& \text { weak }(\mathrm{r}, \mathrm{r}) \Rightarrow\left|\left\{\left|T f_{2}(x)\right|>\alpha / 2\right\}\right| \leq\left(\frac{2 A_{r}}{\alpha}\right)^{r}\left\|f_{2}\right\|_{r}^{r}=\frac{2^{r} A_{r}^{r}}{\alpha^{r}} \int_{\{|f(x)| \leq \alpha\}}|f(x)|^{r} d x
\end{aligned}
$$

that is

$$
\lambda_{T f}(\alpha) \leq \frac{2 A_{1}}{\alpha} \int_{\{|f(x)|>\alpha\}}|f(x)| d x+\frac{2^{r} A_{r}^{r}}{\alpha^{r}} \int_{\{|f(x)| \leq \alpha\}}|f(x)|^{r} d x
$$

Hence

$$
\begin{aligned}
\int|T f|^{p} d x= & p \int_{0}^{\infty} \alpha^{p-1} \lambda_{T f}(\alpha) d \alpha \\
\leq & p \int_{0}^{\infty} \alpha^{p-1} \cdot \frac{2 A_{1}}{\alpha} \int_{\{|f(x)|>\alpha\}}|f(x)| d x d \alpha \\
& +p \int_{0}^{\infty} \alpha^{p-1} \cdot \frac{2^{r} A_{r}^{r}}{\alpha^{r}} \int_{\{|f(x)| \leq \alpha\}}|f(x)|^{r} d x d \alpha \\
:= & \mathrm{I}+\mathrm{II} \\
\mathrm{I}= & 2 p A_{1} \int_{0}^{\text {infty }} \alpha^{p-2} \int_{\{|f(x)|>\alpha\}}|f(x)| d x d \alpha \\
= & 2 p A_{1} \int_{\mathbb{R}^{n}}|f(x)| \int_{0}^{|f(x)|} \alpha^{p-2} d \alpha d x \\
= & \frac{2 p A_{1}}{p-1} \int_{\mathbb{R}^{n}}|f(x)|^{p} d x
\end{aligned}
$$

$$
\begin{aligned}
\text { II } & =2^{r} p A_{r}^{r} \int_{0}^{i n f t y} \alpha^{p-r-1} \int_{\{|f(x)| \leq \alpha\}}|f(x)|^{r} d x d \alpha \\
& =2^{r} p A_{r}^{r} \int_{\mathbb{R}^{n}}|f(x)|^{r} \int_{|f(x)|}^{\infty} \alpha^{p-r-1} d \alpha d x \\
& =\frac{2^{r} p A_{r}^{r}}{r-p} \int_{\mathbb{R}^{n}}|f(x)|^{r}|f(x)|^{p-r} d x \\
& =\frac{2^{r} p A_{r}^{r}}{r-p} \int_{\mathbb{R}^{n}}|f(x)|^{p} d x
\end{aligned}
$$

Thus we obtain

$$
\|T f\|_{p} \leq\left(\frac{2 p A_{1}}{p-1}+\frac{2^{r} p A_{r}^{r}}{r-p}\right)^{1 / p}\|f\|_{p}
$$

for $A_{p, r}=\left(\frac{2 p A_{1}}{p-1}+\frac{2^{r} p A_{r}^{r}}{r-p}\right)^{1 / p}$.
Here we proved the case of $r<\infty$.
The case $r=\infty$ can be proved by the same argument for $M f$.
Remark 1.17. $A_{p, r} \rightarrow \infty$ as $p \rightarrow 1+$ and $p \rightarrow r-$
Exercise 1.18. What happens to $A_{p, r}$ if T is either strong $(1,1)$ or strong (r, r) ?

1.5 Lebesgue differentiation theorem

Recall the Lebesgue differentiation theorem. If $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} f_{B_{r}(x)} f(y) d y=f(x) \text { a.e.. } \tag{3}
\end{equation*}
$$

Can we replace $B_{r}(x)$ by other family of measurable sets ?
For example, is

$$
\lim _{|B| \rightarrow 0, x \in B} f_{B} f(y) d y=f(x) \text { a.e. ? }
$$

Definition 1.19. (Regular family) A family \mathcal{F} of measurable sets is called regular if $\exists c>0$ such that $\forall S \in \mathcal{F}, \exists B$ (centered at the origin) satisfying $S \subset B$ and $|S| \geq c|B|$.

Example 1.20. 1. $\mathcal{F}=\{$ balls containing 0$\}$.
2. The family of cubes whose distance from the origin is bounded by a constant multiplier of their diameters.

So let \mathcal{F} be regular, we can define the maximal operator associated with \mathcal{F} by

$$
M_{\mathcal{F}} f(x)=\sup _{S \in \mathcal{F}} f_{S}|f(x-y)| d y
$$

Observe that

$$
f_{S}|f(x-y)| d y \leq \frac{1}{c} f_{B}|f(x-y)| d y \leq c^{-1} M f(x)
$$

So

$$
\lim _{S \in \mathcal{F},|S| \rightarrow 0} f_{S} f(x-y) d y=f(x) \text { a.e.. }
$$

Problem 1.21. We know that $\exists E \subset \mathbb{R}^{n}$ such that $\left|E^{c}\right|=0$ and

$$
\lim _{S \in \mathcal{F},|S| \rightarrow 0} f_{S} f(x-y) d y=f(x) \forall x \in E
$$

where E^{c} is the exceptional set. The set E or E^{c} depends on \mathcal{F}. Can we find a set E such that $\left|E^{c}\right|=0$ and

$$
\lim _{S \in \mathcal{F},|S| \rightarrow 0} f_{S} f(x-y) d y=f(x) \forall x \in E(E \text { depends on } f)
$$

independent of what regular family \mathcal{F} is ?
Definition 1.22. (Lebesgue set) The Lebesgue set \mathcal{L} of a function f is defined as $x \in \mathbb{R}^{n}$ and

$$
\lim _{r \rightarrow 0} f_{B_{r}(x)}|f(y)-f(x)| d y=0
$$

or

$$
\begin{equation*}
\lim _{r \rightarrow 0} f_{B_{r}(0)} \mid f(x-y)-f(x) d y=0 \tag{4}
\end{equation*}
$$

Remark 1.23. Note that (??) is stronger than (??).
Lemma 1.24. (??) holds almost everywhere.
Proof. For any $c \in \mathbb{R}$, we know that $\exists E_{c}$ (exceptional set), $\left|E_{c}\right|=0$ such that

$$
\lim _{r \rightarrow 0} f_{B_{r}(x)}|f(y)-c| d y \rightarrow|f(x)-c| \forall x \notin E_{c}
$$

In particular, if $c \in \mathbb{Q}$ (rational) and $E=\cup_{c \in \mathbb{Q}} E_{c}(|E|=0)$, then

$$
\lim _{r \rightarrow 0} f_{B_{r}(x)}|f(y)-q| d y \rightarrow|f(x)-q| \forall x \notin E .
$$

Since \mathbb{Q} is dense in \mathbb{R} and take $c=f(x)$, then we are done.
So $\mathcal{L}=E^{c}$. Now, let \mathcal{F} be regular, then for $x \notin E$,

$$
\begin{aligned}
\left|f_{S} f(x-y) d y-f(x)\right| & =\mid f_{S}[f(x-y)-f(x)] d y \\
& \leq f_{S}|f(x-y)-f(x)| d y \\
& \leq c^{-1} f_{B_{r}(0)}|f(x-y)-f(y)| d y
\end{aligned}
$$

Then as $|S| \rightarrow 0\left(\Rightarrow\left|B_{r}(0)\right| \rightarrow 0\right)$ will imply

$$
f_{S} f(x-y) d y \rightarrow f(x) \forall x \notin E
$$

Definition 1.25. Let E be a measurable set, $x \in \mathbb{R}^{n}$ is called a point of density of E if

$$
\lim _{r \rightarrow 0} \frac{\left|E \cap B_{r}(x)\right|}{\left|B_{r}(x)\right|}=1
$$

Theorem 1.26. Almost every point of E is a point of density of itself.
Proof. Let $f(x)=\chi_{E}(x) \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, the characteristic function of E. Then

$$
\frac{\left|E \cap B_{r}(x)\right|}{\left|B_{r}(x)\right|}=f_{B_{r}(x)} f(y) d y \rightarrow f(x)=\chi_{E}(x) \text { a.e.. }
$$

Remark 1.27. Almost all point of E^{c} are not points of density of E.

1.6 Approximation of the identity

Let $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$ with $\int \phi d x=1$. Consider $\phi_{t}(x)=t^{-n} \phi\left(\frac{x}{t}\right)$, then $\forall g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ (Schwartz class), i.e., $\forall \alpha, \beta \in \mathbb{Z}^{n}$, $\sup _{x \in \mathbb{R}^{n}}\left|x^{\beta} D^{\alpha} g\right|<\infty$. We can show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \phi_{t}(x) g(x) d x \rightarrow g(0) \text { as } t \rightarrow 0+ \tag{5}
\end{equation*}
$$

$\phi_{t} \rightarrow \delta$ in the sense of distribution.
Proof. (Proof of (??))

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \phi_{t}(x) g(x) d x & =t^{-n} \int_{\mathbb{R}^{n}} \phi\left(\frac{x}{t}\right) g(x) d x \\
& =t^{-n} \int_{\mathbb{R}^{n}}\left[\phi\left(\frac{x}{t}\right) g(x)-g(0)\right] d x+g(0) \\
& =\int_{\mathbb{R}^{n}}[\phi(x)(g(t x)-g(0))] d x+g(0) \\
& \rightarrow g(0)
\end{aligned}
$$

as $t \rightarrow 0+$ by using the Lebesgue dominated convergence theorem.
In other words, for $g \in S$, we have

$$
\lim _{t \rightarrow 0}\left(\phi_{t} * g\right)(x)=g(x) \forall x \in \mathbb{R}^{n} \text { (pointwise convergence). }
$$

ϕ_{t} is called the approximation of the identity.
Theorem 1.28. For $1 \leq p<\infty$, we have

$$
\left\|\phi_{t} * f-f\right\|_{p} \rightarrow 0 \text { as } t \rightarrow 0
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$. For $p=\infty$, we have

$$
\left\|\phi_{t} * f-f\right\|_{\infty} \rightarrow 0 \text { as } t \rightarrow 0
$$

for all $f \in C_{0}\left(\mathbb{R}^{n}\right)$ (continuous functions vanishing at ∞).

Proof. Exercise.
From this theorem, we know that $\phi_{t} * f \rightarrow f$ in L^{p} for all $f \in L^{p}$. How about pointwise convergence of $\phi_{t} * f$? The theorem implies that there exists a subsequence $\left\{t_{k}\right\}, t_{k} \rightarrow 0$ such that $\phi_{t_{k}} * f \rightarrow f(x)$ for a.e. x. If we can show that $\lim _{t \rightarrow 0} \phi_{t} * f(x)$ exists almost everywhere, then $\lim _{t \rightarrow 0} \phi_{t} * f(x)=f(x)$ a.e..

1.7 Relations between weak (p, q) bound and pointwise convergence

Let (X, μ) be a measure space and $\left\{T_{t}\right\}$ be a family of linear operators on $L^{p}(X, \mu)$. Define the maximal operator

$$
T^{*} f(x)=\sup _{t>0}\left|T_{t} f(x)\right|
$$

If T^{*} is weak (p, q), then the set

$$
S=\left\{f \in L^{p}(X, \mu): \lim _{t \rightarrow t_{0}} T_{t} f(x)=f(x) \text { a.e. }\right\}
$$

is closed in in $L^{p}(X, \mu)$.
Proof. To prove that S is closed, we let $\left\{f_{k}\right\} \subset L^{p}(X, \mu)$ with $\lim _{t \rightarrow t_{0}} T_{t} f_{k}(x)=$ $f_{k}(x)$ a.e. and $f_{k} \rightarrow f$ in $L^{p}(X, \mu)$. Need to show $f \in S$. In other words, we need to show

$$
\mu\left(\left\{x \in \mathbb{R}^{n}: \limsup _{t \rightarrow t_{0}}\left|T_{t} f(x)-f(x)\right|>0\right\}\right)=0
$$

or we can prove

$$
\sum_{k=1}^{\infty} \mu\left(\left\{x \in \mathbb{R}^{n}: \limsup _{t \rightarrow t_{0}}\left|T_{t} f(x)-f(x)\right|>\frac{1}{k}\right\}\right)=0
$$

It suffices to prove $\forall \lambda>0, \mu\left(\left\{x \in \mathbb{R}^{n}: \limsup _{t \rightarrow t_{0}}\left|T_{t} f(x)-f(x)\right|>\lambda\right\}\right)=0$.

$$
\begin{aligned}
& \mu\left(\left\{x \in \mathbb{R}^{n}: \limsup _{t \rightarrow t_{0}}\left|T_{t} f(x)-f(x)\right|>\lambda\right\}\right) \\
= & \mu\left(\left\{x \in \mathbb{R}^{n}: \limsup _{t \rightarrow t_{0}}\left|T_{t}\left(f-f_{k}\right)+T f_{k}-f_{k}+f_{k}-f\right|>\lambda\right\}\right) \\
\leq & \mu\left(\left\{x \in \mathbb{R}^{n}: \limsup _{t \rightarrow t_{0}}\left|T_{t}\left(f-f_{k}\right)\right|>\frac{\lambda}{2}\right\}\right)+\mu\left(\left\{x \in \mathbb{R}^{n}:\left|f_{k}-f\right|>\frac{\lambda}{2}\right\}\right) \\
\leq & \mu\left(\left\{x \in \mathbb{R}^{n}: T^{*}\left(f_{k}-f\right) \left\lvert\,>\frac{\lambda}{2}\right.\right\}\right)+\mu\left(\left\{x \in \mathbb{R}^{n}:\left|f_{k}-f\right|>\frac{\lambda}{2}\right\}\right) \\
\leq & \left(\frac{2 A}{\lambda}\left\|f-f_{k}\right\|_{p}\right)^{q}+\left(\frac{2}{\lambda}\left\|f_{k}-f\right\|_{p}\right)^{p} \rightarrow 0 \text { as } k \rightarrow \infty .
\end{aligned}
$$

Remark 1.29. Under the same condition, we can show that

$$
S=\left\{f \in L^{p}: \lim _{t \rightarrow t_{0}} T_{t} f(x) \text { exists a.e. }\right\}
$$

is closed in $L^{p}(X, \mu)$. The proof is left as an exercise.
Remark 1.30. Let ϕ_{k} be an approximation of the identity, then $\phi_{t} * f(x) \rightarrow f(x)$ as $t \rightarrow 0$ for all $f \in \mathcal{S}$. Also, S is closed in $L^{P}\left(\mathbb{R}^{n}\right)$. $\mathcal{S} \subset S \subset L^{p}\left(\mathbb{R}^{n}\right)$ will imply $S=L^{p}\left(\mathbb{R}^{n}\right)$.

1.8 Discuss the pointwise convergence

$\phi_{t} * f(x) \rightarrow f(x)$ a.e. as $t \rightarrow 0$. It suffices to prove that $\sup _{t>0}\left|\phi_{t} * f\right|$ is weakly bounded.

Proposition 1.31. Let $\phi(x)=\phi(|x|)$ be radial, positive and decreasing in $|x|$. Assume ϕ is integrable. Then

$$
\sup _{t>0}\left|\phi_{t} * f\right| \leq\|\phi\|_{L^{1}} M f(x)
$$

Proof. Let us consider the case where $\phi=\sum_{j} a_{j} \chi_{B_{j}}(x), a_{j}>0$. Then

$$
\phi * f(x)=\sum_{j} a_{j}\left|B_{j}\right| \cdot \frac{1}{\left|B_{j}\right|} \chi_{B_{j}} * f
$$

Then

$$
|\phi * f(x)| \leq\|\phi\|_{L^{1}} M f(x)
$$

We obtain the similar estimate for $\phi_{t}=t^{-n} \phi\left(\frac{x}{t}\right)$, and by the limiting process, which finishes the proof.

Corollary 1.32. If $|\phi(x)| \leq \psi(|x|)$, where ψ satisfies the condition in Proposition 1.31. Then $\sup _{t>0}\left|\phi_{t} * f\right|$ is weak $(1,1)$ and strong (p, p), where $1<p \leq \infty$.

2 Fourier transform in $L^{p}\left(\mathbb{R}^{n}\right)$

Definition 2.1. If $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then we define the Fourier transform

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x
$$

Fact 2.2. 1. $\mathcal{F}(f):=\widehat{f}, \mathcal{F}: L^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{n}\right)$ (continuous) and $|\widehat{f}(\xi)| \leq$ $\|f\|_{L^{1}}$.
2. Riemann-Lebesgue lemma: $\lim _{|\xi| \rightarrow \infty}|\widehat{f}(\xi)|=0$.

Recall that \mathcal{S} is the Schwartz space, then $\mathcal{F}: \mathcal{S} \rightarrow \mathcal{S}\left(\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x\right)$ and $\mathcal{F}^{-1}: \mathcal{S} \rightarrow \mathcal{S}\left(f(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi\right)$. Also, $\|\widehat{f}\|_{2}=\|f\|_{2}$, for all $f \in \mathcal{S}$ (Plancheral theorem). Since \mathcal{S} is dense in $L^{2}\left(\mathbb{R}^{n}\right)$, i.e., for all $f \in L^{2}\left(\mathbb{R}^{n}\right)$, there exists $\left\{f_{k}\right\} \in \mathcal{S}$ such that $f_{k} \rightarrow f$ in $L^{2}\left(\mathbb{R}^{n}\right)$. Then we can define $\widehat{f}(\xi)=\lim _{k \rightarrow \infty} \widehat{f_{k}}(\xi)$ in $L^{2}\left(\mathbb{R}^{n}\right)$. Also,

$$
\widehat{f}(\xi)=\lim _{R \rightarrow \infty} \int_{|x|<R} f(x) e^{-2 \pi i x \cdot \xi} d x \text { and } f(x)=\lim _{R \rightarrow \infty} \int_{|\xi|<R} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

The limit is in the L^{2} sense. So we have $\mathcal{F}: L^{1} \rightarrow L^{\infty}$ and $\mathcal{F}: L^{2} \rightarrow L^{2}$. Now, for $1<p<2$ and $f \in L^{p}$, we can write $f=f_{1}+f_{2}$, where $f_{1} \in L^{1}, f_{2} \in L^{2}$. Define $\widehat{f}=\mathcal{F} f=\widehat{f}_{1}+\widehat{f}_{2} \in L^{\infty}+L^{2}$.

Theorem 2.3. (Riesz-Thorin interpolation theorem) Let $1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$. Assume that T is a linear operator from $L^{p_{0}}+L^{p_{1}}$ to $L^{q_{0}}+L^{q_{1}}$ satisfying

$$
\|T f\|_{q_{0}} \leq M_{0}\|f\|_{p_{0}} \text { and }\|T f\|_{q_{1}} \leq M_{1}\|f\|_{p_{1}} .
$$

Then for $\theta \in(0,1)$, define $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}$. Then T is a bounded operator from L^{p} to L^{q} and

$$
\|T f\|_{q} \leq M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p} .
$$

Proof. LOL
Theorem 2.4. (Hausdorff-Young inequality) Let $1 \leq p \leq 2$, then $\|\widehat{f}\|_{p^{\prime}} \leq\|f\|_{p}$, where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
Proof. $\mathcal{F}: L^{1} \rightarrow L^{\infty},\|\mathcal{F} f\|_{\infty} \leq\|f\|_{1}\left(M_{0}=1\right)$ and $\mathcal{F}: L^{2} \rightarrow L^{2},\|\mathcal{F} f\|_{2}=$ $\|f\|_{2}\left(M_{1}=1\right)$. For $1<p<2, \frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{2}=1-\frac{\theta}{2}, \frac{1}{q}=\frac{1-\theta}{\infty}+\frac{\theta}{2}=\frac{\theta}{2}$.

Remark 2.5. For $1 \leq p \leq 2, f \in L^{p}, \widehat{f}$ is a classical function. Now, for $p>2$, we define the Fourier transform \widehat{f} as a tempered distribution. Recall that \mathcal{S} is the Schwartz space. The tempered distribution \mathcal{S}^{\prime} is the continuous linear functional on \mathcal{S}, i.e., $T \in \mathcal{S}^{\prime}$,

$$
|\langle T, \varphi\rangle| \leq C\|\varphi\|_{\mathcal{S}}, \forall \varphi \in \mathcal{S} .
$$

For example, $\langle\delta, \varphi\rangle=\varphi(0)$.
Definition 2.6. $T \in \mathcal{S}^{\prime}$, we define \widehat{T} as

$$
\langle\widehat{T}, \varphi\rangle=\langle T, \widehat{\varphi}\rangle .
$$

We can define \widehat{f} if $f \in L^{p}$ for $p>2$ since $L^{p} \subset \mathcal{S}$, but \widehat{f} may not be a classical function.

Theorem 2.7. (Young's inequality) Let $1 \leq p, q \leq \infty, \frac{1}{p}+\frac{1}{q}=1$. Given $f \in L^{p}, g \in L^{q}$, then $f * g \in L^{r}$, where $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-1$ and

$$
\|f * g\|_{L^{r}} \leq\|f\|_{L^{p}}\|g\|_{L^{q}} .
$$

Proof. Let $f \in L^{p}$ and define the linear operator $T_{f}(g)=f * g$. Observe that

$$
T_{f}: L^{1} \rightarrow L^{p} \text { with }\left\|T_{f} g\right\|_{L^{p}} \leq\|f\|_{L^{p}}\|g\|_{L^{1}} .
$$

From the Minkowski's integral inequality

$$
\begin{aligned}
\left\|T_{f} g\right\|_{p} & =\left(\int\left|\int f(x-y) g(y) d y\right|^{p} d x\right)^{\frac{1}{p}} \\
& \leq\|f\|_{p}\|g\|_{1} .
\end{aligned}
$$

In addition, $T_{f}: L^{p^{\prime}} \rightarrow L^{1}\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$. Note that

$$
|(f * g)(x)| \leq\|f\|_{p}\|g\|_{p^{\prime}},
$$

which means $\left\|T_{f} g\right\|_{\infty} \leq\|f\|_{p}\|g\|_{p^{\prime}}$. Then for $\theta \in(0,1), \frac{1}{r}=\frac{1-\theta}{1}+\frac{\theta}{p^{\prime}}$, $\frac{1}{q}=\frac{1-\theta}{p}+\frac{\theta}{\infty}=\frac{1-\theta}{p}$. Thus,

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q} .
$$

Calculate θ in terms of p and q, then we can find $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-1$.
Now, we'd like to prove the Riesz-Thorin theorem.
Theorem 2.8. (Hadamard-Phragmen-Lindelof theorem) Let $S=\{\theta+i \tau: \theta \in$ $[0,1], \tau \in \mathbb{R}\}$. Assume $F(z)$ is bounded continuous on S and analytic (or holomorphic) in the interior of S. If $|F(i \tau)| \leq M_{0},|F(1+i \tau)| \leq M_{1}$, then

$$
|F(\theta+i \tau)| \leq M_{0}^{1-\theta} M_{1}^{\theta} \text { for } 1<\theta<1
$$

Proof. We want to construct a new function from $F(z)$ such that the new function decays to zero as $|\tau| \rightarrow \infty$. So we define

$$
F_{\epsilon}(z)=e^{\epsilon z^{2}+\lambda z} F(z)
$$

where $\epsilon>0$ and $\lambda \in \mathbb{R}$ (will be determined later).
We only need to check

$$
\begin{aligned}
\left|F_{\epsilon}(\theta+i \tau)\right| & =\left|e^{\epsilon(\theta+i \tau)^{2}+\lambda(\theta+i \tau)} F(\theta+i \tau)\right| \\
& =\left|e^{\epsilon\left(\theta^{2}-\tau^{2}+2 i \theta \tau+\lambda \theta+i \lambda \tau\right.} F(z)\right| \\
& \leq e^{\epsilon\left(\theta^{2}-\tau^{2}+\lambda \theta\right)}|F(z)| \rightarrow 0
\end{aligned}
$$

as $|\tau| \rightarrow \infty$. Next,

$$
\left|F_{\epsilon}(i \tau)\right|=\left|e^{\epsilon(i \tau)^{2}+\lambda(i \tau)} F(i \tau)\right| \leq|F(i \tau)| \leq M_{0}
$$

and

$$
\begin{aligned}
\left|F_{\epsilon}(1+i \tau)\right| & =\left|e^{\epsilon(1+i \tau)^{2}+\lambda(1+i \tau)} F(1+i \tau)\right| \\
& \leq e^{\epsilon\left(1-\tau^{2}\right)+\lambda}|F(1+i \tau)| \\
& \leq e^{\epsilon+\lambda} M_{1} .
\end{aligned}
$$

So by the maximum principle,

$$
\begin{gathered}
\left|F_{\epsilon}(\theta+i \tau)\right| \leq \max \left(M_{0}, e^{\epsilon+\lambda} M_{1}\right), \\
\left|F_{\epsilon}(\theta+i \tau)\right|=\left|e^{\epsilon(\theta+i \tau)^{2}+\lambda(\theta+i \tau)} F(\theta+i \tau)\right| \\
=e^{\epsilon\left(\theta^{2}-\tau^{2}\right)+\lambda \theta}|F(\theta+i \tau)| .
\end{gathered}
$$

So $|F(\theta+i \tau)| \leq e^{-\epsilon\left(\theta^{2}-\tau^{2}\right)} e^{-\lambda \theta} \max \left(M_{0}, e^{\epsilon+\lambda} M_{1}\right)$. Let $\epsilon \rightarrow 0$, then

$$
|F(\theta+i \tau)| \leq \max \left(e^{-\lambda \theta} M_{0}, e^{\lambda(1-\theta)} M_{1}\right)=\max \left(\rho^{-\theta} M_{0}, \rho^{1-\theta} M_{1}\right)
$$

where $\rho=e^{\lambda}>0$. We now choose ρ such that $\rho^{-\theta} M_{0}=\rho^{1-\theta} M_{1}$, or $\rho=\frac{M_{0}}{M_{1}}$ and

$$
|F(\theta+i \tau)| \leq M_{0}^{1-\theta} M_{1}^{\theta} .
$$

2.1 Proof of Riesz-Thorin interpolation theorem

We need to show that $T: L^{p_{\theta}} \rightarrow L^{q_{\theta}}$, where $\frac{1}{p_{\theta}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \frac{1}{q_{\theta}}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}$ and

$$
\|T f\|_{q_{\theta}} \leq M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p_{\theta}}
$$

By the duality argument, it suffices to prove

$$
|\langle T f, g\rangle| \leq M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p_{\theta}}\|g\|_{q_{\theta}^{\prime}}, \forall f \in L^{p_{\theta}}, g \in L^{q_{\theta}^{\prime}} .
$$

Without loss of generality, we can choose $\|f\|_{p_{\theta}}=\|g\|_{q_{\theta}^{\prime}}=1$ and show $|\langle T f, g\rangle| \leq$ $M_{0}^{1-\theta} M_{1}^{\theta}$.

Observe that $\frac{1}{q_{\theta}^{\prime}}=\frac{1-\theta}{q_{0}^{\prime}}+\frac{\theta}{q_{1}^{\prime}}$. Define

$$
\frac{1}{p_{z}}=\frac{1-z}{p_{0}}+\frac{z}{p_{1}} \text { and } \frac{1}{q_{z}^{\prime}}=\frac{1-z}{q_{0}^{\prime}}+\frac{z}{q_{1}^{\prime}}, z \in \mathbb{C}
$$

Set

$$
\Phi(x, z)=|f(x)|^{\frac{p_{\theta}}{p_{z}}-1} f(x) \text { and } \Psi(x, z)=|g(x)|^{\frac{q_{\theta}^{\prime}}{q_{z}}-1} g(x)
$$

(we normally define $\frac{f(x)}{|f(x)|}=0$ if $f(x)=0$). Consider

$$
F(z)=\langle T \Phi(x, z), \Psi(x, z)\rangle=\int T \Phi(x, z) \Psi(x, z) d x
$$

To proceed, we consider f and g are simple functions, i.e., $f(x)=\sum a_{j} \chi_{E_{j}}$ and $g(x)=\sum b_{k} \chi_{F_{k}}$, where $\left\{E_{j}\right\}$ and $\left\{F_{k}\right\}$ have finite measures. Here $a_{j}, b_{k} \in \mathbb{C}$. We can write $a_{j}=\left|a_{j}\right| e^{i \theta_{j}}, b_{k}=\left|b_{k}\right| e^{i \eta_{k}}$.

Hence,

$$
\begin{aligned}
F(z) & =\sum_{j} \sum_{k}\left|a_{j}\right|^{\frac{p_{\theta}}{p_{z}}}-1 \\
& \left.a_{j}\left|e^{i \theta_{j}}\right| b_{k}\right|^{\frac{q_{\theta}^{\prime}}{q_{z}^{\prime}}}-1 \\
& b_{k} \mid e^{i \eta_{k}}\left\langle T \chi_{E_{j}}, \chi_{F_{k}}\right\rangle \\
& =\sum_{j} \sum_{k}\left|a_{j}\right|^{\frac{p_{\theta}}{p_{z}}}\left|a_{j}\right|\left|b_{k}\right|^{\frac{q_{\theta}^{\prime}}{q_{z}}}\left|b_{k}\right| e^{i\left(\theta_{j}+\eta_{k}\right)}\left\langle T \chi_{E_{j}}, \chi_{F_{k}}\right\rangle .
\end{aligned}
$$

We then know that $F(z)$ satisfies the conditions in Hadamard et al's theorem. Now, we compute

$$
\begin{aligned}
|F(i \tau)| & \leq\|T \Phi(\cdot, i \tau)\|_{q_{0}}\|\Psi(\cdot, i \tau)\|_{q_{0}^{\prime}} \\
& \leq M_{0}\|\Phi\|_{p_{0}}\|\Psi\|_{q_{0}^{\prime}}
\end{aligned}
$$

and

$$
\|\Phi(\cdot, i \tau)\|_{p_{0}}=1 \text { and }\|\Psi(\cdot, i \tau)\|_{q_{0}^{\prime}}=1
$$

which implies $|F(i \tau)| \leq M_{0}$.
On the other hand, we can show that $|F(1+i \tau)| \leq M_{1}\|\Phi(\cdot, 1+i \tau)\|_{p_{1}} \| \Psi(\cdot, 1+$ $i \tau) \|_{q_{1}^{\prime}}$ and $\|\Phi(\cdot, 1+i \tau)\|_{p_{1}}=\|\Psi(\cdot, 1+i \tau)\|_{q_{1}^{\prime}}=1$ implies $|F(1+i \tau)| \leq M_{1}$. Bt the three-lines theorem (Hadamard et al), we have $|F(\theta+i \tau)| \leq M_{0}^{1-\theta} M_{1}^{\theta}$. In
particular, $|F(\theta+i 0)| \leq M_{0}^{1-\theta} M_{1}^{\theta}$. For $z=\theta+i 0$, we have $\Phi(\cdot, \theta)=f(x)$ and $\Psi(\cdot, \theta)=g(x)$. Therefore,

$$
F(\theta)=\langle T \Phi(\cdot, \theta), \Psi(\cdot, \theta)\rangle=\langle T f, g\rangle .
$$

So

$$
|\langle T f, g\rangle| \leq M_{0}^{1-\theta} M_{1}^{\theta}
$$

and

$$
|\langle T f, g\rangle| \leq M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p_{\theta}}\|g\|_{q_{\theta}^{\prime}} .
$$

In the final step, we approximate f, g by simple functions.

2.2 Summability of Fourier integral

Problem 2.9. Does

$$
\lim _{R \rightarrow \infty} \int_{B_{R}} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi=f(x) ?
$$

where $B_{R}=\left\{R_{x}: x \in B \mathrm{~B}\right.$ is an open convex neighborhood of 0$\}$. In what sense ? in L^{p} or pointwise almost everywhere ? It is true in L^{2}, if

$$
\lim _{R \rightarrow \infty} \int_{B_{R}} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d x=f \text { in } L^{2}
$$

Is it true for $p \neq 2 ?$
Define an (linear) operator

$$
\left(S_{R} f\right)^{\wedge}=\chi_{B_{R}} \widehat{f}(\xi)
$$

The problem is equivalent to

$$
\lim _{R \rightarrow \infty} S_{R} f=f
$$

in L^{p} or pointwise a.e..
Theorem 2.10. For $p \in(1, \infty)$, we have

$$
\lim _{R \rightarrow \infty} S_{R} f=f \text { in } L^{p}
$$

is equivalent to $\exists C=C(p)>0$ such that

$$
\left\|S_{R} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

Proof. Exercise. Later, we will prove this when $n=1$ (related to the Hilbert transform).

We introduce the Cesaro summability in the following. Define

$$
\sigma_{R} f(x)=\frac{1}{R} \int_{0}^{R} S_{t} f d t
$$

For $n=1, B=(-1,1)$, we can write $S_{R} f=D_{r} * f$, where $D_{R}=\int_{-R}^{R} e^{2 \pi i x \cdot \xi} d \xi=$ $\frac{\sin (2 \pi R x)}{\pi x}$ is the Dirichlet kernel. Next, we can write $\sigma_{R} f=F_{R} * f$, where

$$
\begin{aligned}
F_{R}(x) & =\frac{1}{R} \int_{0}^{R} D_{t} d t=\frac{1}{R} \int_{0}^{R} \frac{\sin (2 \pi t x)}{\pi x} d t \\
& =\frac{\sin ^{2}(\pi R x)}{R(\pi x)^{2}} .
\end{aligned}
$$

Note that for $R=1, F_{1}(x)=\frac{\sin ^{2}(\pi x)}{(\pi x)^{2}}, F_{R}(x)=R F(R x)\left(t=\frac{1}{R}\right)$. We can see that

$$
\left|F_{1}(x)\right| \leq \min \left\{1,(\pi x)^{2}\right\} \text { (integrable). }
$$

Corollary 2.11. We have

$$
\begin{gathered}
\lim _{R \rightarrow \infty} \sigma_{R} f=f \text { in } L^{p}(\mathbb{R}) \text { for } 1 \leq p<\infty, \\
\lim _{R \rightarrow \infty} \sigma_{R} f=f \text { in } L^{\infty} \text { if } f \in C_{0}(\mathbb{R}),
\end{gathered}
$$

and

$$
\lim _{R \rightarrow \infty} \sigma_{R} f=f \text { a.e.. }
$$

2.3 Other summability methods

1. Abel-Poisson method

Consider

$$
u(x, t)=\int_{\mathbb{R}^{n}} e^{-2 \pi t|\xi|} \widehat{f}(\xi) e^{2 \pi x \cdot \xi} d \xi
$$

We can check that u is harmonic for $t>0$, i.e.,

$$
\Delta u=0 \text { in } \mathbb{R}_{+}^{n}=\{(x, t) \mid t>0\} .
$$

Impose the boundary condition $u(x, 0)=f(x)$ (in suitable sense) and $\lim _{t \rightarrow 0+} u(x, t)=$ $f(x)$. We can express

$$
u(x, t)=P_{t} * f(x),
$$

where $\widehat{P}_{t}(\xi)=e^{-2 \pi t|\xi|}$.
Claim: (Exercise, in Stein-Weiss' book)

$$
P_{t}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \frac{t}{\left(t^{2}+|x|^{2}\right)^{\frac{n+1}{2}}} \text { (Poisson kernel). }
$$

So for $P_{1}=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \frac{1}{\left(1+|x|^{2}\right)^{\frac{n+1}{2}}}$, radially symmetric, decreasing, integrable.
Corollary 2.12. $\lim _{t \rightarrow 0+} P_{t} * f=f$ in L^{p}, pointwise.
2. Gauss-Weierstrass method

Consider

$$
w(x, t)=\int e^{-\pi t^{2}|\xi|^{2}} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi,
$$

and $\lim _{t \rightarrow 0} u(x, t)=f(x)$? We can write $w(x, t)=W_{t} * f$, where $\widehat{w_{t}}(\xi)=$ $e^{-\pi t^{2}|\xi|^{2}}$, which implies

$$
w_{t}(x)=t^{-n} e^{-\pi|x|^{2} / t^{2}} \text { (Heat kernel, exercise). }
$$

Let $\widetilde{w}(x, t)=w(x, \sqrt{4 \pi t})$, then

$$
\left\{\begin{array}{l}
\partial_{t} \widetilde{w}-\Delta \widetilde{w}=0 \quad \text { in } x \in \mathbb{R}^{n}, t>0 \\
\widetilde{w}(x, 0)=f(x)
\end{array}\right.
$$

For $t=1, w_{1}(x)=e^{-\pi|x|^{2}}$ radially symmetric, decreasing, integrable.
Corollary 2.13. We have

$$
\lim _{t \rightarrow 0} w(x, t)=f(x) \text { in } L^{p} \text {, a.e.. }
$$

3 Calderón-Zygmund decomposition

Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $f \geq 0$. Given any $\alpha>0$, we have

1. $\mathbb{R}^{n}=\Omega \cup F(\Omega \cap F=\emptyset)$,
2. On F (good set), $f(x) \leq \alpha$ a.e.,
3. $\Omega=\cup_{k} Q_{k}$, where $\left\{Q_{k}\right\}$'s are non-overlapping cubes, then

$$
\alpha<\frac{1}{\left|Q_{k}\right|} \int_{Q_{k}} f \leq 2^{n} \alpha
$$

Proof. We partition \mathbb{R}^{n} into cubes with same diameter. Since $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we can find a large enough partition cube Q s.t.

$$
\int_{Q} f \leq \alpha|Q| \quad\left(\int_{Q} f \leq \int_{\mathbb{R}^{n}} \leq \alpha|Q|\right)
$$

Next, we divide Q into Q^{\prime} whose side is half of that of Q. Namely, Q is partitioned into 2^{n} subcubes. There are only two cases

$$
\frac{1}{\left|Q^{\prime}\right|} \int_{Q^{\prime}} f \leq \alpha \quad \text { or } \quad \frac{1}{\left|Q^{\prime}\right|} \int_{Q^{\prime}} f>\alpha
$$

For Q^{\prime} satisfying

$$
\alpha<\frac{1}{\left|Q^{\prime}\right|} \int_{Q^{\prime}} f
$$

we put it into Ω. To check the other half of (iii), we note that

$$
\frac{1}{\left|Q^{\prime}\right|} \int_{Q^{\prime}} \leq \frac{|Q|}{\left|Q^{\prime}\right|} \frac{1}{|Q|} \int_{Q} f \leq 2^{n} \alpha
$$

Now for the case

$$
\frac{1}{\left|Q^{\prime}\right|} \int_{Q^{\prime}} f \leq \alpha
$$

we repeat the process, partition such Q^{\prime} into 2^{n} subcubes $Q^{\prime \prime}$. There are two cases:

$$
\frac{1}{\left|Q^{\prime \prime}\right|} \int_{Q^{\prime \prime}} f \leq \alpha \quad \text { or } \quad \frac{1}{\left|Q^{\prime \prime}\right|} \int_{Q^{\prime \prime}} f>\alpha
$$

For $Q^{\prime \prime}$ with

$$
\alpha<\frac{1}{\left|Q^{\prime \prime}\right|} \int_{Q^{\prime \prime}} f \leq \frac{\left|Q^{\prime}\right|}{\left|Q^{\prime \prime}\right|} \frac{1}{\left|Q^{\prime}\right|} \int_{Q^{\prime}} f \leq 2^{n} \alpha
$$

Therefore, we find $\Omega=\bigcup_{k} Q_{k}$ satisfying (iii). Now let $F=\mathbb{R}^{n}-\Omega$, then by Lebesgue Differential Theorem

$$
f(x) \leq \alpha \text { a.e. }
$$

Corollary 3.1. f, α, F, Ω are given as above. $\exists A, B$ (depending on n) s.t. [(i)]

1. $|\Omega| \leq \frac{A}{\alpha}\|f\|_{1}$
2. $\forall Q_{k} \in \Omega$

$$
\frac{1}{\left|Q_{k}\right|} \int_{Q_{k}} f \leq B \alpha
$$

In fact, from the proof above, $A=1, B=2^{n}$.
Proof.

$$
|\Omega|=\left|\bigcup_{k} Q_{k}\right|=\sum_{k}\left|Q_{k}\right| \leq \sum_{k} \frac{1}{\alpha} \int_{Q_{k}} f=\frac{1}{\alpha} \int_{\cup_{k} Q_{k}} f \leq \frac{1}{\alpha}\|f\|_{1}
$$

Question: What are F and Ω ? Is $F=\left\{x \in \mathbb{R}^{n}: f(x) \leq \alpha\right\}$?

3.1 Another proof of Calderón-Zygmund decomposition

For any open set $\Omega \subset \mathbb{R}^{n}$, we can write $\Omega=\bigcup_{k} Q_{k}$, where $\left\{Q_{k}\right\}$ are nonoverlapping cubes. Here we need to construct cubes with some geometric restrictions.

Theorem 3.2. Let F be a (non-empty) closed set in \mathbb{R}^{n}. Denote $\Omega=F^{c}$ (open). Then there exists a collection of cubes $\mathcal{F}=\left\{Q_{1}, Q_{2}, \cdots\right\}$ satisfying [(i)]
(1) $\Omega=\bigcup_{k} Q_{k}$
(2) $\left\{Q_{k}\right\}$ are non-overlapping
(3) $\exists c_{1}, c_{2}$ (independent of F) s.t.

$$
c_{1} \operatorname{diam}\left(Q_{k}\right) \leq \operatorname{dist}\left(Q_{k}, F\right) \leq c_{2} \operatorname{diam}\left(Q_{k}\right) .
$$

In fact, we can choose $c_{1}=1, c_{2}=4$.
We now use Whitney's theorem to re-prove Calderón-Zygmund corollary
Proof. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} f d y
$$

$M f$ is lower semicontinuous. Prove $M f$ is lower semi-continuous (exercise). Then

$$
\begin{aligned}
& F:=\{M f(x) \leq \alpha\} \text { (closed) } \\
& \Omega:=\{M f(x)>\alpha\} \text { (open) }=\bigcup_{k} Q_{k}
\end{aligned}
$$

$\left\{Q_{k}\right\}$ is constructed in Whitney's decomposition.
To prove (i)

$$
|\Omega|=|\{M f(x)>\alpha\}| \leq \frac{A}{\alpha}\|f\|_{1}
$$

Since M is weak $(1,1)$.
Remark 3.3. Here $A=5^{n}$
Proof. To prove (ii), Given $Q_{k} \subset \Omega$. Pick $p_{k} \in F$ s.t.

$$
\operatorname{dist}\left(p_{k}, Q_{k}\right)=\operatorname{dist}\left(Q_{k}, F\right)
$$

We now pick $B_{r_{k}}\left(p_{k}\right)$ be the smallest ball containing Q_{k} as the interior. Since $p_{k} \in F$

$$
\alpha \geq M f\left(p_{k}\right) \geq \frac{1}{\left|B_{r_{k}}\left(p_{k}\right)\right|} \int_{B_{r_{k}\left(p_{k}\right)}} f \geq \frac{\left|Q_{k}\right|}{\left|B_{r_{k}}\left(p_{k}\right)\right|} \frac{1}{\left|Q_{k}\right|} \int_{Q_{k}} f \geq \frac{1}{B} \frac{1}{\left|Q_{k}\right|} \int_{Q_{k}} f
$$

where B depends only on n.

3.2 Proof of Whitney's Theorem

Proof. We partition \mathbb{R}^{n} into cubes with integer coordinates (lattice) M_{0}. For $k \in \mathbb{Z}$, we denote $M_{k}=2^{-k} M_{0}$. Note that for each cube in M_{k}, its diameter is $\sqrt{n} 2^{-k}$. Next, we construct a series of layers

$$
\Omega_{k}=\left\{x \in \mathbb{R}^{n}: 2 \sqrt{n} 2^{-k}<\operatorname{dist}(x, F) \leq 2 \sqrt{n} 2^{-k+2}\right\} \subset \Omega
$$

Then $\Omega=\bigcup_{k} \Omega_{k}$. Now we choose

$$
\mathcal{F}_{0}=\bigcup_{k}\left\{Q \in M_{k}: Q \cap \Omega_{k} \neq \emptyset\right\}
$$

Note that if $Q \in \mathcal{F}_{0}, Q \subset \Omega$. In fact

$$
\Omega=\bigcup_{Q \in \mathcal{F}_{0}} Q
$$

Claim: For $Q \in \mathcal{F}_{0}, \operatorname{diam}(Q) \leq \operatorname{dist}(Q, F) \leq 4 \operatorname{diam}(Q)$
Proof. Since $Q \in \mathcal{F}_{0}, \exists x \in Q \bigcap \Omega_{k}$ for some k

$$
\operatorname{dist}(Q, F) \leq \operatorname{dist}(x, F) \leq 2 \sqrt{n} 2^{-k+1}=4 \sqrt{n} 2^{-k}=4 \operatorname{diam}(Q)
$$

Next, $\operatorname{dist}(Q, F)+\operatorname{diam}(Q) \geq \operatorname{dist}(x, F) \geq 2 \sqrt{n} 2^{-k}$, then

$$
\operatorname{dist}(Q, F) \geq 2 \sqrt{n} 2^{-k}-\operatorname{diam}(Q)=\operatorname{diam}(Q)
$$

So we obtain that all cubes in \mathcal{F}_{0} satisfy (iii), i.e.

$$
\operatorname{diam}(Q) \leq \operatorname{dist}(Q, F) \leq 4 \operatorname{diam}(Q)
$$

Now the question is that there are not non-overlapping. Observe that if $Q_{1} \in$ $M_{k_{1}}, Q_{2} \in M_{k_{2}}$ and $Q_{1} \cap Q_{2} \neq \emptyset$, then

$$
Q_{1} \subset Q_{2} \quad \text { if } k_{1}>k_{2}
$$

Also, if $Q \subset Q^{\prime}$ and $Q, Q^{\prime} \in \mathcal{F}_{0}$ then

$$
\operatorname{diam}\left(Q^{\prime}\right) \leq \operatorname{dist}\left(Q^{\prime}, F\right) \leq \operatorname{dist}(Q, F) \leq 4 \operatorname{diam}(Q)
$$

For any $Q \in \mathcal{F}_{0}$, we can find the maximal cube $\tilde{Q} \in \mathcal{F}_{0}$ s.t. $Q \subset \tilde{Q}$. Finally,

$$
\Omega=\bigcup_{k} Q_{k}
$$

where $Q_{k} \in \mathbb{F}_{0}$ and maximal cube, $\left\{Q_{k}\right\}$: non-overlapping.

3.3 Dyadic maximal function

In \mathbb{R}^{n}, let $\widetilde{Q_{0}}$ be the set of cubes (with lattices coordinates) which are congruent to $[0,1)^{n}$. Let $\widetilde{Q_{k}}$ be the set cubes formed by dilation $2^{-k} \widetilde{Q_{0}}, k \in \mathbb{Z}$. Note that for any $x \in \mathbb{R}^{n}, x$ lies in a unique cube for each k. On each level $(k \in \mathbb{Z})$, cubes are disjoint. If two cubes from different k 's intersect, then one is contained in other completely.

Let $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, define

$$
E_{*} f(x)=\sum_{Q \in Q_{k}}\left(f_{Q} f d x\right) \chi_{Q}(x)
$$

In other words, for $x \in \mathbb{R}^{n}$ and $k \in \mathbb{Z}$, then there exists only $Q \in \widetilde{Q_{k}}$ with $x \in Q . E_{k} f(x)=f_{Q} f d x$.

Definition 3.4. For $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, we define the dyadic maximal function

$$
M_{d} f(x)=\sup _{k} E_{k}[|f|](x)=\sup _{\substack{x \in Q \\ Q \subset Q_{k}}} f_{Q}|f| .
$$

Lemma 3.5. For $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\lim _{k \rightarrow-\infty} E_{k} f(x)=0
$$

Proof. Observe that

$$
E_{k}[\mid f](x)=f_{Q}|f| \leq \frac{1}{|Q|}\|f\|_{1} \rightarrow 0 \text { as } k \rightarrow-\infty
$$

Theorem 3.6. Let $f \in L^{1}\left(\mathbb{R}^{n}\right), \lambda>0$, there exists a collection of disjoint dyadic cubes $\left\{\mathcal{Q}_{j}\right\}$ such that

$$
\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}=\cup_{j} \mathcal{Q}_{j}
$$

and

$$
\lambda \leq f_{\mathcal{Q}_{j}}|f| \leq 2^{n} \lambda
$$

Corollary 3.7. (a) M_{d} is weak $(1,1)$.
(b) Lebesgue differentiation theorem

$$
\lim _{k \rightarrow \infty} E_{k} f(x)=f(x) \text { a.e.. }
$$

Proof. (b) follows from (a) (exercise). For (a),

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}\right|=\left|\cup_{j} \mathcal{Q}_{j}\right|=\sum_{j}\left|\mathcal{Q}_{j}\right| \\
& \quad \leq \frac{1}{\lambda} \sum_{j} \int_{\mathcal{Q}_{j}}|f| \leq \frac{1}{\lambda}\|f\|_{1}
\end{aligned}
$$

Proof. (Proof of Theorem) Let

$$
E_{\lambda}=\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}=\cup_{k}\left\{x \in \mathbb{R}^{n}: E_{k}[|f|](x)>\lambda\right\} .
$$

Now if $x \in E_{\lambda}, \exists x \in Q_{k} \in \widetilde{Q_{k}}$ such that $f_{Q_{k}}|f|>\lambda$. Note that $Q_{k} \subset E_{\lambda}$. By lemma, there must exist a largest $Q_{k^{*}} \supset Q_{k}$ such that $E_{k^{*}}[|f|](x)>\lambda\left(k^{*} \leq k\right)$. For any $x \in E_{\lambda}$, there exists a unique cube Q_{k} such that $E_{k}[|f|](x)>\lambda$ but $E_{k-1}[|f|](x) \leq \lambda$. So $E_{\lambda}=\cup_{k} Q_{k}$. Next, on each cube Q_{k},

$$
\lambda<f_{Q_{k}}|f| \leq \frac{\left|Q_{k-1}\right|}{\left|Q_{k}\right|} \frac{1}{\left|Q_{k-1}\right|} \int_{Q_{k-1}}|f| \leq 2^{n} \lambda
$$

Theorem 3.8. (Calderón-Zygmund decomposition)

Let $f \in L^{1}\left(\mathbb{R}^{n}\right), \lambda>0$, there exists a collection of disjoint dyadic cubes $\left\{Q_{k}\right\}$ and $g \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\left\{b_{k}\right\}$ such that $f=g+\sum b_{k}$, where $\|g\|_{L^{\infty}} \leq 2^{n} \lambda$ and $\|g\|_{1} \leq\|f\|_{1}$ (good part), $\operatorname{supp}\left(b_{k}\right) \subset Q_{k}$ and $\int_{Q_{k}} b_{k} d x=0$.
Proof. Let $\left\{Q_{k}\right\}$ be constructed as above. Define

$$
b_{k}=\left(f(x)-f_{Q_{k}} f\right) \chi_{Q_{k}}(x)
$$

So b_{k} satisfies all conditions. Define

$$
g(x)=f(x)-\sum_{k} b_{k}(x)
$$

Need to show that $\|g\|_{\infty} \leq 2^{n} \lambda,\|g\|_{1} \leq\|f\|_{1}$. If $x \in \cup_{j} Q_{j}$ and note that $\left\{Q_{j}\right\}$ disjoint then $g(x)=f_{Q_{j}} f(x) d x \forall x \in Q_{j}$.

For $x \notin \cup_{j} Q_{j}, f(x)=g(x)$. We know that $M_{d} f(x) \leq \lambda$ for $x \notin \cup_{j} Q_{j}$. Also $|f(x)| \leq M_{d} f(x)$ a.e., then $|g(x)| \leq \lambda \forall x \notin \cup_{j} Q_{j}$. For $x \in \cup_{j} Q_{j}$, $|g(x)| \leq\left|f_{Q_{j}} f(x)\right| \leq 2^{n} \lambda$. Thus $\|g\|_{\infty} \leq 2^{n} \lambda$. On the other hand

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}|g| & =\int_{\cup_{j} Q_{j}}|g(x)|+\int_{\mathbb{R}^{n}-\cup_{j} Q_{j}}|g(x)| \\
& \leq \int_{\cup_{j} Q_{j}}|f(x)|+\int_{\mathbb{R}^{n}-\cup_{j} Q_{j}}|f(x)| \\
& =\|f\|_{1} .
\end{aligned}
$$

3.4 Another maximal functions defined by cubes

Definition 3.9. Let $x \in \mathbb{R}^{n}$ and Q_{r} be the cube with centered at x and $l\left(Q_{r}\right)=$ $2 r$, then if $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$, we define

$$
M^{\prime} f(x)=\sup _{r>0} \frac{1}{\left|Q_{r}\right|} \int_{Q_{r}}|f(y)| d y=\sup _{r>0} \frac{1}{(2 r)^{n}} \int_{Q_{r}}|f(y)| d y
$$

Note that $\exists c_{1}, c_{2}$ (depends only on n) s.t.

$$
c_{1} M^{\prime} f(x) \leq M f(x) \leq c_{2} M^{\prime} f(x)
$$

Here $M f$ is Hardy-Littlewood maximal function.
Theorem 3.10. We have that $\forall \lambda>0$,

$$
\left|\left\{x \in \mathbb{R}^{n}: M^{\prime} f(x)>4^{n} \lambda\right\}\right| \leq 2^{n}\left|\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}\right| .
$$

Proof. Recall that

$$
\left\{x \in \mathbb{R}^{n}: M_{d} f(x)>\lambda\right\}=\cup_{j} Q_{j}
$$

$\left\{Q_{j}\right\}$: dyadic cubes (disjoint). So it suffices to show that

$$
\left\{x \in \mathbb{R}^{n}: M^{\prime} f(x)>4^{n} \lambda\right\} \subset \cup_{j} 2 Q_{j}
$$

(Q_{j} and $2 Q_{j}$ have the same center). Equivalently, we want to show

$$
x \notin \cup_{j} 2 Q_{j} \Rightarrow M^{\prime} f(x) \leq 4^{n} \lambda
$$

Let Q be any cube centered at x. Then we know that $\exists k \in \mathbb{Z}$ s.t.

$$
2^{-(k+1)} \leq l(Q)<2^{-k}
$$

$l(Q)$: the length of side of Q. Observe that Q intersects m cubes in \widetilde{Q}_{k}, where $m \leq 2^{n}$. We assume Q intersects $R_{1}, R_{2}, \cdots, R_{m} \subset \widetilde{Q}_{k}$.

Note that none of these cubes R_{1}, \cdots, R_{m} is contained in any Q_{j}. If not, then $x \in 2 Q_{j}$. Hence on each $R_{i}, i=1, \cdots, m$, we have

$$
\frac{1}{\left|R_{i}\right|} \int_{R_{i}}|f(x)| \leq \lambda
$$

So

$$
\begin{aligned}
f_{Q}|f| & =\sum_{i=1}^{m} \frac{1}{|Q|} \int_{Q \cap R_{i}}|f| \\
& \leq \sum_{i=1}^{m} \frac{\left|R_{i}\right|}{|Q|} \frac{1}{\left|R_{i}\right|} \int_{R_{i}}|f| \\
& \leq \frac{2^{-k n}}{|Q|} \sum_{i=1}^{m} \frac{1}{\left|R_{i}\right|} \int_{R_{i}}|f| \\
& \leq \frac{2^{-k n}}{|Q|} \sum_{i=1}^{m} \lambda \\
& \leq \frac{2^{-k n}}{|Q|} 2^{n} \lambda \\
& \leq \frac{2^{-k n} 2^{n}}{2^{-(k+1) n}} \lambda \\
& =4^{n} \lambda .
\end{aligned}
$$

Thus, $M^{\prime} f(x) \leq 4^{n} \lambda$.

3.5 The Hilbert transform

Consider the mapping H

$$
H f(x)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(y)}{x-y} d y
$$

The definition does not make sense since $\frac{1}{x-y}$ is not locally integrable!
In fact, H is defined by the sense of principle value, i.e.

$$
H f(x)=\lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \int_{|x-y|>\epsilon} \frac{f(y}{)} x-y d y=p \cdot v \cdot \int_{-\infty}^{\infty} \frac{f(y)}{x-y} d y
$$

To see that the definition makes sense, we let $f \in C_{0}^{1}(\mathbb{R})$

$$
\begin{aligned}
\int_{|x-y|>\epsilon} \frac{f(y)}{x-y} d y & =\int_{x-y}>\epsilon \frac{f(y)}{x-y} d y+\int_{x-y}<-\epsilon \frac{f(y)}{x-y} d y \\
& =\int_{|x-y|>\epsilon} \frac{f(y)}{x-y} d y-f(x) \int_{|x-t|>\epsilon} \frac{d y}{x-y} \\
& =\int_{|x-y|>\epsilon} \frac{f(y)-f(x)}{x-y} d y \\
& =\int_{\epsilon<|x-y|<1} \frac{f(y)-f(x)}{x-y} d y+\int_{|x-y|>1} \frac{f(y)-f(x)}{x-y} d y
\end{aligned}
$$

The second of RHS is finite. Since $f \in C^{1}(\mathbb{R})$, we have

$$
\begin{aligned}
\left|\int_{\epsilon<|x-y|<1} \frac{f(y)-f(x)}{x-y} d y\right| & \leq \int_{\epsilon<|x-y|<1}\left|\frac{f(y)-f(x)}{x-y}\right| d y \\
& \leq\left\|f^{\prime}\right\|_{\infty} \int_{\epsilon<|x-y|<1} d y \leq 2\left\|f^{\prime}\right\|_{\infty}
\end{aligned}
$$

This method is called regularization.
Note that the same method does not work for $\frac{1}{|x-y|}$ (no cancellation!)
Remark 3.11. The Hilbert transform of any function (compactly supported) is not always defined pointwise, e.g. if $f=\chi_{[0,1]}$ then $\operatorname{Hf}(x)=-\infty$. Check the above example (exercise).

Goal : to study the mapping property of H in $L^{p}, 1 \leq p \leq \infty$
In fact, the kernel of H is a tempered distribution, i.e.

$$
\text { p.v. } \frac{1}{x}(\psi)=\lim _{\epsilon \rightarrow 0} \int_{|x|>\epsilon} \frac{\psi(x)}{x} d x \quad \psi \in \mathcal{S}(\mathbb{R})
$$

3.6 Connect to complex analysis

Let $u(x, t)=\left(P_{t} * f\right)(x)$, where $P_{t}(x), x \in \mathbb{R}^{n}, t>0$ is the Poisson kernel of the half plane

$$
\widehat{P}_{t}(\xi)=e^{-2 \pi t|\xi|} \Leftrightarrow P_{t}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \frac{t}{\left(t^{2}+\left|x^{2}\right|\right)^{\frac{n+1}{2}}}
$$

and

$$
u(x, t)=\int e^{-2 \pi t|\xi|} \hat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

Also, $\lim _{t \rightarrow 0}\left(P_{t} * f\right)(x)=f(x)$ in $L^{p}, 1 \leq p<\infty$ and a.e.
Now we take $n=1$,

$$
P_{t}(x)=\frac{1}{\pi} \frac{t}{\left(t^{2}+x^{2}\right)}
$$

Let $z=x+i t$, then

$$
u(x, t)=u(z)=\int_{0}^{\infty} \hat{f}(\xi) e^{i 2 \pi z \xi} d \xi+\int_{-\infty}^{0} \hat{f}(\xi) e^{i 2 \pi \bar{z} \xi} d \xi
$$

Now if we let

$$
i v(x, t)=i v(z)=\int_{0}^{\infty} \hat{f}(\xi) e^{i 2 \pi z \xi} d \xi-\int_{-\infty}^{0} \hat{f}(\xi) e^{i 2 \pi \bar{z} \xi} d \xi
$$

then $u+i v=2 \int_{0}^{\infty} \hat{f}(\xi) e^{i 2 \pi z \xi} d \xi$ is analytic in $\operatorname{Im} z>0$
Note that u and v are harmonic. Also, u and v are real if f is real. Prove it (exercise). So v is a harmonic conjugate of u. Observe that

$$
\begin{aligned}
i v(x, t) & =\int_{0}^{\infty} \hat{f}(\xi) e^{i 2 \pi(x+i t) \xi} d \xi-\int_{-\infty}^{0} \hat{f}(\xi) e^{i 2 \pi(x-i t) \xi} d \xi \\
& =\int_{0}^{\infty} e^{-2 \pi t \xi} \hat{f}(\xi) e^{2 \pi i x \xi} d \xi+\int_{-\infty}^{0}(-1) e^{-2 \pi t(-\xi)} \hat{f}(\xi) e^{i 2 \pi x \xi} d \xi \\
& =\int_{-\infty}^{\infty} \operatorname{sign}(\xi) e^{-2 \pi t|\xi|} \hat{f}(\xi) e^{i 2 \pi x \xi} d \xi
\end{aligned}
$$

Then

$$
v(x, t)=\int_{-\infty}^{\infty}-i \operatorname{sign}(\xi) e^{-2 \pi t|\xi|} \hat{f}(\xi) e^{i 2 \pi x \xi} d \xi=\left(Q_{t} * f\right)(x)
$$

where $\widehat{Q}_{t}=-i \operatorname{sign}(\xi) e^{-2 \pi t|\xi|}$. We can compute

$$
Q_{t}=\frac{1}{\pi} \frac{x}{\left(t^{2}+x^{2}\right)} \quad(\text { Conjugate Poisson Kernel })
$$

If we write

$$
P_{t}+i Q_{t}=\frac{1}{\pi} \frac{t+i x}{\left(t^{2}+x^{2}\right)}=\frac{1}{\pi} \frac{i \bar{z}}{z \bar{z}}=\frac{1}{\pi} \frac{i}{z}
$$

the second equivalent let $z=x+i t$.
Lemma 3.12.

$$
\lim _{t \searrow 0} Q_{t}=\frac{1}{\pi} p \cdot v \frac{1}{x}
$$

as a tempered distribution
Proof. Need to show that $\forall \psi \in \mathcal{S}(\mathbb{R})$,

$$
\lim _{t \searrow 0}\left(Q_{t}-\frac{1}{\pi p \cdot v \cdot \frac{1}{x}}\right)(\psi)=0
$$

Meaning

$$
\begin{aligned}
& \lim _{t \rightarrow 0}\left(\int_{-\infty}^{\infty} \frac{x \psi(x)}{t^{2}+x^{2}} d x-\int_{|x|>t} \frac{\psi(x)}{x} d x\right)=0 \\
= & \lim _{t \rightarrow 0}\left(\int_{|x| l e q t} \frac{x \psi(x)}{t^{2}+x^{2}} d x+\int_{|x|>t} \frac{x \psi(x)}{t^{2}+x^{2}} d x-\int_{|x|>t} \frac{\psi(x)}{x} d x\right) \\
= & \lim _{t \rightarrow 0}\left(\int_{|x| l e q 1} \frac{x \psi(x)}{1+x^{2}} d x+\int_{|x|>1}\left(\frac{x \psi(t x)}{1+x^{2}} d x-\frac{\psi(t x)}{x}\right) d x\right) .
\end{aligned}
$$

