An introduction to Harmonic Analysis
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Abstract

The note is mainly for personal record, if you want to read
it, please be careful. This lecture was given by Prof. Jenn-Nan Wang
in National Taiwan University, during February to June 2016.

1 Introduction and Motivation
From Lebesgue’s differentiation theorem. Let f € L} (R™), then

1
lim f(y)dy = f(z) a.e.,
r—0 |B (@) /B, ()
where B.(z) = {y : |y — z| < r} and |B,(z)| is the Lebesgue measure of B, (z).
Instead of taking limit, we study

1
M) = o0 1Br(@)] B (2)] /g, () F@idy
! @ —)ldy,

0 1B,(0)] /3,0
which is called the Hardy-Littlewood maximal function and M is the Hardy-

Littlewood maximal operator.

1.1 Basic properties for maximal functions
Problem 1.1. Boundedness of M.

Theorem 1.2. For 1 < p < oo, we have
(a) M f(x) is finite a.e. for all f € LP(R™).
(b) M f is weak (1,1), i.e., Voo > 0, JA = A(n) such that

A
Ha: Mf(z) > o}l < —[flle.
(c) M is strong (p,p) for 1 < p < oo, i.e., 3C,, such that

M fllze < Cpll fllze-

Remark 1.3. (a) is a consequence from (b) and (c).

Why do we study [{x € R™ : M f(z) > a}| (the distribution function of
Mf).



Proposition 1.4. For 1 <p < oo, if f € LP(R™), then

[ islae=p [0 e R 50 > adide )
R™ 0

Notation: Af(a) = [{z € R : |f(x)] > a}l.
Derivation of (?7): We can see it by using Tonelli’s theorem. Moreover, inte-
gration by parts will give

p/oOo oz € R" : |f(x)] > a}|da = _/000 aPdAs(a).

1
Remark 1.5. Chebyshev’s inequality: Af(a) < —|/f|[z:. If f € L'(R™), then
a

As(w) is finite. Even for nonintegrable function, we still can estimate A;(c).

1
Example 1.6. Let f(z) = R in R”, then Af(a) = “ for some constant Cn.-
x a

Remark 1.7. Strong (1,1) implies weak (1,1). ||Tf||1 < C4]|f]|1 implies

1 C
HITH > o}l < ZITfl < 21l

The Hardy-Littlewood maximal operator M is never strong (1,1). For ex-

1
ample, f(z) = xp,(0) € L'(R™), but M f(z) ~ —

|z
Note that M f ¢ L', but we still can bound Anr; (). The proof of weak type
(1,1) for M f, i.e., Va > 0, f € L*(R"),

A
{z € R : Mf(2) > a}| < —Ifl1,

where A = A(n). Need a covering lemma.

Lemma 1.8. (Vitali’s covering lemma) Let E be a measurable subset in R™.
Assume that E is covered by a family of balls{B;} of bounded diameters. Then
we can find a sequence of disjoint balls By, Bs, --- from {B;} s such that

1
> Bkl = CulE|, with C, < = (2)
k

and I C U B} where B}, = 5DBy,.
Proof. Let By be the ball chosen from {B;} such that

1
diamB; > 3 sup{diamB;}.
Assume that we have chosen By, Ba, -, Bg. Then By is chosen that
1
diamBy41 > 3 sup{diamB,;, B;NB; =0, Vi =1,2,--- | k}.

So we have chosen a sequence of balls By, Bo, - -- disjoint balls.



Now, if >, |Bx| = oo, (??) holds automatically. So we consider the case
>k |Bi| < oo, which implies diamBj, — 0 as k — oo. Let B; be any ball which
is not chosen. Since diamBj; — 0, there exists a first k such that

1
diamBj41 < §diamBj .

Claim: B, must intersect some balls of By, Bs, - ,By. If BN B, = 0

Vj =1,---,k, then B; would have been chosen, since diamB; > 2diamBj ;.
Therefore, 3 smallest ko with 1 < kg < k such that B;j N By, # (). Then we have
1

§diamBj < diam By, , which implies B; C 5By, . O]

(b) Proof of weak (1,1). Let E, = {z € R" : Mf(x) > a}. For
1
z € E,, Le., Mf(x) = sup,-, AC |fB (@ [fWldy > «, 3B,(z) such that

1
|B | fB (z) |f )|dy > o |B | < o fB,,,(w) |f Y |dy~ So E, C UrGEaBT’(x)'

Frorn the covering lemma, 3By, By, - - - such that >, |By| > C|E,|. Therefore,

\EKCZNM<—Z/ y)ldy

(c) Proof of strong (p,p), 1 < p < oco. The proof is in fact a special case of
Marcinkiewicz interpolation theorem.

Known fact: M is weak (1,1) and M is strong (00, 00), i.e., |M flloo < |If]loo
for a.e. z. By Marcinkiewicz, we have M is strong (p,p) for 1 < p < co. Let
feLP 1<p<oo. Va> 0, define

(M@:{ﬂm,ﬁf@n>f

0, otherwise.

Then f = fi(z) + fo(x), where |fo(z)| < % for all . Note that |M fo(z)| <
for all x. Also, M is subadditive, i.e.,

| Q

Mf < Mfi+Mfs <M+ 35

and o
|Eol={z € R : M f(z) >a}| < [{z e R": M fi(x) > 5}\

By the weak (1,1) of M, we have

« 2A
|Eo| < {z € R : Mfi(2) > 5} < — il



Now,
IMFIE = p / | By da
0
<opd [ ar? / \F(2)|da
0 {If(z)|>%5}

2|f ()]
< 2pA \f(x)|/ P 2dadx
R™ 0
_ 2PpA

_p*1 Rn

|f () |Pda.

1.2 Proof of Lebesuge’s differentiation theorem

[ € L}, .(R™) implies lim,_,g fBT(x)f(y)dy = f(z) a.e.. We can assume f €
L'(R™). Denote

folw) = 7@ iy

then we claim that || f, — f|lz1 — 0 as r — 0.

Proof. Prove it is true for f € Co(R™). For f € L', by density argument since
Co(R™) is dense in L' (R™).
Goal. For a.e. z, f.(x) = f(z) as r — 0.

We have shown that f, (z) — f(z) a.e. for some 7; — 0. We only need to
show that lim,_,¢ f,(z) exists. Denote

Qf(z) := |limsup f,(z) — liminf f.(x)|.
r—0 =0

It suffices to prove that Ve > 0, [{Qf(z) > ¢}| = 0.

Note that f € Co(R"), then Qf(z) = 0 for all x. For any f € L'(R"),
Jh € Cp(R™) and g € L'(R"™) with ||g||; is as small as we wish such that
f=h+g. Now,

{Qf (@) > e} < [9h(@) > S} +[g(@) > S} = [99(x) > S}.

Recall Qg(x) = |limsup,_,q g-(x)—liminf,_,q g (x)| will imply Qg(z) < 2Mg(x).
Therefore,

€ € 4A
{Qg(z) > 53 = {Mg(z) > 7} = —— gl
and ||g||z1 can be small as we wish, which completes the proof. O

Remark 1.9. The proof of Lebesgue’s differentiation theorem only uses the weak
type (1, 1) of the maximal functions.

1.3 Marcinkiewicz interpolation theorem for L7(R") (1 <
p < 00)
Definition 1.10. For f € LP, an operator T is called strong (p,q), 1 < g < o0
if
ITfllg < Cpql

fllp-



T is called weak (p,q) for ¢ < oo if Vo > 0,

s> o < (L)

T is weak (p,00) if T is strong (p, c0).
Proposition 1.11. T is strong (p,q) will imply that T is weak (p,q).
Proof. We have ||Tf||4 < C|f[|4 and

1Tl = / T f|9dz = / T+ / e
R™ {ITf(z)|<a} {Tf(z)|>a}
> (T F(x)] > a}.

Then we are done. O

1.4 Marcinkiewcz Interpolation Theorem for L”
Definition 1.12. f € LP* + LP2 iff f = f, + fo, fi € LP* and fo € LP2.

Remark 1.13. Assume py < po. Then f € LP = f € LPr + P2 p) <p < ps.
Given any v > 0. Define

[ @) @] >
fi(z) = { 0 otherwise (|f(x)| < 7)

_Jo |f(z)] >~
Fa(x) —{ F(z) otherwise (|f(z)] <)
Then
1@ [ f@lrde= [ F@)PIf @) Pda
{If(=)|>~} {1f(=)|>~}

< 7”1_”/ |f(z)|Pdz < o0,

P2y — P2y — P P2—P(
/ o) P2de /ﬂf(xm}'f(x)' . /ﬂf(mm}'f(‘”)' (@) PP
<y [ 1p@lde <o,

Remark 1.14. The level vy is arbitrary.

Theorem 1.15. For 1 <r < oo. Assume that the operator T is sublinear, i.e.

T(f +9)(@)| <[Tf(x)| +[Tg(x)];

moreover, T is weak(1,1) and weak(r,r). Then T is strong(p,p) for 1 < p < r,
i.e. 3 Ay, >0 s.t.

Remark 1.16. For f € LP, 1 < p < r, we can write f = f1 + f2, f1 € L' and
f2 € L". Since



o T is weak(1,1) i.e.
Ay
HITfi(@)l > a} < =l fill
o T is weak(r,r) i.e.
A, .
HITfo(2)l > o} < (= fall:)’

Proof. Recall that

[1rsrar=p [~ arr(a)da

(o)
0
Need to estimate Apy(a)

Arg(e) = {ITf(2)] > o} < {ITfi(@)] > a/2} + [T f2(2)| > o/2}|

The inequality is from T is sublinear, |Tf(x)| < |Tfi(x)| + |T fo(x)|. To deter-
mine fi(z) and f2(x), we choose of the level v = a.

A A
weak(1,1) = |{IT /()| > a/2}] < 22| Al = 222 ()l
{lf(@)|>a}
24, 2N Ar
weak T " falln = =2 "d
eak(r) = WITFs@) > /2 < VIl =220 [ (@

that is

24 2T AT
w2 @+ 22 [ e
@ J{|f(@)|>a} at J{|f(@)|<a}

JEE

Hence

p/ P Aps(a)da
0

o0 2A
» / art. 2 / | (@) dada
0 @ J{f(z)|>a}

o 27"AT‘
+p/ aP~t. 7;/ |f(2)|]"deda
0 @ S f(@)|<a}
= I+11

infty
I = 2pA, / ar-2 / 1 (2)|dzda
0 {lf(=)|>a}

£ (@)]
= 2pA; / |f ()| / P %dadx
n 0

= 24 Vs

p—1

IA




infty
I = 2TpA:/ ap_r_l/ |f(2)]"dzda
0 {If (@)|<a}

= 2TpA:/ |f(ac)|’/ o " dadx
" \

f(z)]
2rpAT/ -
= —_—r ffL‘ fo p rdl‘
L2 [ r@rise)
2"pA;
= 225 [ jf@pds
r—p Jgn
Thus we obtain op A o7 AT
pA1 D r l/p
T < —r
| f||p7(p_1+r_p) 1/ 1lp
2pA;  2"pAT
for A,, = ZEryi/p, O
or Ap, (p—1+r—p)

Here we proved the case of r < oc.
The case r = oo can be proved by the same argument for M f.

Remark 1.17. A,, - ocoasp — 14+ and p — r—

Exercise 1.18. What happens to A, if T' is either strong(1,1) or strong(r,r)
?

1.5 Lebesgue differentiation theorem

Recall the Lebesgue differentiation theorem. If f € L (R™), then

loc

lim fy)dy = f(x) ae.. (3)

r—0 BT(:E)

Can we replace B, (x) by other family of measurable sets 7
For example, is

lim ]if(y)dy = f(z) a.e. ?

|B|—0,z€B

Definition 1.19. (Regular family) A family F of measurable sets is called
regular if 3¢ > 0 such that VS € F, 3B (centered at the origin) satisfying
S C B and |S| > ¢|B|.

Example 1.20. 1. F = {balls containing 0}.
2. The family of cubes whose distance from the origin is bounded by a
constant multiplier of their diameters.

So let F be regular, we can define the maximal operator associated with F
by

My f(x) = sup f (@ - y)ldy.
SeFJS

Observe that

][If(m—y)ldyﬁ }][ |f(z—y)ldy < ¢ "M f(z).
S CJB



SEF,|S|—0

lim ][Sf(m —y)dy = f(x) ae..

Problem 1.21. We know that 3E C R™ such that |[E°| = 0 and

li —y)dy = Ve E
s jm  f f@ -y = f@) Vo e B

where E° is the exceptional set. The set E or E¢ depends on F. Can we find a
set F such that |E°| = 0 and

li —y)dy = V. FE (Ed d
Sef%%\ﬁo]i f(z —y)dy = f(x) ¥a € E (E depends on f)

independent of what regular family F is 7

Definition 1.22. (Lebesgue set) The Lebesgue set £ of a function f is defined
as ¢z € R” and

lim |f(y) — f(z)ldy =0
T— BT(CE)
or
lim [f (@ —y) = fz)dy = 0. (4)
r=VJB,.(0)

Remark 1.23. Note that (??) is stronger than (?7).
Lemma 1.24. (??) holds almost everywhere.

Proof. For any ¢ € R, we know that 3E, (exceptional set), |E.| = 0 such that

lim [f(y) —cldy — [ f(z) — ¢| V& & EL.
r BT(I)

In particular, if ¢ € Q (rational) and E = U.cgE, (JE| = 0), then

lim [f(y) —aldy — [f(z) — g Vo ¢ E.
r— BT(ZE)
Since Q is dense in R and take ¢ = f(z), then we are done. O

So £ = E€. Now, let F be regular, then for « ¢ E,
—y)dy — - —y) — f(z)]d
‘7[5 fx— y)dy — f()] |]i (@ —y) — F()dy
—y) - f(2)ld
< ][S F@ —y) — f(2)|dy
-1 —y) - dy.
<o ]i == iy
Then as |S| — 0 (= |B-(0)] — 0) will imply

]i (@ —y)dy = f(z) Vo ¢ E.



Definition 1.25. Let F be a measurable set, z € R™ is called a point of density

of E if EAB
tim [E0B-@)]
1B, (o)

Theorem 1.26. Almost every point of E is a point of density of itself.
Proof. Let f(x) = xg(z) € Li, (R"), the characteristic function of E. Then

loc

|E N B(z)]

|By ()] B ]{BT(.T) f)dy — f(z) = xe(z) ae.

Remark 1.27. Almost all point of E€ are not points of density of E.

1.6 Approximation of the identity

Let ¢ € LY(R") with [ ¢da = 1. Consider ¢;(z) = t*”¢>(%), then Vg € S(R™)
(Schwartz class), i.e., Vo, 3 € Z", sup,cpa |27 D%g| < 0o. We can show that
¢i(x)g(z)dr — g(0) as t — 0+, (5)
R’V‘L
¢¢ — § in the sense of distribution.

Proof. (Proof of (77))

. oe(x)g(z)de =t o(=)g(x)dx

R

—en [ o

— [ o) (a(ta) - g(0))dz + g(0)
— g(0)

8 +IR

)g(z) — g(0)]dz + g(0)

as t — 0+ by using the Lebesgue dominated convergence theorem. O

In other words, for g € S, we have
tli_r)r(l)(q/)t * g)(z) = g(x) Vo € R" (pointwise convergence).
¢y is called the approximation of the identity.
Theorem 1.28. For 1 < p < oo, we have
loe* f— fllp, >0 ast—0,
for all f € LP(R™). For p = oo, we have
61 % f = flloo = 0 ast =0,

for all f € Co(R™) (continuous functions vanishing at co).



Proof. Exercise. O

From this theorem, we know that ¢; « f — f in LP for all f € LP. How
about pointwise convergence of ¢; * f 7 The theorem implies that there exists
a subsequence {t;}, tx — 0 such that ¢;, * f — f(z) for a.e. z. If we can show
that lim; o ¢ * f(x) exists almost everywhere, then lim;_o ¢y * f(z) = f(x)
a.e..

1.7 Relations between weak (p,q) bound and pointwise
convergence

Let (X, u) be a measure space and {73} be a family of linear operators on
LP(X, u). Define the maximal operator

T" f(x) = sup Ti f(x)|.
>0
If T* is weak (p, q), then the set
S={fel’(X,pu): tlgltlo Tif(z) = f(z) ae.}
is closed in in LP(X, u).

Proof. To prove that S is closed, we let {fr} C LP(X, p) with lim; ¢, T3 fr(x) =
fe(x) a.e. and fr — f in LP(X,u). Need to show f € S. In other words, we
need to show

u({z € R : limsup |74 f(x) — £(z)] > 0}) =0

t—to

or we can prove

> wlfr € B limsup| T () — £ (&) > 11 =0
k=1 0

It suffices to prove VA > 0, p({z € R™ : limsup, ., |T:f(z) — f(z)| > A}) = 0.
p({z € R" : limsup |T, f(z) — f(z)] > A})
—to

=p({zx e R": lirtristup|Tt(f —fe) +Tfr— fu+ fe — f1 > A})
Su(fe € B stmswp |T(f — f)] > 31+ u({w € R |fi— f > 31)
<pl{z €R" T (fi— )] > 21+ plfa € B i~ 1 > 5)

A q p
<(2r=ay) + (G- ) 0w koo

Remark 1.29. Under the same condition, we can show that
S={fe€L?: lim T, f(x) exists a.e.}
t—to

is closed in LP(X, u). The proof is left as an exercise.

Remark 1.30. Let ¢y be an approximation of the identity, then ¢, x f(x) — f(z)
ast — 0 for all f € S. Also, S is closed in LF(R"). S ¢ S C LP(R™) will imply
S = LP(R™).

10



1.8 Discuss the pointwise convergence

¢r* f(x) = f(x) a.e. ast — 0. It suffices to prove that sup, |¢s * f| is weakly
bounded.

Proposition 1.31. Let ¢(x) = ¢(|x|) be radial, positive and decreasing in |x|.
Assume ¢ is integrable. Then

sup ¢y * f| < (¢ M f ().
t>0

Proof. Let us consider the case where ¢ = Zj ajxs,;(x), aj > 0. Then

Zaﬂle XB]

Then

¢+ f(@)| < M@l M f ().
We obtain the similar estimate for ¢; = t_"(b(%) and by the limiting process,
which finishes the proof. O

Corollary 1.32. If |¢p(x)| < 9(|x|), where ¢ satisfies the condition in Proposi-
tion 1.81. Then sup,sq |¢* f| is weak (1,1) and strong (p, p), where 1 < p < co.

2 Fourier transform in LP(R")

Definition 2.1. If f € L}(R"), then we define the Fourier transform
[©= [ e edr.

Fact 2.2. 1. F(f) = foF LY(R™) — L>*(R") (continuous) and |]?(§)\ <
1l

2. Riemann-Lebesgue lemma: lim¢| o0 \f(§)| =0.

Recall that S is the Schwartz space then F: S — S (f fRn _2””'5dx)

and F71: 8 = S ( = [ F(E)e*™™8dE). Also, ||f||2 = ||f\|2, for all fes
(Plancheral theorem) Slnce S is dense in L2(R"), i.e., for all f € L2(R"),
there exists {frx} € S such that fr — f in L?*(R"). Then we can define

F(€) = limp_yo0 fr(€) in L2(R™). Also,

f(f) — lim f(x)e*%”'gdz and f(x) — lim J’c\(g)e%riz{df'

R—00 Jiz1<R R=oo Jig|<r

The limit is in the L? sense. So we have F : L' — L> and F : L? — L?. Now,
for 1 < p <2and f € LP, we can write f = f1 + f2, where f1 € L', fy € L.
Define f = Ff = fi + fo € L™ + L.

Theorem 2.3. (Riesz-Thorin interpolation theorem) Let 1 < po,p1,q0, 1 < 00.
Assume that T is a linear operator from LP° 4+ LP' to L1 + L1 satisfying

ITfllgo < Mollfllpo and [IT fllg < Mu|fllp,-

11



1 1-46 0 1 1-6 0
Then for 8 € (0,1), define — = —— 4+ —, — = + —. Then T is a
P11 q q0 q1

bounded operator from LP to LY and
ITfllg < M= MY||flp-
Proof. LOL O

Theorem 2.4. (Hausdorff-Young inequality) Let 1 < p < 2, then ||fA||pf < || fllp,

where — + — =1
p P

1 0 0 1-0 60 0
Hf||2(M1:1)-F0r1<p<2,};:7+*: 3 —+-=-. O

)

Proof. F : L' — L™=, |Fflleo < |Iflli (Mg = 1) and F : L? — L2, ||Ffl|2 =
1-0 1
1 L
1 2 q 00 2 2

Remark 2.5. For 1 <p <2, f € LP, fis a classical function. Now, for p > 2,
we define the Fourier transform f as a tempered distribution. Recall that S
is the Schwartz space. The tempered distribution &’ is the continuous linear
functional on S, i.e., T € &',

KT, )| < Cllolls, Yo €S.
For example, (4, ) = ¢(0).

Definition 2.6. T € S’, we define T as
(T.¢) = (T.3).

We can define f if f € LP for p > 2 since LP C S, but fmay not be a
classical function.

= 1. Given

Theorem 2.7. (Young’s inequality) Let 1 < p,q < oo, — +

1 1 1
felP ge Ll then fxge L", where — = —+ - —1 and
r p q

hS RN
Q| =

I *gller < fllzellglie-

Proof. Let f € L? and define the linear operator Tf(g) = f * g. Observe that
Ty : L' — LP with | Tygllze < || fllzellgllzr-

From the Minkowski’s integral inequality

1T¢gll, = (/I/f(x —y)g(y)dy|Pdz)7

< I £llpllgll-
L A B
In addition, T : LP — L* (= 4+ — = 1). Note that
p

[(f*g)@)] < I Fllpllglle

12



1 1-6 0
which means | Tyglle < |fllloly. Then for 6 € (0.1), == ~3=+
1 1-6 0 1-06
- = ——+ — = ——. Thus,

q p o0 p

1 * gl < 1fllpllgllq-

1 1 1
Calculate 6 in terms of p and ¢, then we can find — = - + - — 1. O
r p 4q

Now, we’d like to prove the Riesz-Thorin theorem.

Theorem 2.8. (Hadamard-Phragmen-Lindelof theorem) Let S = {0 + it : 0 €
[0,1], 7 € R}. Assume F(z) is bounded continuous on S and analytic (or holo-
morphic) in the interior of S. If |F(it)| < Mo, |F(1+i7)| < My, then

|F(0+ir)| < M3~"MY? for1 <0< 1.

Proof. We want to construct a new function from F'(z) such that the new func-
tion decays to zero as |7| — co. So we define

Fo(z) = e ¥ F(2),

where € > 0 and A € R (will be determined later).
We only need to check

|F.(0 + i)| = [eC@HD O (g 4 7))
_ |ee(92772+2i0‘r+)\9+i/\7—F(2)|
< =T R0 | P(2)| 5 0
as |7| — oco. Next,
|Feir)| = [e" 0 AN Pir)| < [F(ir)] < My
and
\F.(1+i7)| = |€e(1+1‘7)2+/\(1+w)F(1 +ir))|
< =N F(1 4 7))
< et M.

So by the maximum principle,

|F.(6 4 i7)| < max(Moy, e M),
|F€(9 + ZT)| _ |ee(0+ir)2+)\(9+iT)F(0 + ZT)|
— 66(02_72)+)\9‘F(9 4 “_)|
So |[F(0 +i7)| < e~ =) e=2 max(My, et My). Let € — 0, then
|F (6 + iT)| < max(e=*% My, e)‘(l_e)Ml) = max(p~ ' My, p' = My),

M,
where p = e* > 0. We now choose p such that p~ %My = p'=M;, or p = ﬁo
1
and
|F(0 +47)| < Mg oMY,
O

13



2.1 Proof of Riesz-Thorin interpolation theorem

1 1-60 6 1 1-6 0
We need to show that T : LP? — L%, where — = 4+ —, — +
Po Po P1 Qe q0 a1

and
1T fllgy < Mo~ MY £l

By the duality argument, it suffices to prove
(T f9) | < My~ MY\ Fllpsllgllgy, VS € L7, g € L.

Without loss of generality, we can choose || ||, = |lgllyy = 1 and show [(T'f, g) | <
Mi=oMY.
1-90

1 0
Observe that — = —— + —-. Define
qp do a4

1 1-— 1 1-—
= Z+iand—/: ,ZJri,,zE(C.
p= Po p1 q. dp il
Set
piei 7
®(x,2) = [f(2)|7= "' f(x) and W(z, 2) = |g(z)| =" g(=)

(we normally define Gigi; =0if f(z) =0). Consider

F(z) = (TP(x,z2),¥(x,2)) = /T@(z,z)\ll(z,z)da:.

To proceed, we consider f and g are simple functions, i.e., f(z) = > a;xg, and
g(x) = > bpxr,, where {E;} and {F}} have finite measures. Here a;,b, € C.
We can write a; = |a;|e'%, by, = |bg|e".

Hence,

Py _ 0. i—l ;
F(z) =3 ag|v= agle™ b =~ bele™ (Txp,, xr.)
7 k

=305 lay 172 fag il bile @) (Tx gy, xm,) -
7 k

We then know that F'(z) satisfies the conditions in Hadamard et al’s theorem.
Now, we compute

[ ()] < [T, i) lgo W (- 27l g
< Mo|[®]po11lq5

and
1D, i7)|lp, = 1 and || (-, 47)
which implies |F(i7)] < Mp.
On the other hand, we can show that |F'(1+i7)| < My ||®(-, 14+i7)]|p, | (-, 14+
iT)|lg; and [|@(-, 1 +47)[[p, = [[W(, 1 +i7)|lyy = 1 implies |F (1 +iT)[ < M;. Bt
the three-lines theorem (Hadamard et al), we have |F(8 + i7)| < M3~ M?. In

”q{, =1,
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particular, |[F(8 4 i0)] < M} ~°M?. For z = 6 + i0, we have ®(-,0) = f(z) and
U(-,0) = g(x). Therefore,

F(e) - <T(I)(70)a\11(79)> = <Tfa g>'

So
[(Tf,9)| < Mg~?M}

and
(T f,9) | < My~ MY || fllpg 9l -

In the final step, we approximate f, g by simple functions.

2.2 Summability of Fourier integral

Problem 2.9. Does

R—o0

lim /B Feeritds = j(@)

where Bgp = {R,; : © € B B is an open convex neighborhood of 0}. In what
sense ? in LP or pointwise almost everywhere 7 It is true in L2, if

lim f({)e%”'gdx = fin L%

R—o0 Br

Is it true for p #£2 7

Define an (linear) operator

(Srf)" = xBo F(6).

The problem is equivalent to
lim Suf =
in LP or pointwise a.e..
Theorem 2.10. For p € (1,00), we have
Rli_r)nooSRf = fin L?
is equivalent to 3C = C(p) > 0 such that

||SRf||p < Cp”pr-

Proof. Exercise. Later, we will prove this when n = 1 (related to the Hilbert
transform). O

We introduce the Cesaro summability in the following. Define

R
onf(r) = /0 S ft.

15



Forn =1, B=(-1,1), we can write Sgf = D, x f, where Dr = ffR e2mirede =

in(2
M is the Dirichlet kernel. Next, we can write ogrf = Fr * f, where
T
1 [ 1 (% sin(2rtz)
F == D dt = — ——=dt
R (@) R /0 ¢ R /0 T
B sin?(rRx)

R(mx)?

Note that for R =1, Fi(x) = M Fr(z) = RF(Rz) (t = l) We can see
— 4L 1 - (7_‘_3:)2 y 'R - - R .

that

|Fi(x)| < min{1, (72)?} (integrable).
Corollary 2.11. We have
lim opf=fin LP(R) for 1 <p < oo,
R—o0
lim opf=fin L™ if f € Ch(R),
R—o00
and

lim opf =f a.e.
R—o0

2.3 Other summability methods

1. Abel-Poisson method
Consider

u(z,t) :/ 6_2“75‘5‘]?(5)62”'%5,

We can check that u is harmonic for ¢ > 0, i.e.,
Au=0in R} = {(x,t)[t > 0}.

Impose the boundary condition u(z,0) = f(z) (in suitable sense) and lim; o4 u(x,t) =
f(z). We can express
u(z,t) = Py * f(z),

where P,(€) = e=27lél.
Claim: (Exercise, in Stein-Weiss’ book)

T n+1 n
P(z) = (il ) —+ (Poisson kernel).
e (A fa?)
F( n+1 ) 1
So for P, = —2; —, radially symmetric, decreasing, integrable.

= (14 [z?) =
Corollary 2.12. lim; 04+ Py x f = f in LP, pointwise.

2. Gauss-Weierstrass method
Consider

w(z,t) = /e—wtz\f\Qf(é_)GQﬂ'ilfdé-’
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and lim; o u(z,t) = f(x) 7 We can write w(z,t) = W, x f, where wi(§) =

-] , which implies

e
wy(x) = ezl (Heat kernel, exercise).
Let w(z,t) = w(x,/4nt), then
ow—Aw=0 inzeR" >0,
{ﬁ(m,O) = f(x).
Fort =1, wy(z) = e~lal? radially symmetric, decreasing, integrable.

Corollary 2.13. We have

limw(z,t) = f(z) in LP, a.e..

t—0

3 Calderon-Zygmund decomposition

Let f € LY(R") and f > 0. Given any a > 0, we have
1L.R"=QUF (QNF =10),
2. On F (good set), f(z) < a a.e.,
3. Q = UgQg, where {Qg}’s are non-overlapping cubes, then

a<—/ f <2
Qx| Jq,

Proof. We partition R™ into cubes with same diameter. Since f € L!(R"), we
can find a large enough partition cube @ s.t.

[rse (f 1< [ <ea)

Next, we divide @ into Q' whose side is half of that of Q. Namely, @ is parti-
tioned into 2" subcubes. There are only two cases

1 1
f<a or f>a
Q' Jo Q' Jor
For Q' satisfying

f
\Q | o
we put it into 2. To check the other half of (ii7), we note that

1 Q|
<
@1 )0 = 1@l / /<

Now for the case

1
f<a
Q']
we repeat the process, partition such @’ into 2" subcubes Q”. There are two
cases:
1 1
— <a or — f>a

‘Q”| Q// |Q”‘ Q"

17



For Q" with

1
< 1" ‘Q//‘ / f
Q| Q” Q" Q']
Therefore, we find Q = J, Q» satisfying (iii). Now let F' = R™ — €2, then by
Lebesgue Differential Theorem

fl@) <a ae.
O
Corollary 3.1. f, a, F, Q are given as above. 3 A, B (depending on n) s.t.
()]
A
1101 < 215

2.V Qr e

1
— f < Ba
Qx| Jq,

In fact, from the proof above, A =1, B = 2".
Proof.

1 1 1
=lUa =<3 [ a=5 [ r< g

Question: What are F' and Q7 Is F' = {x e R" : f(z) < a}?

3.1 Another proof of Calderéon-Zygmund decomposition

For any open set Q C R", we can write Q = |J, Qk, where {Q;} are non-
overlapping cubes. Here we need to construct cubes with some geometric re-
strictions.

Theorem 3.2. Let F be a (non-empty) closed set in R™. Denote Q = F¢
(open). Then there exists a collection of cubes F = {Q1, Qa, - - } satisfying [(i)]
(1) 2= Uk Qk
(2) {Qr} are non-overlapping
(8) 3 ¢1, co (independent of F) s.t.

crdiam(Qg) < dist(Qg, F) < cadiam(Qy).

In fact, we can choose ¢; = 1, co = 4.
We now use Whitney’s theorem to re-prove Calderén-Zygmund corollary

Proof. Let f € L*(R™), then the Hardy-Littlewood maximal function

1

M@ =055 Lo

fdy

18



M f is lower semicontinuous. Prove M f is lower semi-continuous (exercise).

Then
F:={Mf(z) < a} (closed)

Q= {Mf(z) > a} (open) =, Q

{Qk} is constructed in Whitney’s decomposition.
To prove (7)
90 = [{MF (@) > a}] < 2],
Since M is weak(1,1). O
Remark 3.3. Here A =5"
Proof. To prove (ii), Given Qi C Q. Pick p; € F s.t.
dist(pg, Qr) = dist(Qg, F)

We now pick By, (pr) be the smallest ball containing Q. as the interior. Since
px € F

o Y A

1
> M > T 108 B|Qu
a_fwﬁwwwéwﬁ—@mmmu%‘m%Qf

where B depends only on n. O

3.2 Proof of Whitney’s Theorem

Proof. We partition R™ into cubes with integer coordinates (lattice) My. For
k € Z, we denote Mj, = 27 %M. Note that for each cube in My, its diameter is
/n27%. Next, we construct a series of layers

Qp = {z € R™ : 2/n27F < dist(z, F) < 2/n27F2} c Q

Then Q = J,, Q. Now we choose

Fo=J{Q € My : Qnay # 0}
K

Note that if Q € Fp, Q C Q. In fact

o= J @

QeFo
Claim: For Q € Fy, diam(Q) < dist(Q, F) < 4diam(Q)
Proof. Since Q € Fo, 3z € Q) Q4 for some k
dist(Q, F) < dist(z, F) < 2¢/n2 %! = 4/n27% = 4diam(Q)
Next, dist(Q, F) + diam(Q) > dist(z, F') > 24/n27F, then

dist(Q, F) > 2y/n27 "% — diam(Q) = diam(Q)
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So we obtain that all cubes in Fy satisfy (ii4), i.e.
diam(Q) < dist(Q, F) < 4diam(Q)

Now the question is that there are not non-overlapping. Observe that if Q) €
Aﬂn,QQEENQ2anthrﬁQgsﬁw,ﬂwn

Q1 C Q2 ifky>ko
Also, if Q C Q' and Q, Q' € Fy then
diam(Q") < dist(Q’, F) < dist(Q, F) < 4diam(Q)

For any Q € Fo, we can find the maximal cube Q € Fy s.t. Q C Q. Finally,
Q=Jax
k
where Qy, € Fy and maximal cube, {Q}: non-overlapping. O

3.3 Dyadic maximal function

In R™, let Qg be the set of cubes (with lattices coordinates) which are congruent

to [0,1)™. Let Qk be the set cubes formed by dilation 2~ kQO, k € Z. Note that
for any x € R™, z lies in a unique cube for each k. On each level (k € Z), cubes
are disjoint. If two cubes from different k’s intersect, then one is contained in
other completely.

Let f € L},.(R™), define

B =Y (/; Fie ) xola)

QEQy

In other Words for x € R™ and k € Z, then there exists only Q € @ with
T €Q. Epf(x fQ fdx.

Definition 3.4. For f € L} (R"), we define the dyadic maximal function
Maf () = swp Billfx) = sup f 111
QCQk
Lemma 3.5. For f € LY(R"), then

kgnngkf()

Proof. Observe that

Eyllf)() = /; HE @1|||f\|1 L 0as ko oo,
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Theorem 3.6. Let f € LY(R"), A\ > 0, there exists a collection of disjoint
dyadic cubes {Q;} such that

{.73 ceR": Mdf(ﬂi) > )\} = Uj Qj

and

Ag][ f] < 27\

Qj

Corollary 3.7. (a) My is weak (1,1).
(b) Lebesgue differentiation theorem

kli_)ngo Eif(x) = f(z) a.e..
Proof. (b) follows from (a) (exercise). For (a),

{z e R": Myf(x) > M} = |U; Qi =D |Qj]
J

giz/g VESII

Proof. (Proof of Theorem) Let
Ey={zeR": Myf(z) > A} = Up{x € R" : Ei[|f]](x) > A}

Now if o € Ex, 3z € Q) € Qi such that f, |f| > \. Note that Qx C Ex. By
lemma, there must exist a largest Qg+ D Qg such that Ey-[|f]](z) > A (k* < k).
For any x € FE), there exists a unique cube Q) such that Ei[|f|](z) > A but
Er_1][lf]](x) < A. So E) = UrQy. Next, on each cube Q,

|Qr—1] 1
A< ][ fl < fl<2mA.
Qk| | |Qk| |Qr—1] Qk,1| |

O

Theorem 3.8. (Calderdn-Zygmund decomposition)

Let f € LY(R™), X > 0, there emists a collection of disjoint dyadic cubes
{Qr} and g € L*(R™) and {by} such that f = g+ > by, where ||g||r~ < 2"\
and ||g|l1 < |Ifll1 (good part), supp(by) C Qr and ka brdx = 0.

Proof. Let {Q} be constructed as above. Define

by = (f(w) - ]é k f) Yau ).

So by, satisfies all conditions. Define

gla) = fx) =Y b(x)
k

Need to show that ||g]|cc < 2"A, |lg]l1 < [|f]:. If 2 € U;Q; and note that {Q;}
disjoint then g(z) = ny‘ f(x)dz V z € Q;.
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For x ¢ U,;Q;, f(z) = g(z). We know that Myf(z) < X for z ¢ U;Q;.
Also |f(z)] < Mgf(x) a.e., then [g(z)] < AV x ¢ U;Q,. For z € U,;Q;,
lg(x)] < ‘fQj f(@)] <2™X. Thus ||g]lcc < 2™A. On the other hand

fRn |g| = fuij |g(£L’)| JrfRn_Uij |g(x)|
fuij |f(z)] + f]R"—uij |f ()]
11

IN

3.4 Another maximal functions defined by cubes

Definition 3.9. Let z € R™ and @, be the cube with centered at z and [(Q,) =
2r, then if f € L} (R"), we define

loc

M f@)=sup [ [f@)ldy = sup@ /Q F()ldy

>0 |Qr| Jo, r>0
Note that 3 ¢1, 2 (depends only on n) s.t.
crM'f(x) < Mf(x) < coM'f()
Here M f is Hardy-Littlewood maximal function.
Theorem 3.10. We have thatV X > 0,
Hz e R™: M'f(x) > 4"\}| < 2"{z € R™ : Myf(x) > A}

Proof. Recall that
{93 eR™: Mdf(x) > /\} = Uij

{Q;}: dyadic cubes (disjoint). So it suffices to show that
{x e R": M'f(z) > 4"} C U,;2Q);
(Q; and 2Q); have the same center). Equivalently, we want to show
¢ U;2Q; = M f(x) < 4"\
Let @ be any cube centered at . Then we know that 3 k € Z s.t.
9=(h+1) < () < 27F

1(Q) : the length of side of ). Observe that @ intersects m cubes in @k, where

m < 2. We assume @ intersects R1, Ra, - , Ry, C Q.
Note that none of these cubes Ri,- -, Ry, is contained in any @;. If not,
then z € 2Q);. Hence on each R;, i = 1,--- ,m, we have

ﬁ/R NOES!
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So )
JEQ |f‘ = 221 @ fQﬂRi |f|

< o —
= 2 g eV
27kn m 1
< A 2ici a1
R AR
27k:n
< s
Q) !
2—k:n
< 27\
Q|
2—kn2n
= 27(k+1)n)\
= 4"\
Thus, M’ f(z) < 4™\.
3.5 The Hilbert transform
Consider the mapping H
1 o0

T ) T —Y

The definition does not make sense since is not locally integrable!

)
In fact, H is defined by the sense of principle value, i.e.

Hf(z) = lim 1 f—(ym —ydy = p.v./_ j(_y)ydy

20T Jlz—y|>e )

To see that the definition makes sense, we let f € C}(R)

hie-si> 5@;@ = Joy> exf@ydy + Jomy < —eg{(y)ydy
f(y) dy
= ey e
- fley\>€ Wdy
) f6<‘w_y|<1 Wdy + flw—y|>1 Wdy

The second of RHS is finite. Since f € C1(R), we have

fly) — f(=) fly) — f(=)
Z<|z—y<1 r—=y dy‘ = /e<m—y|<1 | r—=y |dy

Wl | dy<2fi
e<|z—y|<1
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This method is called regularization.

Note that the same method does not work for (no cancellation !)

1
lz -yl
Remark 3.11. The Hilbert transform of any function (compactly supported) is
not always defined pointwise, e.g. if f = xjo,1) then H f(x) = —oo. Check the
above example (exercise).

Goal : to study the mapping property of H in LP, 1 <p < o0
In fact, the kernel of H is a tempered distribution, i.e.

PV ¢ e SR)

3.6 Connect to complex analysis

Let u(x,t) = (P * f)(x), where Py(x), x € R™,t > 0 is the Poisson kernel of the
half plane

) t

+

I
w2z (24 |:(72|)"§r1

Py(§) = el & Pi(x) =

and

u(z,t) = /ef%rtlilf(g)e%iz.gdf

Also,}in(lJ(Pt * f)(z) = f(x) in LP, 1 < p < o0 and a.e.
—

Now we take n =1,
1 t
P, =——
t(x) T (t2 T .’132)

Let z = x + it, then
o0 A . O A . —
u(et) =uls) = [ FO e+ [ fle)eta
0 —00
Now if we let

iv(z,t) = iv( / f(&)e?™=Ede — / F(&)em=tde

then u +iv = 2 fooo f(€)e™?™#d¢ is analytic in Imz > 0
Note that u and v are harmonic. Also, u and v are real if f is real. Prove it
(exercise). So v is a harmonic conjugate of u. Observe that

w(z,t) = fooof( ei2m (@it ge f F(&)eim@=ité ge
= JoT e f@eTdg + [0 (-1)e 7O f(g)er et
= [ sign(€)e 2mIé f(g)eimEde
Then

v(x,t) = / h —isign(&)e ™ f(€)e 2™ dE = (Q * f)(x)

—00
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where @t = —isign(£)e 27l We can compute
Q=1_2 (Conjugate Poisson Kernel)
= onjugate Poisson Kerne
ETr (2 + 22?) 18
If we write 1 t4i Lis 1L
. i iz i
PitiQu=-pi o =2 L

(2 +22) wzZ w2z
the second equivalent let z = x + it.

Lemma 3.12.

11
1 “pu—
t{%@t —pv

as a tempered distribution

Proof. Need to show that V ¢ € S(R),

(@ = —p)w) =0
Meaning
oo () ¥(x)

lim (

t507 T 2 4 de_f"“bt x dm):O

. Mb (2)
= tlg%(nﬁﬂleqt 21 2 z + fa:|>t t2 g zdr — f\z|>t

t~I>I(1J z|legl 14 22 x\>1 14 22
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