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1 Introduction and Motivation

From Lebesgue’s differentiation theorem. Let f ∈ L1
loc(Rn), then

lim
r→0

1

|Br(x)|

ˆ
Br(x)

f(y)dy = f(x) a.e.,

where Br(x) = {y : |y − x| ≤ r} and |Br(x)| is the Lebesgue measure of Br(x).
Instead of taking limit, we study

Mf(x) : = sup
r>0

1

|Br(x)|

ˆ
Br(x)

|f(y)|dy

= sup
r>0

1

|Br(0)|

ˆ
Br(0)

|f(x− y)|dy,

which is called the Hardy-Littlewood maximal function and M is the Hardy-
Littlewood maximal operator.

1.1 Basic properties for maximal functions

Problem 1.1. Boundedness of M .

Theorem 1.2. For 1 ≤ p ≤ ∞, we have
(a) Mf(x) is finite a.e. for all f ∈ Lp(Rn).
(b) Mf is weak (1, 1), i.e., ∀α > 0, ∃A = A(n) such that

|{x : Mf(x) > α}| ≤ A

α
‖f‖L1 .

(c) M is strong (p, p) for 1 < p ≤ ∞, i.e., ∃Cp such that

‖Mf‖Lp ≤ Cp‖f‖Lp .

Remark 1.3. (a) is a consequence from (b) and (c).

Why do we study |{x ∈ Rn : Mf(x) > α}| (the distribution function of
Mf).
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Proposition 1.4. For 1 ≤ p <∞, if f ∈ Lp(Rn), then

ˆ
Rn
|f |pdx = p

ˆ ∞
0

αp−1|{x ∈ Rn : |f(x)| > α}|dα. (1)

Notation: λf (α) = |{x ∈ Rn : |f(x)| > α}|.
Derivation of (??): We can see it by using Tonelli’s theorem. Moreover, inte-
gration by parts will give

p

ˆ ∞
0

αp−1|{x ∈ Rn : |f(x)| > α}|dα = −
ˆ ∞

0

αpdλf (α).

Remark 1.5. Chebyshev’s inequality: λf (α) ≤ 1

α
‖f‖L1 . If f ∈ L1(Rn), then

λf (α) is finite. Even for nonintegrable function, we still can estimate λf (α).

Example 1.6. Let f(x) =
1

|x|n
in Rn, then λf (α) =

cn
α

for some constant cn.

Remark 1.7. Strong (1, 1) implies weak (1, 1). ‖Tf‖1 ≤ C1‖f‖1 implies

|{|Tf | > α}| ≤ 1

α
‖Tf‖1 ≤

C1

α
‖f‖1.

The Hardy-Littlewood maximal operator M is never strong (1, 1). For ex-

ample, f(x) = χB1(0) ∈ L1(Rn), but Mf(x) ≈ 1

|x|n
.

Note that Mf /∈ L1, but we still can bound λMf
(α). The proof of weak type

(1, 1) for Mf , i.e., ∀α > 0, f ∈ L1(Rn),

|{x ∈ Rn : Mf(x) > α}| ≤ A

α
‖f‖1,

where A = A(n). Need a covering lemma.

Lemma 1.8. (Vitali’s covering lemma) Let E be a measurable subset in Rn.
Assume that E is covered by a family of balls{Bj} of bounded diameters. Then
we can find a sequence of disjoint balls B1, B2, · · · from {Bj}′s such that∑

k

|Bk| ≥ Cn|E|, with Cn ≤
1

5n
, (2)

and E ⊂ ∪kB∗k where B∗k = 5Bk.

Proof. Let B1 be the ball chosen from {Bj} such that

diamB1 ≥
1

2
sup{diamBj}.

Assume that we have chosen B1, B2, · · · , Bk. Then Bk+1 is chosen that

diamBk+1 ≥
1

2
sup{diamBj , Bj ∩Bi = ∅, ∀i = 1, 2, · · · , k}.

So we have chosen a sequence of balls B1, B2, · · · disjoint balls.
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Now, if
∑
k |Bk| = ∞, (??) holds automatically. So we consider the case∑

k |Bk| <∞, which implies diamBk → 0 as k →∞. Let Bj be any ball which
is not chosen. Since diamBk → 0, there exists a first k such that

diamBk+1 ≤
1

2
diamBj .

Claim: Bj must intersect some balls of B1, B2, · · · , Bk. If Bj ∩ Bi = ∅
∀j = 1, · · · , k, then Bj would have been chosen, since diamBj ≥ 2diamBk+1.
Therefore, ∃ smallest k0 with 1 ≤ k0 ≤ k such that Bj ∩Bk0 6= ∅. Then we have
1

2
diamBj ≤ diamBk0 , which implies Bj ⊂ 5Bk0 .

(b) Proof of weak (1, 1). Let Eα = {x ∈ Rn : Mf(x) > α}. For

x ∈ Eα, i.e., Mf(x) = supr>0

1

|Br(x)|
´
Br(x)

|f(y)|dy > α, ∃Br(x) such that

1

|Br(x)|
´
Br(x)

|f(y)|dy > α⇔ |Br(x)| ≤ 1

α

´
Br(x)

|f(y)|dy. So Eα ⊂ ∪x∈EαBr(x).

From the covering lemma, ∃B1, B2, · · · such that
∑
k |Bk| ≥ C|Eα|. Therefore,

|Eα| ≤ C
∑
k

|Bk| ≤
C

α

∑
k

ˆ
Bk

|f(y)|dy

≤ C

α
‖f‖L1(Rn).

(c) Proof of strong (p, p), 1 < p ≤ ∞. The proof is in fact a special case of
Marcinkiewicz interpolation theorem.

Known fact: M is weak (1, 1) and M is strong (∞,∞), i.e., ‖Mf‖∞ ≤ ‖f‖∞
for a.e. x. By Marcinkiewicz, we have M is strong (p, p) for 1 < p ≤ ∞. Let
f ∈ Lp, 1 < p <∞. ∀α > 0, define

f1(x) =

{
f(x), if |f(x)| > α

2
,

0, otherwise.

Then f = f1(x) + f2(x), where |f2(x)| ≤ α

2
for all x. Note that |Mf2(x)| ≤ α

2
for all x. Also, M is subadditive, i.e.,

Mf ≤Mf1 +Mf2 ≤Mf1 +
α

2

and
|Eα| = |{x ∈ Rn : Mf(x) > α}| ≤ |{x ∈ Rn : Mf1(x) >

α

2
}|.

By the weak (1, 1) of M , we have

|Eα| ≤ |{x ∈ Rn : Mf1(x) >
α

2
}| ≤ 2A

α
‖f1‖L1 .
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Now,

‖Mf‖pp = p

ˆ ∞
0

αp−1|Eα|dα

≤ 2pA

ˆ ∞
0

αp−2

ˆ
{|f(x)|>α

2 }
|f(x)|dx

≤ 2pA

ˆ
Rn
|f(x)|

ˆ 2|f(x)|

0

αp−2dαdx

=
2ppA

p− 1

ˆ
Rn
|f(x)|pdx.

1.2 Proof of Lebesuge’s differentiation theorem

f ∈ L1
loc(Rn) implies limr→0

ffl
Br(x)

f(y)dy = f(x) a.e.. We can assume f ∈
L1(Rn). Denote

fr(x) =

 
Br(x)

f(y)dy,

then we claim that ‖fr − f‖L1 → 0 as r → 0.

Proof. Prove it is true for f ∈ C0(Rn). For f ∈ L1, by density argument since
C0(Rn) is dense in L1(Rn).
Goal. For a.e. x, fr(x)→ f(x) as r → 0.

We have shown that frj (x) → f(x) a.e. for some rj → 0. We only need to
show that limr→0 fr(x) exists. Denote

Ωf(x) := | lim sup
r→0

fr(x)− lim inf
r→0

fr(x)|.

It suffices to prove that ∀ε > 0, |{Ωf(x) > ε}| = 0.
Note that f ∈ C0(Rn), then Ωf(x) = 0 for all x. For any f ∈ L1(Rn),

∃h ∈ C0(Rn) and g ∈ L1(Rn) with ‖g‖1 is as small as we wish such that
f = h+ g. Now,

|{Ωf(x) > ε}| ≤ |Ωh(x) >
ε

2
}|+ |Ωg(x) >

ε

2
}| = |Ωg(x) >

ε

2
}|.

Recall Ωg(x) = | lim supr→0 gr(x)−lim infr→0 gr(x)| will imply Ωg(x) ≤ 2Mg(x).
Therefore,

|{Ωg(x) >
ε

2
}| ≥ |{Mg(x) >

ε

4
}| ≥ 4A

ε
‖g‖L1

and ‖g||L1 can be small as we wish, which completes the proof.

Remark 1.9. The proof of Lebesgue’s differentiation theorem only uses the weak
type (1, 1) of the maximal functions.

1.3 Marcinkiewicz interpolation theorem for LP (Rn) (1 ≤
p ≤ ∞)

Definition 1.10. For f ∈ Lp, an operator T is called strong (p, q), 1 ≤ q ≤ ∞
if

‖Tf‖q ≤ Cp,q‖f‖p.
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T is called weak (p, q) for q <∞ if ∀α > 0,

|{|Tf(x)| > α}| ≤
(
A‖f‖p
α

)q
.

T is weak (p,∞) if T is strong (p,∞).

Proposition 1.11. T is strong (p, q) will imply that T is weak (p, q).

Proof. We have ‖Tf‖qq ≤ C‖f‖qp and

‖Tf‖qq =

ˆ
Rn
|Tf |qdx =

ˆ
{|Tf(x)|≤α}

|Tf |q +

ˆ
{|Tf(x)|>α}

|Tf |q

≥ αq|{|Tf(x)| > α}.

Then we are done.

1.4 Marcinkiewcz Interpolation Theorem for Lp

Definition 1.12. f ∈ Lp1 + Lp2 iff f = f1 + f2, f1 ∈ Lp1 and f2 ∈ Lp2 .

Remark 1.13. Assume p1 < p2. Then f ∈ Lp ⇒ f ∈ Lp1 + Lp2 , p1 ≤ p ≤ p2.
Given any γ > 0. Define

f1(x) =

{
f(x) |f(x)| > γ
0 otherwise (|f(x)| ≤ γ)

f2(x) =

{
0 |f(x)| > γ
f(x) otherwise (|f(x)| ≤ γ)

Thenˆ
|f1(x)|p1dx =

ˆ
{|f(x)|>γ}

|f(x)|p1dx =

ˆ
{|f(x)|>γ}

|f(x)|p|f(x)|p1−pdx

≤ γp1−p
ˆ
Rn
|f(x)|pdx <∞,

ˆ
|f2(x)|p2dx =

ˆ
{|f(x)|≤γ}

|f(x)|p2dx =

ˆ
{|f(x)|≤γ}

|f(x)|p|f(x)|p2−pdx

≤ γp2−p
ˆ
Rn
|f(x)|pdx <∞.

Remark 1.14. The level γ is arbitrary.

Theorem 1.15. For 1 ≤ r ≤ ∞. Assume that the operator T is sublinear, i.e.

|T (f + g)(x)| ≤ |Tf(x)|+ |Tg(x)|;

moreover, T is weak(1,1) and weak(r,r). Then T is strong(p,p) for 1 < p < r,
i.e. ∃ Ap,r > 0 s.t.

Remark 1.16. For f ∈ Lp, 1 < p < r, we can write f = f1 + f2, f1 ∈ L1 and
f2 ∈ Lr. Since
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• T is weak(1,1) i.e.

|{|Tf1(x)| > α}| ≤ A1

α
‖f1‖1

• T is weak(r,r) i.e.

|{|Tf2(x)| > α}| ≤ (
Ar
α
‖f2‖r)r

Proof. Recall that

ˆ
|Tf |pdx = p

ˆ ∞
0

αp−1λTf (α)dα

Need to estimate λTf (α)

λTf (α) = |{|Tf(x)| > α}| ≤ |{|Tf1(x)| > α/2}|+ |{|Tf2(x)| > α/2}|

The inequality is from T is sublinear, |Tf(x)| ≤ |Tf1(x)|+ |Tf2(x)|. To deter-
mine f1(x) and f2(x), we choose of the level γ = α.

weak(1,1)⇒ |{|Tf1(x)| > α/2}| ≤ 2A1

α
‖f1‖1 =

2A1

α

ˆ
{|f(x)|>α}

|f(x)|dx

weak(r,r)⇒ |{|Tf2(x)| > α/2}| ≤ (
2Ar
α

)r‖f2‖rr =
2rArr
αr

ˆ
{|f(x)|≤α}

|f(x)|rdx

that is

λTf (α) ≤ 2A1

α

ˆ
{|f(x)|>α}

|f(x)|dx+
2rArr
αr

ˆ
{|f(x)|≤α}

|f(x)|rdx

Hence
ˆ
|Tf |pdx = p

ˆ ∞
0

αp−1λTf (α)dα

≤ p

ˆ ∞
0

αp−1 · 2A1

α

ˆ
{|f(x)|>α}

|f(x)|dxdα

+p

ˆ ∞
0

αp−1 · 2rArr
αr

ˆ
{|f(x)|≤α}

|f(x)|rdxdα

:= I + II

I = 2pA1

ˆ infty

0

αp−2

ˆ
{|f(x)|>α}

|f(x)|dxdα

= 2pA1

ˆ
Rn
|f(x)|

ˆ |f(x)|

0

αp−2dαdx

=
2pA1

p− 1

ˆ
Rn
|f(x)|pdx
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II = 2rpArr

ˆ infty

0

αp−r−1

ˆ
{|f(x)|≤α}

|f(x)|rdxdα

= 2rpArr

ˆ
Rn
|f(x)|r

ˆ ∞
|f(x)|

αp−r−1dαdx

=
2rpArr
r − p

ˆ
Rn
|f(x)|r|f(x)|p−rdx

=
2rpArr
r − p

ˆ
Rn
|f(x)|pdx

Thus we obtain

‖Tf‖p ≤ (
2pA1

p− 1
+

2rpArr
r − p

)1/p‖f‖p

for Ap,r = (
2pA1

p− 1
+

2rpArr
r − p

)1/p.

Here we proved the case of r <∞.
The case r =∞ can be proved by the same argument for Mf .

Remark 1.17. Ap,r →∞ as p→ 1+ and p→ r−

Exercise 1.18. What happens to Ap,r if T is either strong(1,1) or strong(r,r)
?

1.5 Lebesgue differentiation theorem

Recall the Lebesgue differentiation theorem. If f ∈ L1
loc(Rn), then

lim
r→0

 
Br(x)

f(y)dy = f(x) a.e.. (3)

Can we replace Br(x) by other family of measurable sets ?
For example, is

lim
|B|→0,x∈B

 
B

f(y)dy = f(x) a.e. ?

Definition 1.19. (Regular family) A family F of measurable sets is called
regular if ∃c > 0 such that ∀S ∈ F , ∃B (centered at the origin) satisfying
S ⊂ B and |S| ≥ c|B|.

Example 1.20. 1. F = {balls containing 0}.
2. The family of cubes whose distance from the origin is bounded by a

constant multiplier of their diameters.

So let F be regular, we can define the maximal operator associated with F
by

MFf(x) = sup
S∈F

 
S

|f(x− y)|dy.

Observe that  
S

|f(x− y)|dy ≤ 1

c

 
B

|f(x− y)|dy ≤ c−1Mf(x).
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So

lim
S∈F,|S|→0

 
S

f(x− y)dy = f(x) a.e..

Problem 1.21. We know that ∃E ⊂ Rn such that |Ec| = 0 and

lim
S∈F,|S|→0

 
S

f(x− y)dy = f(x) ∀x ∈ E,

where Ec is the exceptional set. The set E or Ec depends on F . Can we find a
set E such that |Ec| = 0 and

lim
S∈F,|S|→0

 
S

f(x− y)dy = f(x) ∀x ∈ E (E depends on f)

independent of what regular family F is ?

Definition 1.22. (Lebesgue set) The Lebesgue set L of a function f is defined
as x ∈ Rn and

lim
r→0

 
Br(x)

|f(y)− f(x)|dy = 0

or

lim
r→0

 
Br(0)

|f(x− y)− f(x)dy = 0. (4)

Remark 1.23. Note that (??) is stronger than (??).

Lemma 1.24. (??) holds almost everywhere.

Proof. For any c ∈ R, we know that ∃Ec (exceptional set), |Ec| = 0 such that

lim
r→0

 
Br(x)

|f(y)− c|dy → |f(x)− c| ∀x /∈ Ec.

In particular, if c ∈ Q (rational) and E = ∪c∈QEc (|E| = 0), then

lim
r→0

 
Br(x)

|f(y)− q|dy → |f(x)− q| ∀x /∈ E.

Since Q is dense in R and take c = f(x), then we are done.

So L = Ec. Now, let F be regular, then for x /∈ E,

|
 
S

f(x− y)dy − f(x)| = |
 
S

[f(x− y)− f(x)]dy

≤
 
S

|f(x− y)− f(x)|dy

≤ c−1

 
Br(0)

|f(x− y)− f(y)|dy.

Then as |S| → 0 (⇒ |Br(0)| → 0) will imply

 
S

f(x− y)dy → f(x) ∀x /∈ E.
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Definition 1.25. Let E be a measurable set, x ∈ Rn is called a point of density
of E if

lim
r→0

|E ∩Br(x)|
|Br(x)|

= 1.

Theorem 1.26. Almost every point of E is a point of density of itself.

Proof. Let f(x) = χE(x) ∈ L1
loc(Rn), the characteristic function of E. Then

|E ∩Br(x)|
|Br(x)|

=

 
Br(x)

f(y)dy → f(x) = χE(x) a.e..

Remark 1.27. Almost all point of Ec are not points of density of E.

1.6 Approximation of the identity

Let φ ∈ L1(Rn) with
´
φdx = 1. Consider φt(x) = t−nφ(

x

t
), then ∀g ∈ S(Rn)

(Schwartz class), i.e., ∀α, β ∈ Zn, supx∈Rn |xβDαg| <∞. We can show that

ˆ
Rn
φt(x)g(x)dx→ g(0) as t→ 0+, (5)

φt → δ in the sense of distribution.

Proof. (Proof of (??))

ˆ
Rn
φt(x)g(x)dx = t−n

ˆ
Rn
φ(
x

t
)g(x)dx

= t−n
ˆ
Rn

[φ(
x

t
)g(x)− g(0)]dx+ g(0)

=

ˆ
Rn

[φ(x)(g(tx)− g(0))]dx+ g(0)

→ g(0)

as t→ 0+ by using the Lebesgue dominated convergence theorem.

In other words, for g ∈ S, we have

lim
t→0

(φt ∗ g)(x) = g(x) ∀x ∈ Rn (pointwise convergence).

φt is called the approximation of the identity.

Theorem 1.28. For 1 ≤ p <∞, we have

‖φt ∗ f − f‖p → 0 as t→ 0,

for all f ∈ Lp(Rn). For p =∞, we have

‖φt ∗ f − f‖∞ → 0 as t→ 0,

for all f ∈ C0(Rn) (continuous functions vanishing at ∞).
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Proof. Exercise.

From this theorem, we know that φt ∗ f → f in Lp for all f ∈ Lp. How
about pointwise convergence of φt ∗ f ? The theorem implies that there exists
a subsequence {tk}, tk → 0 such that φtk ∗ f → f(x) for a.e. x. If we can show
that limt→0 φt ∗ f(x) exists almost everywhere, then limt→0 φt ∗ f(x) = f(x)
a.e..

1.7 Relations between weak (p, q) bound and pointwise
convergence

Let (X,µ) be a measure space and {Tt} be a family of linear operators on
Lp(X,µ). Define the maximal operator

T ∗f(x) = sup
t>0
|Ttf(x)|.

If T ∗ is weak (p, q), then the set

S = {f ∈ Lp(X,µ) : lim
t→t0

Ttf(x) = f(x) a.e.}

is closed in in Lp(X,µ).

Proof. To prove that S is closed, we let {fk} ⊂ Lp(X,µ) with limt→t0 Ttfk(x) =
fk(x) a.e. and fk → f in Lp(X,µ). Need to show f ∈ S. In other words, we
need to show

µ({x ∈ Rn : lim sup
t→t0

|Ttf(x)− f(x)| > 0}) = 0

or we can prove
∞∑
k=1

µ({x ∈ Rn : lim sup
t→t0

|Ttf(x)− f(x)| > 1

k
}) = 0.

It suffices to prove ∀λ > 0, µ({x ∈ Rn : lim supt→t0 |Ttf(x)− f(x)| > λ}) = 0.

µ({x ∈ Rn : lim sup
t→t0

|Ttf(x)− f(x)| > λ})

=µ({x ∈ Rn : lim sup
t→t0

|Tt(f − fk) + Tfk − fk + fk − f | > λ})

≤µ({x ∈ Rn : lim sup
t→t0

|Tt(f − fk)| > λ

2
}) + µ({x ∈ Rn : |fk − f | >

λ

2
})

≤µ({x ∈ Rn : T ∗(fk − f)| > λ

2
}) + µ({x ∈ Rn : |fk − f | >

λ

2
})

≤
(

2A

λ
‖f − fk‖p

)q
+

(
2

λ
‖fk − f‖p

)p
→ 0 as k →∞.

Remark 1.29. Under the same condition, we can show that

S = {f ∈ Lp : lim
t→t0

Ttf(x) exists a.e.}

is closed in Lp(X,µ). The proof is left as an exercise.

Remark 1.30. Let φk be an approximation of the identity, then φt∗f(x)→ f(x)
as t→ 0 for all f ∈ S. Also, S is closed in LP (Rn). S ⊂ S ⊂ Lp(Rn) will imply
S = Lp(Rn).
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1.8 Discuss the pointwise convergence

φt ∗ f(x)→ f(x) a.e. as t→ 0. It suffices to prove that supt>0 |φt ∗ f | is weakly
bounded.

Proposition 1.31. Let φ(x) = φ(|x|) be radial, positive and decreasing in |x|.
Assume φ is integrable. Then

sup
t>0
|φt ∗ f | ≤ ‖φ‖L1Mf(x).

Proof. Let us consider the case where φ =
∑
j ajχBj (x), aj > 0. Then

φ ∗ f(x) =
∑
j

aj |Bj | ·
1

|Bj |
χBj ∗ f.

Then
|φ ∗ f(x)| ≤ ‖φ‖L1Mf(x).

We obtain the similar estimate for φt = t−nφ(
x

t
), and by the limiting process,

which finishes the proof.

Corollary 1.32. If |φ(x)| ≤ ψ(|x|), where ψ satisfies the condition in Proposi-
tion 1.31. Then supt>0 |φt∗f | is weak (1, 1) and strong (p, p), where 1 < p ≤ ∞.

2 Fourier transform in Lp(Rn)

Definition 2.1. If f ∈ L1(Rn), then we define the Fourier transform

f̂(ξ) =

ˆ
Rn
f(x)e−2πix·ξdx.

Fact 2.2. 1. F(f) := f̂ , F : L1(Rn) → L∞(Rn) (continuous) and |f̂(ξ)| ≤
‖f‖L1 .

2. Riemann-Lebesgue lemma: lim|ξ|→∞ |f̂(ξ)| = 0.

Recall that S is the Schwartz space, then F : S → S (f̂(ξ) =
´
Rn f(x)e−2πix·ξdx)

and F−1 : S → S (f(x) =
´
Rn f̂(ξ)e2πix·ξdξ). Also, ‖f̂‖2 = ‖f‖2, for all f ∈ S

(Plancheral theorem). Since S is dense in L2(Rn), i.e., for all f ∈ L2(Rn),
there exists {fk} ∈ S such that fk → f in L2(Rn). Then we can define

f̂(ξ) = limk→∞ f̂k(ξ) in L2(Rn). Also,

f̂(ξ) = lim
R→∞

ˆ
|x|<R

f(x)e−2πix·ξdx and f(x) = lim
R→∞

ˆ
|ξ|<R

f̂(ξ)e2πix·ξdξ.

The limit is in the L2 sense. So we have F : L1 → L∞ and F : L2 → L2. Now,
for 1 < p < 2 and f ∈ Lp, we can write f = f1 + f2, where f1 ∈ L1, f2 ∈ L2.
Define f̂ = Ff = f̂1 + f̂2 ∈ L∞ + L2.

Theorem 2.3. (Riesz-Thorin interpolation theorem) Let 1 ≤ p0, p1, q0, q1 ≤ ∞.
Assume that T is a linear operator from Lp0 + Lp1 to Lq0 + Lq1 satisfying

‖Tf‖q0 ≤M0‖f‖p0 and ‖Tf‖q1 ≤M1‖f‖p1 .

11



Then for θ ∈ (0, 1), define
1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
. Then T is a

bounded operator from Lp to Lq and

‖Tf‖q ≤M1−θ
0 Mθ

1 ‖f‖p.

Proof. LOL

Theorem 2.4. (Hausdorff-Young inequality) Let 1 ≤ p ≤ 2, then ‖f̂‖p′ ≤ ‖f‖p,

where
1

p
+

1

p′
= 1.

Proof. F : L1 → L∞, ‖Ff‖∞ ≤ ‖f‖1 (M0 = 1) and F : L2 → L2, ‖Ff‖2 =

‖f‖2 (M1 = 1). For 1 < p < 2,
1

p
=

1− θ
1

+
θ

2
= 1− θ

2
,

1

q
=

1− θ
∞

+
θ

2
=
θ

2
.

Remark 2.5. For 1 ≤ p ≤ 2, f ∈ Lp, f̂ is a classical function. Now, for p > 2,
we define the Fourier transform f̂ as a tempered distribution. Recall that S
is the Schwartz space. The tempered distribution S ′ is the continuous linear
functional on S, i.e., T ∈ S ′,

|〈T, ϕ〉| ≤ C‖ϕ‖S , ∀ϕ ∈ S.

For example, 〈δ, ϕ〉 = ϕ(0).

Definition 2.6. T ∈ S ′, we define T̂ as〈
T̂ , ϕ

〉
= 〈T, ϕ̂〉 .

We can define f̂ if f ∈ Lp for p > 2 since Lp ⊂ S, but f̂ may not be a
classical function.

Theorem 2.7. (Young’s inequality) Let 1 ≤ p, q ≤ ∞,
1

p
+

1

q
= 1. Given

f ∈ Lp, g ∈ Lq, then f ∗ g ∈ Lr, where
1

r
=

1

p
+

1

q
− 1 and

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq .

Proof. Let f ∈ Lp and define the linear operator Tf (g) = f ∗ g. Observe that

Tf : L1 → Lp with ‖Tfg‖Lp ≤ ‖f‖Lp‖g‖L1 .

From the Minkowski’s integral inequality

‖Tfg‖p = (

ˆ
|
ˆ
f(x− y)g(y)dy|pdx)

1
p

≤ ‖f‖p‖g‖1.

In addition, Tf : Lp
′ → L1 (

1

p
+

1

p′
= 1). Note that

|(f ∗ g)(x)| ≤ ‖f‖p‖g‖p′ ,

12



which means ‖Tfg‖∞ ≤ ‖f‖p‖g‖p′ . Then for θ ∈ (0, 1),
1

r
=

1− θ
1

+
θ

p′
,

1

q
=

1− θ
p

+
θ

∞
=

1− θ
p

. Thus,

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

Calculate θ in terms of p and q, then we can find
1

r
=

1

p
+

1

q
− 1.

Now, we’d like to prove the Riesz-Thorin theorem.

Theorem 2.8. (Hadamard-Phragmen-Lindelof theorem) Let S = {θ + iτ : θ ∈
[0, 1], τ ∈ R}. Assume F (z) is bounded continuous on S and analytic (or holo-
morphic) in the interior of S. If |F (iτ)| ≤M0, |F (1 + iτ)| ≤M1, then

|F (θ + iτ)| ≤M1−θ
0 Mθ

1 for 1 < θ < 1.

Proof. We want to construct a new function from F (z) such that the new func-
tion decays to zero as |τ | → ∞. So we define

Fε(z) = eεz
2+λzF (z),

where ε > 0 and λ ∈ R (will be determined later).
We only need to check

|Fε(θ + iτ)| = |eε(θ+iτ)2+λ(θ+iτ)F (θ + iτ)|

= |eε(θ
2−τ2+2iθτ+λθ+iλτF (z)|

≤ eε(θ
2−τ2+λθ)|F (z)| → 0

as |τ | → ∞. Next,

|Fε(iτ)| = |eε(iτ)2+λ(iτ)F (iτ)| ≤ |F (iτ)| ≤M0

and

|Fε(1 + iτ)| = |eε(1+iτ)2+λ(1+iτ)F (1 + iτ)|

≤ eε(1−τ
2)+λ|F (1 + iτ)|

≤ eε+λM1.

So by the maximum principle,

|Fε(θ + iτ)| ≤ max(M0, e
ε+λM1),

|Fε(θ + iτ)| = |eε(θ+iτ)2+λ(θ+iτ)F (θ + iτ)|

= eε(θ
2−τ2)+λθ|F (θ + iτ)|.

So |F (θ + iτ)| ≤ e−ε(θ2−τ2)e−λθ max(M0, e
ε+λM1). Let ε→ 0, then

|F (θ + iτ)| ≤ max(e−λθM0, e
λ(1−θ)M1) = max(ρ−θM0, ρ

1−θM1),

where ρ = eλ > 0. We now choose ρ such that ρ−θM0 = ρ1−θM1, or ρ =
M0

M1
and

|F (θ + iτ)| ≤M1−θ
0 Mθ

1 .

13



2.1 Proof of Riesz-Thorin interpolation theorem

We need to show that T : Lpθ → Lqθ , where
1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
and

‖Tf‖qθ ≤M
1−θ
0 Mθ

1 ‖f‖pθ .

By the duality argument, it suffices to prove

| 〈Tf, g〉 | ≤M1−θ
0 Mθ

1 ‖f‖pθ‖g‖q′θ , ∀f ∈ L
pθ , g ∈ Lq

′
θ .

Without loss of generality, we can choose ‖f‖pθ = ‖g‖q′θ = 1 and show | 〈Tf, g〉 | ≤
M1−θ

0 Mθ
1 .

Observe that
1

q′θ
=

1− θ
q′0

+
θ

q′1
. Define

1

pz
=

1− z
p0

+
z

p1
and

1

q′z
=

1− z
q′0

+
z

q′1
, z ∈ C.

Set

Φ(x, z) = |f(x)|
pθ
pz
−1f(x) and Ψ(x, z) = |g(x)|

q′θ
q′z
−1
g(x)

(we normally define
f(x)

|f(x)|
= 0 if f(x) = 0). Consider

F (z) = 〈TΦ(x, z),Ψ(x, z)〉 =

ˆ
TΦ(x, z)Ψ(x, z)dx.

To proceed, we consider f and g are simple functions, i.e., f(x) =
∑
ajχEj and

g(x) =
∑
bkχFk , where {Ej} and {Fk} have finite measures. Here aj , bk ∈ C.

We can write aj = |aj |eiθj , bk = |bk|eiηk .
Hence,

F (z) =
∑
j

∑
k

|aj |
pθ
pz
−1|aj |eiθj |bk|

q′θ
q′z
−1|bk|eiηk

〈
TχEj , χFk

〉
=
∑
j

∑
k

|aj |
pθ
pz |aj ||bk|

q′θ
q′z |bk|ei(θj+ηk)

〈
TχEj , χFk

〉
.

We then know that F (z) satisfies the conditions in Hadamard et al’s theorem.
Now, we compute

|F (iτ)| ≤ ‖TΦ(·, iτ)‖q0‖Ψ(·, iτ)‖q′0
≤M0‖Φ‖p0‖Ψ‖q′0

and
‖Φ(·, iτ)‖p0 = 1 and ‖Ψ(·, iτ)‖q′0 = 1,

which implies |F (iτ)| ≤M0.
On the other hand, we can show that |F (1+iτ)| ≤M1‖Φ(·, 1+iτ)‖p1‖Ψ(·, 1+

iτ)‖q′1 and ‖Φ(·, 1 + iτ)‖p1 = ‖Ψ(·, 1 + iτ)‖q′1 = 1 implies |F (1 + iτ)| ≤M1. Bt

the three-lines theorem (Hadamard et al), we have |F (θ + iτ)| ≤ M1−θ
0 Mθ

1 . In
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particular, |F (θ + i0)| ≤ M1−θ
0 Mθ

1 . For z = θ + i0, we have Φ(·, θ) = f(x) and
Ψ(·, θ) = g(x). Therefore,

F (θ) = 〈TΦ(·, θ),Ψ(·, θ)〉 = 〈Tf, g〉 .

So
| 〈Tf, g〉 | ≤M1−θ

0 Mθ
1

and
| 〈Tf, g〉 | ≤M1−θ

0 Mθ
1 ‖f‖pθ‖g‖q′θ .

In the final step, we approximate f, g by simple functions.

2.2 Summability of Fourier integral

Problem 2.9. Does

lim
R→∞

ˆ
BR

f̂(ξ)e2πix·ξdξ = f(x) ?

where BR = {Rx : x ∈ B B is an open convex neighborhood of 0}. In what
sense ? in Lp or pointwise almost everywhere ? It is true in L2, if

lim
R→∞

ˆ
BR

f̂(ξ)e2πix·ξdx = f in L2.

Is it true for p 6= 2 ?

Define an (linear) operator

(SRf)∧ = χBR f̂(ξ).

The problem is equivalent to

lim
R→∞

SRf = f

in Lp or pointwise a.e..

Theorem 2.10. For p ∈ (1,∞), we have

lim
R→∞

SRf = f in Lp

is equivalent to ∃C = C(p) > 0 such that

‖SRf‖p ≤ Cp‖f‖p.

Proof. Exercise. Later, we will prove this when n = 1 (related to the Hilbert
transform).

We introduce the Cesaro summability in the following. Define

σRf(x) =
1

R

ˆ R

0

Stfdt.
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For n = 1, B = (−1, 1), we can write SRf = Dr∗f , where DR =
´ R
−R e

2πix·ξdξ =

sin(2πRx)

πx
is the Dirichlet kernel. Next, we can write σRf = FR ∗ f , where

FR(x) =
1

R

ˆ R

0

Dtdt =
1

R

ˆ R

0

sin(2πtx)

πx
dt

=
sin2(πRx)

R(πx)2
.

Note that for R = 1, F1(x) =
sin2(πx)

(πx)2
, FR(x) = RF (Rx) (t =

1

R
). We can see

that
|F1(x)| ≤ min{1, (πx)2} (integrable).

Corollary 2.11. We have

lim
R→∞

σRf = f in Lp(R) for 1 ≤ p <∞,

lim
R→∞

σRf = f in L∞ if f ∈ C0(R),

and
lim
R→∞

σRf = f a.e..

2.3 Other summability methods

1. Abel-Poisson method
Consider

u(x, t) =

ˆ
Rn
e−2πt|ξ|f̂(ξ)e2πx·ξdξ.

We can check that u is harmonic for t > 0, i.e.,

∆u = 0 in Rn+ = {(x, t)|t > 0}.

Impose the boundary condition u(x, 0) = f(x) (in suitable sense) and limt→0+ u(x, t) =
f(x). We can express

u(x, t) = Pt ∗ f(x),

where P̂t(ξ) = e−2πt|ξ|.
Claim: (Exercise, in Stein-Weiss’ book)

Pt(x) =
Γ(n+1

2 )

π
n+1
2

t

(t2 + |x|2)
n+1
2

(Poisson kernel).

So for P1 =
Γ(n+1

2 )

π
n+1
2

1

(1 + |x|2)
n+1
2

, radially symmetric, decreasing, integrable.

Corollary 2.12. limt→0+ Pt ∗ f = f in Lp, pointwise.

2. Gauss-Weierstrass method
Consider

w(x, t) =

ˆ
e−πt

2|ξ|2 f̂(ξ)e2πix·ξdξ,
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and limt→0 u(x, t) = f(x) ? We can write w(x, t) = Wt ∗ f , where ŵt(ξ) =

e−πt
2|ξ|2 , which implies

wt(x) = t−ne−π|x|
2/t2 (Heat kernel, exercise).

Let w̃(x, t) = w(x,
√

4πt), then{
∂tw̃ −∆w̃ = 0 in x ∈ Rn, t > 0,

w̃(x, 0) = f(x).

For t = 1, w1(x) = e−π|x|
2

radially symmetric, decreasing, integrable.

Corollary 2.13. We have

lim
t→0

w(x, t) = f(x) in Lp, a.e..

3 Calderón-Zygmund decomposition

Let f ∈ L1(Rn) and f ≥ 0. Given any α > 0, we have
1. Rn = Ω ∪ F (Ω ∩ F = ∅),
2. On F (good set), f(x) ≤ α a.e.,
3. Ω = ∪kQk, where {Qk}’s are non-overlapping cubes, then

α <
1

|Qk|

ˆ
Qk

f ≤ 2nα.

Proof. We partition Rn into cubes with same diameter. Since f ∈ L1(Rn), we
can find a large enough partition cube Q s.t.ˆ

Q

f ≤ α|Q| (

ˆ
Q

f ≤
ˆ
Rn
≤ α|Q|)

Next, we divide Q into Q′ whose side is half of that of Q. Namely, Q is parti-
tioned into 2n subcubes. There are only two cases

1

|Q′|

ˆ
Q′
f ≤ α or

1

|Q′|

ˆ
Q′
f > α

For Q′ satisfying

α <
1

|Q′|

ˆ
Q′
f

we put it into Ω. To check the other half of (iii), we note that

1

|Q′|

ˆ
Q′
≤ |Q|
|Q′|

1

|Q|

ˆ
Q

f ≤ 2nα

Now for the case
1

|Q′|

ˆ
Q′
f ≤ α

we repeat the process, partition such Q′ into 2n subcubes Q′′. There are two
cases:

1

|Q′′|

ˆ
Q′′

f ≤ α or
1

|Q′′|

ˆ
Q′′

f > α

17



For Q′′ with

α <
1

|Q′′|

ˆ
Q′′

f ≤ |Q
′|

|Q′′|
1

|Q′|

ˆ
Q′
f ≤ 2nα

Therefore, we find Ω =
⋃
kQk satisfying (iii). Now let F = Rn − Ω, then by

Lebesgue Differential Theorem

f(x) ≤ α a.e.

Corollary 3.1. f, α, F, Ω are given as above. ∃ A, B (depending on n) s.t.
[(i)]

1. |Ω| ≤ A

α
‖f‖1

2. ∀ Qk ∈ Ω
1

|Qk|

ˆ
Qk

f ≤ Bα

In fact, from the proof above, A = 1, B = 2n.

Proof.

|Ω| = |
⋃
k

Qk| =
∑
k

|Qk| ≤
∑
k

1

α

ˆ
Qk

f =
1

α

ˆ
∪kQk

f ≤ 1

α
‖f‖1

Question: What are F and Ω? Is F = {x ∈ Rn : f(x) ≤ α}?

3.1 Another proof of Calderón-Zygmund decomposition

For any open set Ω ⊂ Rn, we can write Ω =
⋃
kQk, where {Qk} are non-

overlapping cubes. Here we need to construct cubes with some geometric re-
strictions.

Theorem 3.2. Let F be a (non-empty) closed set in Rn. Denote Ω = F c

(open). Then there exists a collection of cubes F = {Q1, Q2, · · · } satisfying [(i)]
(1) Ω =

⋃
kQk

(2) {Qk} are non-overlapping
(3) ∃ c1, c2 (independent of F ) s.t.

c1diam(Qk) ≤ dist(Qk, F ) ≤ c2diam(Qk).

In fact, we can choose c1 = 1, c2 = 4.
We now use Whitney’s theorem to re-prove Calderón-Zygmund corollary

Proof. Let f ∈ L1(Rn), then the Hardy-Littlewood maximal function

Mf(x) = sup
r>0

1

|Br(x)|

ˆ
Br(x)

fdy
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Mf is lower semicontinuous. Prove Mf is lower semi-continuous (exercise).
Then

F := {Mf(x) ≤ α} (closed)
Ω := {Mf(x) > α} (open) =

⋃
kQk

{Qk} is constructed in Whitney’s decomposition.

To prove (i)

|Ω| = |{Mf(x) > α}| ≤ A

α
‖f‖1

Since M is weak(1,1).

Remark 3.3. Here A = 5n

Proof. To prove (ii), Given Qk ⊂ Ω. Pick pk ∈ F s.t.

dist(pk, Qk) = dist(Qk, F )

We now pick Brk(pk) be the smallest ball containing Qk as the interior. Since
pk ∈ F

α ≥Mf(pk) ≥ 1

|Brk(pk)|

ˆ
Brk (pk)

f ≥ |Qk|
|Brk(pk)|

1

|Qk|

ˆ
Qk

f ≥ 1

B

1

|Qk|

ˆ
Qk

f

where B depends only on n.

3.2 Proof of Whitney’s Theorem

Proof. We partition Rn into cubes with integer coordinates (lattice) M0. For
k ∈ Z, we denote Mk = 2−kM0. Note that for each cube in Mk, its diameter is√
n2−k. Next, we construct a series of layers

Ωk = {x ∈ Rn : 2
√
n2−k < dist(x, F ) ≤ 2

√
n2−k+2} ⊂ Ω

Then Ω =
⋃
k Ωk. Now we choose

F0 =
⋃
k

{Q ∈Mk : Q ∩ Ωk 6= ∅}

Note that if Q ∈ F0, Q ⊂ Ω. In fact

Ω =
⋃
Q∈F0

Q

Claim: For Q ∈ F0, diam(Q) ≤ dist(Q,F ) ≤ 4diam(Q)

Proof. Since Q ∈ F0, ∃ x ∈ Q
⋂

Ωk for some k

dist(Q,F ) ≤ dist(x, F ) ≤ 2
√
n2−k+1 = 4

√
n2−k = 4diam(Q)

Next, dist(Q,F ) + diam(Q) ≥ dist(x, F ) ≥ 2
√
n2−k, then

dist(Q,F ) ≥ 2
√
n2−k − diam(Q) = diam(Q)

19



So we obtain that all cubes in F0 satisfy (iii), i.e.

diam(Q) ≤ dist(Q,F ) ≤ 4diam(Q)

Now the question is that there are not non-overlapping. Observe that if Q1 ∈
Mk1 , Q2 ∈Mk2 and Q1 ∩Q2 6= ∅, then

Q1 ⊂ Q2 if k1 > k2

Also, if Q ⊂ Q′ and Q, Q′ ∈ F0 then

diam(Q′) ≤ dist(Q′, F ) ≤ dist(Q,F ) ≤ 4diam(Q)

For any Q ∈ F0, we can find the maximal cube Q̃ ∈ F0 s.t. Q ⊂ Q̃. Finally,

Ω =
⋃
k

Qk

where Qk ∈ F0 and maximal cube, {Qk}: non-overlapping.

3.3 Dyadic maximal function

In Rn, let Q̃0 be the set of cubes (with lattices coordinates) which are congruent

to [0, 1)n. Let Q̃k be the set cubes formed by dilation 2−kQ̃0, k ∈ Z. Note that
for any x ∈ Rn, x lies in a unique cube for each k. On each level (k ∈ Z), cubes
are disjoint. If two cubes from different k’s intersect, then one is contained in
other completely.

Let f ∈ L1
loc(Rn), define

E∗f(x) =
∑
Q∈Qk

( 
Q

fdx

)
χQ(x).

In other words, for x ∈ Rn and k ∈ Z, then there exists only Q ∈ Q̃k with
x ∈ Q. Ekf(x) =

ffl
Q
fdx.

Definition 3.4. For f ∈ L1
loc(Rn), we define the dyadic maximal function

Mdf(x) = sup
k
Ek[|f |](x) = sup

x∈Q
Q⊂Q̃k

 
Q

|f |.

Lemma 3.5. For f ∈ L1(Rn), then

lim
k→−∞

Ekf(x) = 0.

Proof. Observe that

Ek[|f ](x) =

 
Q

|f | ≤ 1

|Q|
‖f‖1 → 0 as k → −∞.
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Theorem 3.6. Let f ∈ L1(Rn), λ > 0, there exists a collection of disjoint
dyadic cubes {Qj} such that

{x ∈ Rn : Mdf(x) > λ} = ∪jQj

and

λ ≤
 
Qj
|f | ≤ 2nλ.

Corollary 3.7. (a) Md is weak (1, 1).
(b) Lebesgue differentiation theorem

lim
k→∞

Ekf(x) = f(x) a.e..

Proof. (b) follows from (a) (exercise). For (a),

|{x ∈ Rn : Mdf(x) > λ}| = | ∪j Qj | =
∑
j

|Qj |

≤ 1

λ

∑
j

ˆ
Qj
|f | ≤ 1

λ
‖f‖1.

Proof. (Proof of Theorem) Let

Eλ = {x ∈ Rn : Mdf(x) > λ} = ∪k{x ∈ Rn : Ek[|f |](x) > λ}.

Now if x ∈ Eλ, ∃x ∈ Qk ∈ Q̃k such that
ffl
Qk
|f | > λ. Note that Qk ⊂ Eλ. By

lemma, there must exist a largest Qk∗ ⊃ Qk such that Ek∗ [|f |](x) > λ (k∗ ≤ k).
For any x ∈ Eλ, there exists a unique cube Qk such that Ek[|f |](x) > λ but
Ek−1[|f |](x) ≤ λ. So Eλ = ∪kQk. Next, on each cube Qk,

λ <

 
Qk

|f | ≤ |Qk−1|
|Qk|

1

|Qk−1|

ˆ
Qk−1

|f | ≤ 2nλ.

Theorem 3.8. (Calderón-Zygmund decomposition)
Let f ∈ L1(Rn), λ > 0, there exists a collection of disjoint dyadic cubes

{Qk} and g ∈ L1(Rn) and {bk} such that f = g +
∑
bk, where ‖g‖L∞ ≤ 2nλ

and ‖g‖1 ≤ ‖f‖1 (good part), supp(bk) ⊂ Qk and
´
Qk
bkdx = 0.

Proof. Let {Qk} be constructed as above. Define

bk =

(
f(x)−

 
Qk

f

)
χQk(x).

So bk satisfies all conditions. Define

g(x) = f(x)−
∑
k

bk(x)

Need to show that ‖g‖∞ ≤ 2nλ, ‖g‖1 ≤ ‖f‖1. If x ∈ ∪jQj and note that {Qj}
disjoint then g(x) =

ffl
Qj
f(x)dx ∀ x ∈ Qj .
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For x /∈ ∪jQj , f(x) = g(x). We know that Mdf(x) ≤ λ for x /∈ ∪jQj .
Also |f(x)| ≤ Mdf(x) a.e., then |g(x)| ≤ λ ∀ x /∈ ∪jQj . For x ∈ ∪jQj ,
|g(x)| ≤ |

ffl
Qj
f(x)| ≤ 2nλ. Thus ‖g‖∞ ≤ 2nλ. On the other hand

´
Rn |g| =

´
∪jQj |g(x)|+

´
Rn−∪jQj |g(x)|

≤
´
∪jQj |f(x)|+

´
Rn−∪jQj |f(x)|

= ‖f‖1.

3.4 Another maximal functions defined by cubes

Definition 3.9. Let x ∈ Rn and Qr be the cube with centered at x and l(Qr) =
2r, then if f ∈ L1

loc(Rn), we define

M ′f(x) = sup
r>0

1

|Qr|

ˆ
Qr

|f(y)|dy = sup
r>0

1

(2r)n

ˆ
Qr

|f(y)|dy

Note that ∃ c1, c2 (depends only on n) s.t.

c1M
′f(x) ≤Mf(x) ≤ c2M ′f(x)

Here Mf is Hardy-Littlewood maximal function.

Theorem 3.10. We have that ∀ λ > 0,

|{x ∈ Rn : M ′f(x) > 4nλ}| ≤ 2n|{x ∈ Rn : Mdf(x) > λ}|.

Proof. Recall that
{x ∈ Rn : Mdf(x) > λ} = ∪jQj

{Qj}: dyadic cubes (disjoint). So it suffices to show that

{x ∈ Rn : M ′f(x) > 4nλ} ⊂ ∪j2Qj

(Qj and 2Qj have the same center). Equivalently, we want to show

x /∈ ∪j2Qj ⇒M ′f(x) ≤ 4nλ

Let Q be any cube centered at x. Then we know that ∃ k ∈ Z s.t.

2−(k+1) ≤ l(Q) < 2−k

l(Q) : the length of side of Q. Observe that Q intersects m cubes in Q̃k, where

m ≤ 2n. We assume Q intersects R1, R2, · · · , Rm ⊂ Q̃k.
Note that none of these cubes R1, · · · , Rm is contained in any Qj . If not,

then x ∈ 2Qj . Hence on each Ri, i = 1, · · · ,m, we have

1

|Ri|

ˆ
Ri

|f(x)| ≤ λ
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So ffl
Q
|f | =

∑m
i=1

1

|Q|
´
Q∩Ri |f |

≤
∑m
i=1

|Ri|
|Q|

1

|Ri|
´
Ri
|f |

≤ 2−kn

|Q|
∑m
i=1

1

|Ri|
´
Ri
|f |

≤ 2−kn

|Q|
∑m
i=1 λ

≤ 2−kn

|Q|
2nλ

≤ 2−kn2n

2−(k+1)n
λ

= 4nλ.

Thus, M ′f(x) ≤ 4nλ.

3.5 The Hilbert transform

Consider the mapping H

Hf(x) =
1

π

ˆ ∞
−∞

f(y)

x− y
dy

The definition does not make sense since
1

x− y
is not locally integrable!

In fact, H is defined by the sense of principle value, i.e.

Hf(x) = lim
ε→0

1

π

ˆ
|x−y|>ε

f(y

)
x− ydy = p.v.

ˆ ∞
−∞

f(y)

x− y
dy

To see that the definition makes sense, we let f ∈ C1
0 (R)

´
|x−y|>ε

f(y)

x− y
dy =

´
x−y > ε

f(y)

x− y
dy +

´
x−y < −ε

f(y)

x− y
dy

=
´
|x−y|>ε

f(y)

x− y
dy − f(x)

´
|x−t|>ε

dy

x− y

=
´
|x−y|>ε

f(y)− f(x)

x− y
dy

=
´
ε<|x−y|<1

f(y)− f(x)

x− y
dy +

´
|x−y|>1

f(y)− f(x)

x− y
dy

The second of RHS is finite. Since f ∈ C1(R), we have

|
ˆ
ε<|x−y|<1

f(y)− f(x)

x− y
dy| ≤

ˆ
ε<|x−y|<1

|f(y)− f(x)

x− y
|dy

≤ ‖f ′‖∞
ˆ
ε<|x−y|<1

dy ≤ 2‖f ′‖∞.
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This method is called regularization.

Note that the same method does not work for
1

|x− y|
(no cancellation !)

Remark 3.11. The Hilbert transform of any function (compactly supported) is
not always defined pointwise, e.g. if f = χ[0,1] then Hf(x) = −∞. Check the
above example (exercise).

Goal : to study the mapping property of H in Lp, 1 ≤ p ≤ ∞
In fact, the kernel of H is a tempered distribution, i.e.

p.v.
1

x
(ψ) = lim

ε→0

ˆ
|x|>ε

ψ(x)

x
dx ψ ∈ S(R)

3.6 Connect to complex analysis

Let u(x, t) = (Pt ∗ f)(x), where Pt(x), x ∈ Rn, t > 0 is the Poisson kernel of the
half plane

P̂t(ξ) = e−2πt|ξ| ⇔ Pt(x) =
Γ(n+1

2 )

π
n+1
2

t

(t2 + |x2|)n+1
2

and

u(x, t) =

ˆ
e−2πt|ξ|f̂(ξ)e2πix·ξdξ

Also,lim
t→0

(Pt ∗ f)(x) = f(x) in Lp, 1 ≤ p <∞ and a.e.

Now we take n = 1,

Pt(x) =
1

π

t

(t2 + x2)

Let z = x+ it, then

u(x, t) = u(z) =

ˆ ∞
0

f̂(ξ)ei2πzξdξ +

ˆ 0

−∞
f̂(ξ)ei2πz̄ξdξ

Now if we let

iv(x, t) = iv(z) =

ˆ ∞
0

f̂(ξ)ei2πzξdξ −
ˆ 0

−∞
f̂(ξ)ei2πz̄ξdξ

then u+ iv = 2
´∞

0
f̂(ξ)ei2πzξdξ is analytic in Imz > 0

Note that u and v are harmonic. Also, u and v are real if f is real. Prove it
(exercise). So v is a harmonic conjugate of u. Observe that

iv(x, t) =
´∞

0
f̂(ξ)ei2π(x+it)ξdξ −

´ 0

−∞ f̂(ξ)ei2π(x−it)ξdξ

=
´∞

0
e−2πtξ f̂(ξ)e2πixξdξ +

´ 0

−∞(−1)e−2πt(−ξ)f̂(ξ)ei2πxξdξ

=
´∞
−∞ sign(ξ)e−2πt|ξ|f̂(ξ)ei2πxξdξ

Then

v(x, t) =

ˆ ∞
−∞
−isign(ξ)e−2πt|ξ|f̂(ξ)ei2πxξdξ = (Qt ∗ f)(x)
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where Q̂t = −isign(ξ)e−2πt|ξ|. We can compute

Qt =
1

π

x

(t2 + x2)
(Conjugate Poisson Kernel)

If we write

Pt + iQt =
1

π

t+ ix

(t2 + x2)
=

1

π

iz̄

zz̄
=

1

π

i

z

the second equivalent let z = x+ it.

Lemma 3.12.

lim
t↘0

Qt =
1

π
p.v

1

x

as a tempered distribution

Proof. Need to show that ∀ ψ ∈ S(R),

lim
t↘0

(Qt −
1

πp.v.
1

x

)(ψ) = 0

Meaning

lim
t→0

(
´∞
−∞

xψ(x)

t2 + x2
dx−

´
|x|>t

ψ(x)

x
dx) = 0

= lim
t→0

(
´
|x|leqt

xψ(x)

t2 + x2
dx+

´
|x|>t

xψ(x)

t2 + x2
dx−

´
|x|>t

ψ(x)

x
dx)

= lim
t→0

(
´
|x|leq1

xψ(tx)

1 + x2
dx+

´
|x|>1

(
xψ(tx)

1 + x2
dx− ψ(tx)

x
)dx).
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