An introduction to Harmonic Analysis

Yi-Hsuan Lin

Abstract

The note is mainly for personal record, if you want to read it, please be careful. This lecture was given by Prof. Jenn-Nan Wang in National Taiwan University, during February to June 2016.

1 Introduction and Motivation

From Lebesgue's differentiation theorem. Let $f \in L^1_{loc}(\mathbb{R}^n)$, then

$$\lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} f(y) dy = f(x) \text{ a.e.},$$

where $B_r(x) = \{y : |y - x| \le r\}$ and $|B_r(x)|$ is the Lebesgue measure of $B_r(x)$. Instead of taking limit, we study

$$Mf(x) := \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy$$
$$= \sup_{r>0} \frac{1}{|B_r(0)|} \int_{B_r(0)} |f(x-y)| dy,$$

which is called the Hardy-Littlewood maximal function and M is the Hardy-Littlewood maximal operator.

1.1 Basic properties for maximal functions

Problem 1.1. Boundedness of *M*.

Theorem 1.2. For $1 \le p \le \infty$, we have (a) Mf(x) is finite a.e. for all $f \in L^p(\mathbb{R}^n)$. (b) Mf is weak (1,1), i.e., $\forall \alpha > 0$, $\exists A = A(n)$ such that

$$|\{x: Mf(x) > \alpha\}| \le \frac{A}{\alpha} ||f||_{L^1}.$$

(c) M is strong (p,p) for $1 , i.e., <math>\exists C_p$ such that

$$||Mf||_{L^p} \le C_p ||f||_{L^p}$$

Remark 1.3. (a) is a consequence from (b) and (c).

Why do we study $|\{x \in \mathbb{R}^n : Mf(x) > \alpha\}|$ (the distribution function of Mf).

Proposition 1.4. For $1 \leq p < \infty$, if $f \in L^p(\mathbb{R}^n)$, then

$$\int_{\mathbb{R}^n} |f|^p dx = p \int_0^\infty \alpha^{p-1} |\{x \in \mathbb{R}^n : |f(x)| > \alpha\}| d\alpha.$$
(1)

Notation: $\lambda_f(\alpha) = |\{x \in \mathbb{R}^n : |f(x)| > \alpha\}|.$

Derivation of (??): We can see it by using Tonelli's theorem. Moreover, integration by parts will give

$$p\int_0^\infty \alpha^{p-1} |\{x \in \mathbb{R}^n : |f(x)| > \alpha\}| d\alpha = -\int_0^\infty \alpha^p d\lambda_f(\alpha).$$

Remark 1.5. Chebyshev's inequality: $\lambda_f(\alpha) \leq \frac{1}{\alpha} \|f\|_{L^1}$. If $f \in L^1(\mathbb{R}^n)$, then $\lambda_f(\alpha)$ is finite. Even for nonintegrable function, we still can estimate $\lambda_f(\alpha)$.

Example 1.6. Let $f(x) = \frac{1}{|x|^n}$ in \mathbb{R}^n , then $\lambda_f(\alpha) = \frac{c_n}{\alpha}$ for some constant c_n .

Remark 1.7. Strong (1,1) implies weak (1,1). $||Tf||_1 \le C_1 ||f||_1$ implies

$$|\{|Tf| > \alpha\}| \le \frac{1}{\alpha} ||Tf||_1 \le \frac{C_1}{\alpha} ||f||_1.$$

The Hardy-Littlewood maximal operator M is never strong (1,1). For example, $f(x) = \chi_{B_1(0)} \in L^1(\mathbb{R}^n)$, but $Mf(x) \approx \frac{1}{|x|^n}$.

Note that $Mf \notin L^1$, but we still can bound $\lambda_{M_f}(\alpha)$. The proof of weak type (1,1) for Mf, i.e., $\forall \alpha > 0, f \in L^1(\mathbb{R}^n)$,

$$|\{x \in \mathbb{R}^n : Mf(x) > \alpha\}| \le \frac{A}{\alpha} ||f||_1,$$

where A = A(n). Need a covering lemma.

Lemma 1.8. (Vitali's covering lemma) Let E be a measurable subset in \mathbb{R}^n . Assume that E is covered by a family of balls $\{B_j\}$ of bounded diameters. Then we can find a sequence of disjoint balls B_1, B_2, \cdots from $\{B_j\}$'s such that

$$\sum_{k} |B_k| \ge C_n |E|, \text{ with } C_n \le \frac{1}{5^n},$$
(2)

and $E \subset \bigcup_k B_k^*$ where $B_k^* = 5B_k$.

Proof. Let B_1 be the ball chosen from $\{B_j\}$ such that

$$\operatorname{diam} B_1 \ge \frac{1}{2} \sup\{\operatorname{diam} B_j\}.$$

Assume that we have chosen B_1, B_2, \dots, B_k . Then B_{k+1} is chosen that

diam
$$B_{k+1} \ge \frac{1}{2} \sup\{\text{diam}B_j, B_j \cap B_i = \emptyset, \forall i = 1, 2, \cdots, k\}$$

So we have chosen a sequence of balls B_1, B_2, \cdots disjoint balls.

Now, if $\sum_k |B_k| = \infty$, (??) holds automatically. So we consider the case $\sum_k |B_k| < \infty$, which implies diam $B_k \to 0$ as $k \to \infty$. Let B_j be any ball which is not chosen. Since diam $B_k \to 0$, there exists a first k such that

$$\mathrm{diam}B_{k+1} \le \frac{1}{2}\mathrm{diam}B_j.$$

Claim: B_j must intersect some balls of B_1, B_2, \dots, B_k . If $B_j \cap B_i = \emptyset$ $\forall j = 1, \dots, k$, then B_j would have been chosen, since diam $B_j \ge 2 \operatorname{diam} B_{k+1}$. Therefore, \exists smallest k_0 with $1 \le k_0 \le k$ such that $B_j \cap B_{k_0} \ne \emptyset$. Then we have $\frac{1}{2}\operatorname{diam} B_j \le \operatorname{diam} B_{k_0}$, which implies $B_j \subset 5B_{k_0}$.

(b) Proof of weak (1,1). Let $E_{\alpha} = \{x \in \mathbb{R}^n : Mf(x) > \alpha\}$. For $x \in E_{\alpha}$, i.e., $Mf(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy > \alpha$, $\exists B_r(x)$ such that $\frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy > \alpha \Leftrightarrow |B_r(x)| \leq \frac{1}{\alpha} \int_{B_r(x)} |f(y)| dy$. So $E_{\alpha} \subset \bigcup_{x \in E_{\alpha}} B_r(x)$. From the covering lemma, $\exists B_1, B_2, \cdots$ such that $\sum_k |B_k| \geq C|E_{\alpha}|$. Therefore,

$$|E_{\alpha}| \le C \sum_{k} |B_{k}| \le \frac{C}{\alpha} \sum_{k} \int_{B_{k}} |f(y)| dy$$
$$\le \frac{C}{\alpha} ||f||_{L^{1}(\mathbb{R}^{n})}.$$

(c) Proof of strong (p, p), 1 . The proof is in fact a special case of Marcinkiewicz interpolation theorem.

Known fact: M is weak (1, 1) and M is strong (∞, ∞) , i.e., $||Mf||_{\infty} \leq ||f||_{\infty}$ for a.e. x. By Marcinkiewicz, we have M is strong (p, p) for $1 . Let <math>f \in L^p$, $1 . <math>\forall \alpha > 0$, define

$$f_1(x) = \begin{cases} f(x), & \text{if } |f(x)| > \frac{\alpha}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

Then $f = f_1(x) + f_2(x)$, where $|f_2(x)| \le \frac{\alpha}{2}$ for all x. Note that $|Mf_2(x)| \le \frac{\alpha}{2}$ for all x. Also, M is subadditive, i.e.,

$$Mf \le Mf_1 + Mf_2 \le Mf_1 + \frac{\alpha}{2}$$

and

$$|E_{\alpha}| = |\{x \in \mathbb{R}^{n} : Mf(x) > \alpha\}| \le |\{x \in \mathbb{R}^{n} : Mf_{1}(x) > \frac{\alpha}{2}\}|.$$

By the weak (1,1) of M, we have

$$|E_{\alpha}| \le |\{x \in \mathbb{R}^n : Mf_1(x) > \frac{\alpha}{2}\}| \le \frac{2A}{\alpha} ||f_1||_{L^1}.$$

Now,

$$\begin{split} \|Mf\|_p^p &= p \int_0^\infty \alpha^{p-1} |E_\alpha| d\alpha \\ &\leq 2pA \int_0^\infty \alpha^{p-2} \int_{\{|f(x)| > \frac{\alpha}{2}\}} |f(x)| dx \\ &\leq 2pA \int_{\mathbb{R}^n} |f(x)| \int_0^{2|f(x)|} \alpha^{p-2} d\alpha dx \\ &= \frac{2^p pA}{p-1} \int_{\mathbb{R}^n} |f(x)|^p dx. \end{split}$$

1.2 Proof of Lebesuge's differentiation theorem

 $f\in L^1_{loc}(\mathbb{R}^n)$ implies $\lim_{r\to 0}\int_{B_r(x)}f(y)dy=f(x)$ a.e.. We can assume $f\in L^1(\mathbb{R}^n).$ Denote

$$f_r(x) = \int_{B_r(x)} f(y) dy,$$

then we claim that $||f_r - f||_{L^1} \to 0$ as $r \to 0$.

Proof. Prove it is true for $f \in C_0(\mathbb{R}^n)$. For $f \in L^1$, by density argument since $C_0(\mathbb{R}^n)$ is dense in $L^1(\mathbb{R}^n)$.

Goal. For a.e. $x, f_r(x) \to f(x)$ as $r \to 0$.

We have shown that $f_{r_j}(x) \to f(x)$ a.e. for some $r_j \to 0$. We only need to show that $\lim_{r\to 0} f_r(x)$ exists. Denote

$$\Omega f(x) := |\limsup_{r \to 0} f_r(x) - \liminf_{r \to 0} f_r(x)|.$$

It suffices to prove that $\forall \epsilon > 0$, $|\{\Omega f(x) > \epsilon\}| = 0$.

Note that $f \in C_0(\mathbb{R}^n)$, then $\Omega f(x) = 0$ for all x. For any $f \in L^1(\mathbb{R}^n)$, $\exists h \in C_0(\mathbb{R}^n)$ and $g \in L^1(\mathbb{R}^n)$ with $\|g\|_1$ is as small as we wish such that f = h + g. Now,

$$|\{\Omega f(x) > \epsilon\}| \le |\Omega h(x) > \frac{\epsilon}{2}\}| + |\Omega g(x) > \frac{\epsilon}{2}\}| = |\Omega g(x) > \frac{\epsilon}{2}\}|.$$

 $\begin{array}{l} \operatorname{Recall} \Omega g(x) = |\limsup_{r \to 0} g_r(x) - \liminf_{r \to 0} g_r(x)| \text{ will imply } \Omega g(x) \leq 2 M g(x). \\ \text{Therefore,} \end{array}$

$$|\{\Omega g(x) > \frac{\epsilon}{2}\}| \ge |\{Mg(x) > \frac{\epsilon}{4}\}| \ge \frac{4A}{\epsilon} ||g||_{L^1}$$

and $||g||_{L^1}$ can be small as we wish, which completes the proof.

Remark 1.9. The proof of Lebesgue's differentiation theorem only uses the weak type (1,1) of the maximal functions.

1.3 Marcinkiewicz interpolation theorem for $L^{P}(\mathbb{R}^{n})$ $(1 \le p \le \infty)$

Definition 1.10. For $f \in L^p$, an operator T is called strong $(p,q), 1 \le q \le \infty$ if

$$||Tf||_q \le C_{p,q} ||f||_p.$$

T is called weak (p,q) for $q < \infty$ if $\forall \alpha > 0$,

$$|\{|Tf(x)| > \alpha\}| \le \left(\frac{A||f||_p}{\alpha}\right)^q.$$

T is weak (p, ∞) if T is strong (p, ∞) .

Proposition 1.11. T is strong (p,q) will imply that T is weak (p,q). Proof. We have $||Tf||_q^q \leq C ||f||_p^q$ and

$$||Tf||_q^q = \int_{\mathbb{R}^n} |Tf|^q dx = \int_{\{|Tf(x)| \le \alpha\}} |Tf|^q + \int_{\{|Tf(x)| > \alpha\}} |Tf|^q$$

$$\ge \alpha^q |\{|Tf(x)| > \alpha\}.$$

Then we are done.

1.4 Marcinkiewcz Interpolation Theorem for L^p

Definition 1.12. $f \in L^{p_1} + L^{p_2}$ iff $f = f_1 + f_2$, $f_1 \in L^{p_1}$ and $f_2 \in L^{p_2}$.

Remark 1.13. Assume $p_1 < p_2$. Then $f \in L^p \Rightarrow f \in L^{p_1} + L^{p_2}$, $p_1 \leq p \leq p_2$. Given any $\gamma > 0$. Define

$$f_1(x) = \begin{cases} f(x) & |f(x)| > \gamma \\ 0 & \text{otherwise} (|f(x)| \le \gamma) \end{cases}$$
$$f_2(x) = \begin{cases} 0 & |f(x)| > \gamma \\ f(x) & \text{otherwise} (|f(x)| \le \gamma) \end{cases}$$

Then

$$\int |f_1(x)|^{p_1} dx = \int_{\{|f(x)| > \gamma\}} |f(x)|^{p_1} dx = \int_{\{|f(x)| > \gamma\}} |f(x)|^p |f(x)|^{p_1 - p} dx$$
$$\leq \gamma^{p_1 - p} \int_{\mathbb{R}^n} |f(x)|^p dx < \infty,$$

$$\int |f_2(x)|^{p_2} dx = \int_{\{|f(x)| \le \gamma\}} |f(x)|^{p_2} dx = \int_{\{|f(x)| \le \gamma\}} |f(x)|^p |f(x)|^{p_2 - p} dx$$
$$\le \gamma^{p_2 - p} \int_{\mathbb{R}^n} |f(x)|^p dx < \infty.$$

Remark 1.14. The level γ is arbitrary.

Theorem 1.15. For $1 \le r \le \infty$. Assume that the operator T is sublinear, i.e.

$$|T(f+g)(x)| \le |Tf(x)| + |Tg(x)|;$$

moreover, T is weak(1,1) and weak(r,r). Then T is strong(p,p) for $1 , i.e. <math>\exists A_{p,r} > 0$ s.t.

Remark 1.16. For $f \in L^p$, $1 , we can write <math>f = f_1 + f_2$, $f_1 \in L^1$ and $f_2 \in L^r$. Since

• T is weak(1,1) i.e.

$$|\{|Tf_1(x)| > \alpha\}| \le \frac{A_1}{\alpha} ||f_1||_1$$

• T is weak(r,r) i.e.

$$|\{|Tf_2(x)| > \alpha\}| \le (\frac{A_r}{\alpha} ||f_2||_r)^r$$

 $\mathit{Proof.}\xspace$ Recall that

$$\int |Tf|^p dx = p \int_0^\infty \alpha^{p-1} \lambda_{Tf}(\alpha) d\alpha$$

Need to estimate $\lambda_{Tf}(\alpha)$

$$\lambda_{Tf}(\alpha) = |\{|Tf(x)| > \alpha\}| \le |\{|Tf_1(x)| > \alpha/2\}| + |\{|Tf_2(x)| > \alpha/2\}|$$

The inequality is from T is sublinear, $|Tf(x)| \leq |Tf_1(x)| + |Tf_2(x)|$. To determine $f_1(x)$ and $f_2(x)$, we choose of the level $\gamma = \alpha$.

$$\begin{aligned} \text{weak}(1,1) &\Rightarrow |\{|Tf_1(x)| > \alpha/2\}| \le \frac{2A_1}{\alpha} \|f_1\|_1 = \frac{2A_1}{\alpha} \int_{\{|f(x)| > \alpha\}} |f(x)| dx \\ \text{weak}(\mathbf{r},\mathbf{r}) &\Rightarrow |\{|Tf_2(x)| > \alpha/2\}| \le (\frac{2A_r}{\alpha})^r \|f_2\|_r^r = \frac{2^r A_r^r}{\alpha^r} \int_{\{|f(x)| \le \alpha\}} |f(x)|^r dx \end{aligned}$$

that is

$$\lambda_{Tf}(\alpha) \le \frac{2A_1}{\alpha} \int_{\{|f(x)| > \alpha\}} |f(x)| dx + \frac{2^r A_r^r}{\alpha^r} \int_{\{|f(x)| \le \alpha\}} |f(x)|^r dx$$

Hence

$$\begin{split} \int |Tf|^p dx &= p \int_0^\infty \alpha^{p-1} \lambda_{Tf}(\alpha) d\alpha \\ &\leq p \int_0^\infty \alpha^{p-1} \cdot \frac{2A_1}{\alpha} \int_{\{|f(x)| > \alpha\}} |f(x)| dx d\alpha \\ &\quad + p \int_0^\infty \alpha^{p-1} \cdot \frac{2^r A_r^r}{\alpha^r} \int_{\{|f(x)| \le \alpha\}} |f(x)|^r dx d\alpha \\ &:= \mathbf{I} + \mathbf{II} \end{split}$$
$$\mathbf{I} &= 2p A_1 \int_0^{infty} \alpha^{p-2} \int_{\{|f(x)| > \alpha\}} |f(x)| dx d\alpha \\ &= 2p A_1 \int_{\mathbb{R}^n} |f(x)| \int_0^{|f(x)|} \alpha^{p-2} d\alpha dx \\ &= \frac{2p A_1}{p-1} \int_{\mathbb{R}^n} |f(x)|^p dx \end{split}$$

$$II = 2^r p A_r^r \int_0^{infty} \alpha^{p-r-1} \int_{\{|f(x)| \le \alpha\}} |f(x)|^r dx d\alpha$$
$$= 2^r p A_r^r \int_{\mathbb{R}^n} |f(x)|^r \int_{|f(x)|}^{\infty} \alpha^{p-r-1} d\alpha dx$$
$$= \frac{2^r p A_r^r}{r-p} \int_{\mathbb{R}^n} |f(x)|^r |f(x)|^{p-r} dx$$
$$= \frac{2^r p A_r^r}{r-p} \int_{\mathbb{R}^n} |f(x)|^p dx$$

Thus we obtain

$$\|Tf\|_p \le \left(\frac{2pA_1}{p-1} + \frac{2^r pA_r^r}{r-p}\right)^{1/p} \|f\|_p$$

for $A_{p,r} = \left(\frac{2pA_1}{p-1} + \frac{2^r pA_r^r}{r-p}\right)^{1/p}.$

Here we proved the case of $r < \infty$.

The case $r = \infty$ can be proved by the same argument for Mf.

Remark 1.17. $A_{p,r} \to \infty$ as $p \to 1+$ and $p \to r-$

Exercise 1.18. What happens to $A_{p,r}$ if T is either strong(1,1) or strong(r,r)?

1.5 Lebesgue differentiation theorem

Recall the Lebesgue differentiation theorem. If $f \in L^1_{loc}(\mathbb{R}^n)$, then

$$\lim_{r \to 0} \oint_{B_r(x)} f(y) dy = f(x) \text{ a.e..}$$
(3)

Can we replace $B_r(x)$ by other family of measurable sets ?

For example, is

$$\lim_{|B|\to 0, x\in B} \oint_B f(y)dy = f(x) \text{ a.e. } ?$$

Definition 1.19. (Regular family) A family \mathcal{F} of measurable sets is called regular if $\exists c > 0$ such that $\forall S \in \mathcal{F}, \exists B$ (centered at the origin) satisfying $S \subset B$ and $|S| \ge c|B|$.

Example 1.20. 1. $\mathcal{F} = \{ \text{balls containing } 0 \}.$

2. The family of cubes whose distance from the origin is bounded by a constant multiplier of their diameters.

So let \mathcal{F} be regular, we can define the maximal operator associated with \mathcal{F} by

$$M_{\mathcal{F}}f(x) = \sup_{S \in \mathcal{F}} \oint_{S} |f(x-y)| dy.$$

Observe that

$$\int_{S} |f(x-y)| dy \leq \frac{1}{c} \int_{B} |f(x-y)| dy \leq c^{-1} M f(x).$$

$$\lim_{S \in \mathcal{F}, |S| \to 0} \int_{S} f(x - y) dy = f(x) \text{ a.e..}$$

Problem 1.21. We know that $\exists E \subset \mathbb{R}^n$ such that $|E^c| = 0$ and

$$\lim_{S \in \mathcal{F}, |S| \to 0} \oint_{S} f(x - y) dy = f(x) \ \forall x \in E,$$

where E^c is the exceptional set. The set E or E^c depends on \mathcal{F} . Can we find a set E such that $|E^c| = 0$ and

$$\lim_{S \in \mathcal{F}, |S| \to 0} \oint_{S} f(x - y) dy = f(x) \ \forall x \in E \ (E \text{ depends on } f)$$

independent of what regular family \mathcal{F} is ?

Definition 1.22. (Lebesgue set) The Lebesgue set \mathcal{L} of a function f is defined as $x \in \mathbb{R}^n$ and

$$\lim_{r \to 0} \oint_{B_r(x)} |f(y) - f(x)| dy = 0$$

or

$$\lim_{r \to 0} \oint_{B_r(0)} |f(x-y) - f(x)dy = 0.$$
(4)

Remark 1.23. Note that (??) is stronger than (??).

Lemma 1.24. (??) holds almost everywhere.

Proof. For any $c \in \mathbb{R}$, we know that $\exists E_c$ (exceptional set), $|E_c| = 0$ such that

$$\lim_{r \to 0} \oint_{B_r(x)} |f(y) - c| dy \to |f(x) - c| \ \forall x \notin E_c.$$

In particular, if $c \in \mathbb{Q}$ (rational) and $E = \bigcup_{c \in \mathbb{Q}} E_c$ (|E| = 0), then

$$\lim_{r \to 0} \oint_{B_r(x)} |f(y) - q| dy \to |f(x) - q| \ \forall x \notin E.$$

Since \mathbb{Q} is dense in \mathbb{R} and take c = f(x), then we are done.

So $\mathcal{L} = E^c$. Now, let \mathcal{F} be regular, then for $x \notin E$,

$$\begin{aligned} | \oint_S f(x-y)dy - f(x) | &= | \oint_S [f(x-y) - f(x)]dy \\ &\leq \int_S |f(x-y) - f(x)|dy \\ &\leq c^{-1} \oint_{B_r(0)} |f(x-y) - f(y)|dy. \end{aligned}$$

Then as $|S| \to 0 \iff |B_r(0)| \to 0$ will imply

$$\int_{S} f(x-y)dy \to f(x) \ \forall x \notin E.$$

 So

Definition 1.25. Let *E* be a measurable set, $x \in \mathbb{R}^n$ is called a point of density of *E* if

$$\lim_{r \to 0} \frac{|E \cap B_r(x)|}{|B_r(x)|} = 1$$

Theorem 1.26. Almost every point of E is a point of density of itself.

Proof. Let $f(x) = \chi_E(x) \in L^1_{loc}(\mathbb{R}^n)$, the characteristic function of E. Then

$$\frac{|E \cap B_r(x)|}{|B_r(x)|} = \int_{B_r(x)} f(y) dy \to f(x) = \chi_E(x) \text{ a.e.}.$$

Remark 1.27. Almost all point of E^c are not points of density of E.

1.6 Approximation of the identity

Let $\phi \in L^1(\mathbb{R}^n)$ with $\int \phi dx = 1$. Consider $\phi_t(x) = t^{-n}\phi(\frac{x}{t})$, then $\forall g \in \mathcal{S}(\mathbb{R}^n)$ (Schwartz class), i.e., $\forall \alpha, \beta \in \mathbb{Z}^n$, $\sup_{x \in \mathbb{R}^n} |x^{\beta}D^{\alpha}g| < \infty$. We can show that

$$\int_{\mathbb{R}^n} \phi_t(x) g(x) dx \to g(0) \text{ as } t \to 0+,$$
(5)

 $\phi_t \to \delta$ in the sense of distribution.

Proof. (Proof of (??))

$$\begin{split} \int_{\mathbb{R}^n} \phi_t(x) g(x) dx &= t^{-n} \int_{\mathbb{R}^n} \phi(\frac{x}{t}) g(x) dx \\ &= t^{-n} \int_{\mathbb{R}^n} [\phi(\frac{x}{t}) g(x) - g(0)] dx + g(0) \\ &= \int_{\mathbb{R}^n} [\phi(x) (g(tx) - g(0))] dx + g(0) \\ &\to g(0) \end{split}$$

as $t \to 0+$ by using the Lebesgue dominated convergence theorem.

In other words, for $g \in S$, we have

$$\lim_{t \to 0} (\phi_t * g)(x) = g(x) \ \forall x \in \mathbb{R}^n \text{ (pointwise convergence)}.$$

 ϕ_t is called the approximation of the identity.

Theorem 1.28. For $1 \le p < \infty$, we have

$$|\phi_t * f - f||_p \to 0 \text{ as } t \to 0,$$

for all $f \in L^p(\mathbb{R}^n)$. For $p = \infty$, we have

$$\|\phi_t * f - f\|_{\infty} \to 0 \text{ as } t \to 0,$$

for all $f \in C_0(\mathbb{R}^n)$ (continuous functions vanishing at ∞).

Proof. Exercise.

From this theorem, we know that $\phi_t * f \to f$ in L^p for all $f \in L^p$. How about pointwise convergence of $\phi_t * f$? The theorem implies that there exists a subsequence $\{t_k\}, t_k \to 0$ such that $\phi_{t_k} * f \to f(x)$ for a.e. x. If we can show that $\lim_{t\to 0} \phi_t * f(x)$ exists almost everywhere, then $\lim_{t\to 0} \phi_t * f(x) = f(x)$ a.e..

1.7 Relations between weak (p,q) bound and pointwise convergence

Let (X, μ) be a measure space and $\{T_t\}$ be a family of linear operators on $L^p(X, \mu)$. Define the maximal operator

$$T^*f(x) = \sup_{t>0} |T_t f(x)|.$$

If T^* is weak (p,q), then the set

$$S = \{ f \in L^p(X, \mu) : \lim_{t \to t_0} T_t f(x) = f(x) \text{ a.e.} \}$$

is closed in in $L^p(X, \mu)$.

Proof. To prove that S is closed, we let $\{f_k\} \subset L^p(X,\mu)$ with $\lim_{t\to t_0} T_t f_k(x) = f_k(x)$ a.e. and $f_k \to f$ in $L^p(X,\mu)$. Need to show $f \in S$. In other words, we need to show

$$\mu(\{x \in \mathbb{R}^n : \limsup_{t \to t_0} |T_t f(x) - f(x)| > 0\}) = 0$$

or we can prove

$$\sum_{k=1}^{\infty} \mu(\{x \in \mathbb{R}^n : \limsup_{t \to t_0} |T_t f(x) - f(x)| > \frac{1}{k}\}) = 0.$$

It suffices to prove $\forall \lambda > 0$, $\mu(\{x \in \mathbb{R}^n : \limsup_{t \to t_0} |T_t f(x) - f(x)| > \lambda\}) = 0$.

$$\mu(\{x \in \mathbb{R}^{n} : \limsup_{t \to t_{0}} |T_{t}f(x) - f(x)| > \lambda\})$$

$$= \mu(\{x \in \mathbb{R}^{n} : \limsup_{t \to t_{0}} |T_{t}(f - f_{k}) + Tf_{k} - f_{k} + f_{k} - f| > \lambda\})$$

$$\leq \mu(\{x \in \mathbb{R}^{n} : \limsup_{t \to t_{0}} |T_{t}(f - f_{k})| > \frac{\lambda}{2}\}) + \mu(\{x \in \mathbb{R}^{n} : |f_{k} - f| > \frac{\lambda}{2}\})$$

$$\leq \mu(\{x \in \mathbb{R}^{n} : T^{*}(f_{k} - f)| > \frac{\lambda}{2}\}) + \mu(\{x \in \mathbb{R}^{n} : |f_{k} - f| > \frac{\lambda}{2}\})$$

$$\leq \left(\frac{2A}{\lambda} ||f - f_{k}||_{p}\right)^{q} + \left(\frac{2}{\lambda} ||f_{k} - f||_{p}\right)^{p} \to 0 \text{ as } k \to \infty.$$

Remark 1.29. Under the same condition, we can show that

$$S = \{ f \in L^p : \lim_{t \to t_0} T_t f(x) \text{ exists a.e.} \}$$

is closed in $L^p(X, \mu)$. The proof is left as an exercise. Remark 1.30. Let ϕ_k be an approximation of the identity, then $\phi_t * f(x) \to f(x)$ as $t \to 0$ for all $f \in S$. Also, S is closed in $L^P(\mathbb{R}^n)$. $S \subset S \subset L^p(\mathbb{R}^n)$ will imply $S = L^p(\mathbb{R}^n)$.

1.8 Discuss the pointwise convergence

 $\phi_t * f(x) \to f(x)$ a.e. as $t \to 0$. It suffices to prove that $\sup_{t>0} |\phi_t * f|$ is weakly bounded.

Proposition 1.31. Let $\phi(x) = \phi(|x|)$ be radial, positive and decreasing in |x|. Assume ϕ is integrable. Then

$$\sup_{t>0} |\phi_t * f| \le \|\phi\|_{L^1} M f(x).$$

Proof. Let us consider the case where $\phi = \sum_j a_j \chi_{B_j}(x), a_j > 0$. Then

$$\phi * f(x) = \sum_{j} a_j |B_j| \cdot \frac{1}{|B_j|} \chi_{B_j} * f.$$

Then

$$|\phi * f(x)| \le ||\phi||_{L^1} M f(x).$$

We obtain the similar estimate for $\phi_t = t^{-n}\phi(\frac{x}{t})$, and by the limiting process, which finishes the proof.

Corollary 1.32. If $|\phi(x)| \leq \psi(|x|)$, where ψ satisfies the condition in Proposition 1.31. Then $\sup_{t>0} |\phi_t * f|$ is weak (1, 1) and strong (p, p), where 1 .

2 Fourier transform in $L^p(\mathbb{R}^n)$

Definition 2.1. If $f \in L^1(\mathbb{R}^n)$, then we define the Fourier transform

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx.$$

Fact 2.2. 1. $\mathcal{F}(f) := \widehat{f}, \ \mathcal{F} : L^1(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n) \ (continuous) \ and \ |\widehat{f}(\xi)| \le ||f||_{L^1}.$

2. Riemann-Lebesgue lemma: $\lim_{|\xi|\to\infty} |\widehat{f}(\xi)| = 0.$

Recall that \mathcal{S} is the Schwartz space, then $\mathcal{F}: \mathcal{S} \to \mathcal{S}(\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i x \cdot \xi} dx)$ and $\mathcal{F}^{-1}: \mathcal{S} \to \mathcal{S}(f(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi)e^{2\pi i x \cdot \xi} d\xi)$. Also, $\|\widehat{f}\|_2 = \|f\|_2$, for all $f \in \mathcal{S}$ (Plancheral theorem). Since \mathcal{S} is dense in $L^2(\mathbb{R}^n)$, i.e., for all $f \in L^2(\mathbb{R}^n)$, there exists $\{f_k\} \in \mathcal{S}$ such that $f_k \to f$ in $L^2(\mathbb{R}^n)$. Then we can define $\widehat{f}(\xi) = \lim_{k \to \infty} \widehat{f}_k(\xi)$ in $L^2(\mathbb{R}^n)$. Also,

$$\widehat{f}(\xi) = \lim_{R \to \infty} \int_{|x| < R} f(x) e^{-2\pi i x \cdot \xi} dx \text{ and } f(x) = \lim_{R \to \infty} \int_{|\xi| < R} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi.$$

The limit is in the L^2 sense. So we have $\mathcal{F}: L^1 \to L^\infty$ and $\mathcal{F}: L^2 \to L^2$. Now, for $1 and <math>f \in L^p$, we can write $f = f_1 + f_2$, where $f_1 \in L^1$, $f_2 \in L^2$. Define $\widehat{f} = \mathcal{F}f = \widehat{f_1} + \widehat{f_2} \in L^\infty + L^2$.

Theorem 2.3. (*Riesz-Thorin interpolation theorem*) Let $1 \le p_0, p_1, q_0, q_1 \le \infty$. Assume that T is a linear operator from $L^{p_0} + L^{p_1}$ to $L^{q_0} + L^{q_1}$ satisfying

$$||Tf||_{q_0} \le M_0 ||f||_{p_0}$$
 and $||Tf||_{q_1} \le M_1 ||f||_{p_1}$.

Then for $\theta \in (0,1)$, define $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$, $\frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$. Then T is a bounded operator from L^p to L^q and

$$||Tf||_q \le M_0^{1-\theta} M_1^{\theta} ||f||_p.$$

Proof. LOL

Theorem 2.4. (Hausdorff-Young inequality) Let $1 \le p \le 2$, then $\|\widehat{f}\|_{p'} \le \|f\|_p$, where $\frac{1}{p} + \frac{1}{p'} = 1$.

Proof. $\mathcal{F} : L^1 \to L^\infty$, $\|\mathcal{F}f\|_\infty \le \|f\|_1 \ (M_0 = 1)$ and $\mathcal{F} : L^2 \to L^2$, $\|\mathcal{F}f\|_2 = \|f\|_2 \ (M_1 = 1)$. For $1 , <math>\frac{1}{p} = \frac{1-\theta}{1} + \frac{\theta}{2} = 1 - \frac{\theta}{2}$, $\frac{1}{q} = \frac{1-\theta}{\infty} + \frac{\theta}{2} = \frac{\theta}{2}$. \Box

Remark 2.5. For $1 \leq p \leq 2$, $f \in L^p$, \hat{f} is a classical function. Now, for p > 2, we define the Fourier transform \hat{f} as a tempered distribution. Recall that \mathcal{S} is the Schwartz space. The tempered distribution \mathcal{S}' is the continuous linear functional on \mathcal{S} , i.e., $T \in \mathcal{S}'$,

$$|\langle T, \varphi \rangle| \le C \|\varphi\|_{\mathcal{S}}, \ \forall \varphi \in \mathcal{S}.$$

For example, $\langle \delta, \varphi \rangle = \varphi(0)$.

Definition 2.6. $T \in S'$, we define \widehat{T} as

$$\left\langle \widehat{T}, \varphi \right\rangle = \left\langle T, \widehat{\varphi} \right\rangle.$$

We can define \hat{f} if $f \in L^p$ for p > 2 since $L^p \subset S$, but \hat{f} may not be a classical function.

Theorem 2.7. (Young's inequality) Let $1 \le p, q \le \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. Given $f \in L^p$, $g \in L^q$, then $f * g \in L^r$, where $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$ and

$$||f * g||_{L^r} \le ||f||_{L^p} ||g||_{L^q}.$$

Proof. Let $f \in L^p$ and define the linear operator $T_f(g) = f * g$. Observe that

$$T_f: L^1 \to L^p$$
 with $||T_fg||_{L^p} \le ||f||_{L^p} ||g||_{L^1}$.

From the Minkowski's integral inequality

$$\|T_f g\|_p = \left(\int |\int f(x-y)g(y)dy|^p dx\right)^{\frac{1}{p}} \\ \le \|f\|_p \|g\|_1.$$

In addition, $T_f: L^{p'} \to L^1$ $(\frac{1}{p} + \frac{1}{p'} = 1)$. Note that

$$(f * g)(x)| \le ||f||_p ||g||_{p'},$$

which means $||T_f g||_{\infty} \leq ||f||_p ||g||_{p'}$. Then for $\theta \in (0,1)$, $\frac{1}{r} = \frac{1-\theta}{1} + \frac{\theta}{p'}$, $\frac{1}{q} = \frac{1-\theta}{p} + \frac{\theta}{\infty} = \frac{1-\theta}{p}$. Thus, $||f * g||_r \leq ||f||_p ||g||_q$.

Calculate θ in terms of p and q, then we can find $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$.

Now, we'd like to prove the Riesz-Thorin theorem.

Theorem 2.8. (Hadamard-Phragmen-Lindelof theorem) Let $S = \{\theta + i\tau : \theta \in [0,1], \tau \in \mathbb{R}\}$. Assume F(z) is bounded continuous on S and analytic (or holomorphic) in the interior of S. If $|F(i\tau)| \leq M_0$, $|F(1+i\tau)| \leq M_1$, then

$$|F(\theta + i\tau)| \le M_0^{1-\theta} M_1^{\theta} \text{ for } 1 < \theta < 1.$$

Proof. We want to construct a new function from F(z) such that the new function decays to zero as $|\tau| \to \infty$. So we define

$$F_{\epsilon}(z) = e^{\epsilon z^2 + \lambda z} F(z),$$

where $\epsilon > 0$ and $\lambda \in \mathbb{R}$ (will be determined later).

We only need to check

$$|F_{\epsilon}(\theta + i\tau)| = |e^{\epsilon(\theta + i\tau)^{2} + \lambda(\theta + i\tau)}F(\theta + i\tau)|$$

= $|e^{\epsilon(\theta^{2} - \tau^{2} + 2i\theta\tau + \lambda\theta + i\lambda\tau}F(z)|$
 $\leq e^{\epsilon(\theta^{2} - \tau^{2} + \lambda\theta)}|F(z)| \to 0$

as $|\tau| \to \infty$. Next,

$$|F_{\epsilon}(i\tau)| = |e^{\epsilon(i\tau)^2 + \lambda(i\tau)}F(i\tau)| \le |F(i\tau)| \le M_0$$

and

$$|F_{\epsilon}(1+i\tau)| = |e^{\epsilon(1+i\tau)^{2}+\lambda(1+i\tau)}F(1+i\tau)|$$

$$\leq e^{\epsilon(1-\tau^{2})+\lambda}|F(1+i\tau)|$$

$$\leq e^{\epsilon+\lambda}M_{1}.$$

So by the maximum principle,

$$|F_{\epsilon}(\theta + i\tau)| \leq \max(M_0, e^{\epsilon + \lambda}M_1),$$

$$F_{\epsilon}(\theta + i\tau)| = |e^{\epsilon(\theta + i\tau)^{2} + \lambda(\theta + i\tau)}F(\theta + i\tau)|$$
$$= e^{\epsilon(\theta^{2} - \tau^{2}) + \lambda\theta}|F(\theta + i\tau)|.$$

So $|F(\theta + i\tau)| \leq e^{-\epsilon(\theta^2 - \tau^2)} e^{-\lambda\theta} \max(M_0, e^{\epsilon + \lambda}M_1)$. Let $\epsilon \to 0$, then $|F(\theta + i\tau)| \leq \max(e^{-\lambda\theta}M_0, e^{\lambda(1-\theta)}M_1) = \max(\rho^{-\theta}M_0, \rho^{1-\theta}M_1),$

where $\rho = e^{\lambda} > 0$. We now choose ρ such that $\rho^{-\theta}M_0 = \rho^{1-\theta}M_1$, or $\rho = \frac{M_0}{M_1}$ and

$$|F(\theta + i\tau)| \le M_0^{1-\theta} M_1^{\theta}.$$

2.1 Proof of Riesz-Thorin interpolation theorem

We need to show that $T: L^{p_{\theta}} \to L^{q_{\theta}}$, where $\frac{1}{p_{\theta}} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$, $\frac{1}{q_{\theta}} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$ and

$$|Tf||_{q_{\theta}} \le M_0^{1-\theta} M_1^{\theta} ||f||_{p_{\theta}}$$

By the duality argument, it suffices to prove

$$|\langle Tf,g\rangle| \le M_0^{1-\theta} M_1^{\theta} ||f||_{p_{\theta}} ||g||_{q'_{\theta}}, \ \forall f \in L^{p_{\theta}}, g \in L^{q'_{\theta}}.$$

Without loss of generality, we can choose $||f||_{p_{\theta}} = ||g||_{q'_{\theta}} = 1$ and show $|\langle Tf, g \rangle| \leq M_0^{1-\theta} M_1^{\theta}$.

Observe that
$$\frac{1}{q'_{\theta}} = \frac{1-\theta}{q'_0} + \frac{\theta}{q'_1}$$
. Define

$$\frac{1}{p_z} = \frac{1-z}{p_0} + \frac{z}{p_1} \text{ and } \frac{1}{q'_z} = \frac{1-z}{q'_0} + \frac{z}{q'_1}, \ z \in \mathbb{C}.$$

Set

$$\Phi(x,z) = |f(x)|^{\frac{p_{\theta}}{p_z}-1} f(x) \text{ and } \Psi(x,z) = |g(x)|^{\frac{q_{\theta}}{q_z'}-1} g(x)$$

(we normally define $\frac{f(x)}{|f(x)|} = 0$ if f(x) = 0). Consider

$$F(z) = \langle T\Phi(x,z), \Psi(x,z) \rangle = \int T\Phi(x,z)\Psi(x,z)dx$$

To proceed, we consider f and g are simple functions, i.e., $f(x) = \sum a_j \chi_{E_j}$ and $g(x) = \sum b_k \chi_{F_k}$, where $\{E_j\}$ and $\{F_k\}$ have finite measures. Here $a_j, b_k \in \mathbb{C}$. We can write $a_j = |a_j|e^{i\theta_j}, b_k = |b_k|e^{i\eta_k}$.

Hence,

$$F(z) = \sum_{j} \sum_{k} |a_{j}|^{\frac{p_{\theta}}{p_{z}}-1} |a_{j}| e^{i\theta_{j}} |b_{k}|^{\frac{q'_{\theta}}{q'_{z}}-1} |b_{k}| e^{i\eta_{k}} \langle T\chi_{E_{j}}, \chi_{F_{k}} \rangle$$
$$= \sum_{j} \sum_{k} |a_{j}|^{\frac{p_{\theta}}{p_{z}}} |a_{j}| |b_{k}|^{\frac{q'_{\theta}}{q'_{z}}} |b_{k}| e^{i(\theta_{j}+\eta_{k})} \langle T\chi_{E_{j}}, \chi_{F_{k}} \rangle.$$

We then know that F(z) satisfies the conditions in Hadamard et al's theorem. Now, we compute

$$|F(i\tau)| \le ||T\Phi(\cdot, i\tau)||_{q_0} ||\Psi(\cdot, i\tau)||_{q'_0} \le M_0 ||\Phi||_{p_0} ||\Psi||_{q'_0}$$

and

$$\|\Phi(\cdot, i\tau)\|_{p_0} = 1$$
 and $\|\Psi(\cdot, i\tau)\|_{q'_0} = 1$,

which implies $|F(i\tau)| \leq M_0$.

On the other hand, we can show that $|F(1+i\tau)| \leq M_1 \|\Phi(\cdot, 1+i\tau)\|_{p_1} \|\Psi(\cdot, 1+i\tau)\|_{q'_1}$ and $\|\Phi(\cdot, 1+i\tau)\|_{p_1} = \|\Psi(\cdot, 1+i\tau)\|_{q'_1} = 1$ implies $|F(1+i\tau)| \leq M_1$. Bt the three-lines theorem (Hadamard et al), we have $|F(\theta+i\tau)| \leq M_0^{1-\theta} M_1^{\theta}$. In

particular, $|F(\theta + i0)| \leq M_0^{1-\theta} M_1^{\theta}$. For $z = \theta + i0$, we have $\Phi(\cdot, \theta) = f(x)$ and $\Psi(\cdot, \theta) = g(x)$. Therefore,

$$F(\theta) = \langle T\Phi(\cdot,\theta), \Psi(\cdot,\theta) \rangle = \langle Tf,g \rangle \,.$$

 \mathbf{So}

$$|\langle Tf,g\rangle| \le M_0^{1-\theta} M_1^{\theta}$$

and

$$|\langle Tf,g\rangle| \le M_0^{1-\theta} M_1^{\theta} ||f||_{p_{\theta}} ||g||_{q'_{\theta}}.$$

In the final step, we approximate f, g by simple functions.

2.2 Summability of Fourier integral

Problem 2.9. Does

$$\lim_{R \to \infty} \int_{B_R} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi = f(x) ?$$

where $B_R = \{R_x : x \in B \text{ B is an open convex neighborhood of } 0\}$. In what sense ? in L^p or pointwise almost everywhere ? It is true in L^2 , if

$$\lim_{R \to \infty} \int_{B_R} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} dx = f \text{ in } L^2.$$

Is it true for $p \neq 2$?

Define an (linear) operator

$$(S_R f)^{\wedge} = \chi_{B_R} \widehat{f}(\xi).$$

The problem is equivalent to

$$\lim_{R \to \infty} S_R f = f$$

in L^p or pointwise a.e..

Theorem 2.10. For $p \in (1, \infty)$, we have

$$\lim_{R \to \infty} S_R f = f \text{ in } L^p$$

is equivalent to $\exists C = C(p) > 0$ such that

$$||S_R f||_p \le C_p ||f||_p.$$

Proof. Exercise. Later, we will prove this when n = 1 (related to the Hilbert transform).

We introduce the Cesaro summability in the following. Define

$$\sigma_R f(x) = \frac{1}{R} \int_0^R S_t f dt.$$

For n = 1, B = (-1, 1), we can write $S_R f = D_r * f$, where $D_R = \int_{-R}^{R} e^{2\pi i x \cdot \xi} d\xi = \frac{\sin(2\pi Rx)}{\pi x}$ is the Dirichlet kernel. Next, we can write $\sigma_R f = F_R * f$, where

$$F_R(x) = \frac{1}{R} \int_0^R D_t dt = \frac{1}{R} \int_0^R \frac{\sin(2\pi tx)}{\pi x} dt$$

= $\frac{\sin^2(\pi Rx)}{R(\pi x)^2}.$

Note that for R = 1, $F_1(x) = \frac{\sin^2(\pi x)}{(\pi x)^2}$, $F_R(x) = RF(Rx)$ $(t = \frac{1}{R})$. We can see that

 $|F_1(x)| \le \min\{1, (\pi x)^2\}$ (integrable).

Corollary 2.11. We have

$$\lim_{R \to \infty} \sigma_R f = f \text{ in } L^p(\mathbb{R}) \text{ for } 1 \le p < \infty$$
$$\lim_{R \to \infty} \sigma_R f = f \text{ in } L^\infty \text{ if } f \in C_0(\mathbb{R}),$$

and

$$\lim_{R \to \infty} \sigma_R f = f \ a.e..$$

2.3 Other summability methods

1. <u>Abel-Poisson method</u>

Consider

$$u(x,t) = \int_{\mathbb{R}^n} e^{-2\pi t |\xi|} \widehat{f}(\xi) e^{2\pi x \cdot \xi} d\xi$$

We can check that u is harmonic for t > 0, i.e.,

$$\Delta u = 0 \text{ in } \mathbb{R}^n_+ = \{ (x, t) | t > 0 \}.$$

Impose the boundary condition u(x, 0) = f(x) (in suitable sense) and $\lim_{t\to 0+} u(x, t) = f(x)$. We can express

$$u(x,t) = P_t * f(x),$$

where $\widehat{P}_t(\xi) = e^{-2\pi t |\xi|}$.

Claim: (Exercise, in Stein-Weiss' book)

$$P_t(x) = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \frac{t}{(t^2 + |x|^2)^{\frac{n+1}{2}}}$$
(Poisson kernel).

So for $P_1 = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \frac{1}{(1+|x|^2)^{\frac{n+1}{2}}}$, radially symmetric, decreasing, integrable.

Corollary 2.12. $\lim_{t\to 0+} P_t * f = f$ in L^p , pointwise.

2. Gauss-Weierstrass method

Consider

$$w(x,t) = \int e^{-\pi t^2 |\xi|^2} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi,$$

and $\lim_{t\to 0} u(x,t) = f(x)$? We can write $w(x,t) = W_t * f$, where $\widehat{w_t}(\xi) = e^{-\pi t^2 |\xi|^2}$, which implies

$$w_t(x) = t^{-n} e^{-\pi |x|^2/t^2}$$
 (Heat kernel, exercise).

Let $\widetilde{w}(x,t) = w(x,\sqrt{4\pi t})$, then

$$\begin{cases} \partial_t \widetilde{w} - \Delta \widetilde{w} = 0 & \text{ in } x \in \mathbb{R}^n, t > 0, \\ \widetilde{w}(x,0) = f(x). \end{cases}$$

For t = 1, $w_1(x) = e^{-\pi |x|^2}$ radially symmetric, decreasing, integrable.

Corollary 2.13. We have

$$\lim_{t\to 0} w(x,t) = f(x) \text{ in } L^p, \text{ a.e.}.$$

3 Calderón-Zygmund decomposition

Let $f \in L^1(\mathbb{R}^n)$ and $f \ge 0$. Given any $\alpha > 0$, we have

- 1. $\mathbb{R}^n = \Omega \cup F \ (\Omega \cap F = \emptyset),$
- 2. On F (good set), $f(x) \leq \alpha$ a.e.,
- 3. $\Omega = \bigcup_k Q_k$, where $\{Q_k\}$'s are non-overlapping cubes, then

$$\alpha < \frac{1}{|Q_k|} \int_{Q_k} f \le 2^n \alpha.$$

Proof. We partition \mathbb{R}^n into cubes with same diameter. Since $f \in L^1(\mathbb{R}^n)$, we can find a large enough partition cube Q s.t.

$$\int_Q f \leq \alpha |Q| \quad (\int_Q f \leq \int_{\mathbb{R}^n} \leq \alpha |Q|)$$

Next, we divide Q into Q' whose side is half of that of Q. Namely, Q is partitioned into 2^n subcubes. There are only two cases

$$\frac{1}{|Q'|} \int_{Q'} f \le \alpha \quad \text{or} \quad \frac{1}{|Q'|} \int_{Q'} f > \alpha$$

For Q' satisfying

$$\alpha < \frac{1}{|Q'|} \int_{Q'} f$$

we put it into Ω . To check the other half of (*iii*), we note that

$$\frac{1}{|Q'|} \int_{Q'} \le \frac{|Q|}{|Q'|} \frac{1}{|Q|} \int_Q f \le 2^n \alpha$$

Now for the case

$$\frac{1}{|Q'|} \int_{Q'} f \le \alpha$$

we repeat the process, partition such Q' into 2^n subcubes Q''. There are two cases:

$$\frac{1}{|Q''|} \int_{Q''} f \le \alpha \quad \text{or} \quad \frac{1}{|Q''|} \int_{Q''} f > \alpha$$

For Q'' with

$$\alpha < \frac{1}{|Q''|} \int_{Q''} f \le \frac{|Q'|}{|Q''|} \frac{1}{|Q'|} \int_{Q'} f \le 2^n \alpha$$

Therefore, we find $\Omega = \bigcup_k Q_k$ satisfying *(iii)*. Now let $F = \mathbb{R}^n - \Omega$, then by Lebesgue Differential Theorem

f

$$(x) \leq \alpha$$
 a.e.

Corollary 3.1. f, α, F, Ω are given as above. $\exists A, B$ (depending on n) s.t. [(i)]

1. $|\Omega| \leq \frac{A}{\alpha} ||f||_1$ 2. $\forall Q_k \in \Omega$

$$\frac{1}{|Q_k|} \int_{Q_k} f \le B\alpha$$

In fact, from the proof above, $A = 1, B = 2^n$.

Proof.

$$|\Omega| = |\bigcup_k Q_k| = \sum_k |Q_k| \le \sum_k \frac{1}{\alpha} \int_{Q_k} f = \frac{1}{\alpha} \int_{\bigcup_k Q_k} f \le \frac{1}{\alpha} ||f||_1$$

Question: What are F and Ω ? Is $F = \{x \in \mathbb{R}^n : f(x) \le \alpha\}$?

3.1 Another proof of Calderón-Zygmund decomposition

For any open set $\Omega \subset \mathbb{R}^n$, we can write $\Omega = \bigcup_k Q_k$, where $\{Q_k\}$ are nonoverlapping cubes. Here we need to construct cubes with some geometric restrictions.

Theorem 3.2. Let F be a (non-empty) closed set in \mathbb{R}^n . Denote $\Omega = F^c$ (open). Then there exists a collection of cubes $\mathcal{F} = \{Q_1, Q_2, \cdots\}$ satisfying [(i)]

(1) $\Omega = \bigcup_k Q_k$ (2) $\{Q_k\}$ are non-overlapping

(3) $\exists c_1, c_2 \text{ (independent of F) s.t.}$

$$c_1 \operatorname{diam}(Q_k) \leq \operatorname{dist}(Q_k, F) \leq c_2 \operatorname{diam}(Q_k).$$

In fact, we can choose $c_1 = 1$, $c_2 = 4$.

We now use Whitney's theorem to re-prove Calderón-Zygmund corollary

Proof. Let $f \in L^1(\mathbb{R}^n)$, then the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} f dy$$

Mf is lower semicontinuous. Prove Mf is lower semi-continuous (exercise). Then

$$F := \{Mf(x) \le \alpha\} \text{ (closed)} \Omega := \{Mf(x) > \alpha\} \text{ (open)} = \bigcup_k Q_k$$

 $\{Q_k\}$ is constructed in Whitney's decomposition.

To prove (i)

$$\Omega| = |\{Mf(x) > \alpha\}| \le \frac{A}{\alpha} ||f||_1$$

Since M is weak(1,1).

Remark 3.3. Here $A = 5^n$

Proof. To prove (*ii*), Given $Q_k \subset \Omega$. Pick $p_k \in F$ s.t.

$$\operatorname{dist}(p_k, Q_k) = \operatorname{dist}(Q_k, F)$$

We now pick $B_{r_k}(p_k)$ be the smallest ball containing Q_k as the interior. Since $p_k \in F$

$$\alpha \ge Mf(p_k) \ge \frac{1}{|B_{r_k}(p_k)|} \int_{B_{r_k}(p_k)} f \ge \frac{|Q_k|}{|B_{r_k}(p_k)|} \frac{1}{|Q_k|} \int_{Q_k} f \ge \frac{1}{B} \frac{1}{|Q_k|} \int_{Q_k} f$$

where B depends only on n.

3.2 Proof of Whitney's Theorem

Proof. We partition \mathbb{R}^n into cubes with integer coordinates (lattice) M_0 . For $k \in \mathbb{Z}$, we denote $M_k = 2^{-k}M_0$. Note that for each cube in M_k , its diameter is $\sqrt{n2^{-k}}$. Next, we construct a series of layers

$$\Omega_k = \{ x \in \mathbb{R}^n : 2\sqrt{n}2^{-k} < \operatorname{dist}(x, F) \le 2\sqrt{n}2^{-k+2} \} \subset \Omega$$

Then $\Omega = \bigcup_k \Omega_k$. Now we choose

$$\mathcal{F}_0 = \bigcup_k \{ Q \in M_k : Q \cap \Omega_k \neq \emptyset \}$$

Note that if $Q \in \mathcal{F}_0$, $Q \subset \Omega$. In fact

$$\Omega = \bigcup_{Q \in \mathcal{F}_0} Q$$

Claim: For $Q \in \mathcal{F}_0$, diam $(Q) \leq dist(Q, F) \leq 4diam(Q)$

Proof. Since $Q \in \mathcal{F}_0$, $\exists x \in Q \cap \Omega_k$ for some k

$$dist(Q, F) \le dist(x, F) \le 2\sqrt{n}2^{-k+1} = 4\sqrt{n}2^{-k} = 4diam(Q)$$

Next, $\operatorname{dist}(Q, F) + \operatorname{diam}(Q) \ge \operatorname{dist}(x, F) \ge 2\sqrt{n}2^{-k}$, then

$$\operatorname{dist}(Q, F) \ge 2\sqrt{n}2^{-k} - \operatorname{diam}(Q) = \operatorname{diam}(Q)$$

So we obtain that all cubes in \mathcal{F}_0 satisfy (*iii*), i.e.

$$\operatorname{diam}(Q) \le \operatorname{dist}(Q, F) \le 4\operatorname{diam}(Q)$$

Now the question is that there are not non-overlapping. Observe that if $Q_1 \in M_{k_1}$, $Q_2 \in M_{k_2}$ and $Q_1 \cap Q_2 \neq \emptyset$, then

$$Q_1 \subset Q_2 \quad \text{if } k_1 > k_2$$

Also, if $Q \subset Q'$ and $Q, Q' \in \mathcal{F}_0$ then

$$\operatorname{diam}(Q') \le \operatorname{dist}(Q', F) \le \operatorname{dist}(Q, F) \le 4\operatorname{diam}(Q)$$

For any $Q \in \mathcal{F}_0$, we can find the maximal cube $\tilde{Q} \in \mathcal{F}_0$ s.t. $Q \subset \tilde{Q}$. Finally,

$$\Omega = \bigcup_k Q_k$$

where $Q_k \in \mathbb{F}_0$ and maximal cube, $\{Q_k\}$: non-overlapping.

3.3 Dyadic maximal function

In \mathbb{R}^n , let $\widetilde{Q_0}$ be the set of cubes (with lattices coordinates) which are congruent to $[0,1)^n$. Let $\widetilde{Q_k}$ be the set cubes formed by dilation $2^{-k}\widetilde{Q_0}$, $k \in \mathbb{Z}$. Note that for any $x \in \mathbb{R}^n$, x lies in a unique cube for each k. On each level $(k \in \mathbb{Z})$, cubes are disjoint. If two cubes from different k's intersect, then one is contained in other completely.

Let $f \in L^1_{loc}(\mathbb{R}^n)$, define

$$E_*f(x) = \sum_{Q \in Q_k} \left(\oint_Q f dx \right) \chi_Q(x).$$

In other words, for $x \in \mathbb{R}^n$ and $k \in \mathbb{Z}$, then there exists only $Q \in \widetilde{Q_k}$ with $x \in Q$. $E_k f(x) = \int_Q f dx$.

Definition 3.4. For $f \in L^1_{loc}(\mathbb{R}^n)$, we define the dyadic maximal function

$$M_d f(x) = \sup_k E_k[|f|](x) = \sup_{\substack{x \in Q \\ Q \subset Q_k}} \oint_Q |f|.$$

Lemma 3.5. For $f \in L^1(\mathbb{R}^n)$, then

$$\lim_{k \to -\infty} E_k f(x) = 0.$$

Proof. Observe that

$$E_k[|f](x) = \oint_Q |f| \le \frac{1}{|Q|} ||f||_1 \to 0 \text{ as } k \to -\infty.$$

Theorem 3.6. Let $f \in L^1(\mathbb{R}^n)$, $\lambda > 0$, there exists a collection of disjoint dyadic cubes $\{Q_j\}$ such that

$$\{x \in \mathbb{R}^n : M_d f(x) > \lambda\} = \cup_j \mathcal{Q}_j$$

and

$$\lambda \leq \oint_{\mathcal{Q}_j} |f| \leq 2^n \lambda.$$

Corollary 3.7. (a) M_d is weak (1,1).

(b) Lebesgue differentiation theorem

$$\lim_{k \to \infty} E_k f(x) = f(x) \ a.e.$$

Proof. (b) follows from (a) (exercise). For (a),

$$|\{x \in \mathbb{R}^n : M_d f(x) > \lambda\}| = |\cup_j \mathcal{Q}_j| = \sum_j |\mathcal{Q}_j|$$
$$\leq \frac{1}{\lambda} \sum_j \int_{\mathcal{Q}_j} |f| \leq \frac{1}{\lambda} ||f||_1.$$

		L
		L
		L
-		а.

Proof. (Proof of Theorem) Let

$$E_{\lambda} = \{x \in \mathbb{R}^n : M_d f(x) > \lambda\} = \bigcup_k \{x \in \mathbb{R}^n : E_k[|f|](x) > \lambda\}.$$

Now if $x \in E_{\lambda}$, $\exists x \in Q_k \in \widetilde{Q_k}$ such that $\int_{Q_k} |f| > \lambda$. Note that $Q_k \subset E_{\lambda}$. By lemma, there must exist a largest $Q_{k^*} \supset Q_k$ such that $E_{k^*}[|f|](x) > \lambda$ $(k^* \leq k)$. For any $x \in E_{\lambda}$, there exists a unique cube Q_k such that $E_k[|f|](x) > \lambda$ but $E_{k-1}[|f|](x) \leq \lambda$. So $E_{\lambda} = \bigcup_k Q_k$. Next, on each cube Q_k ,

$$\lambda < \int_{Q_k} |f| \le \frac{|Q_{k-1}|}{|Q_k|} \frac{1}{|Q_{k-1}|} \int_{Q_{k-1}} |f| \le 2^n \lambda.$$

Theorem 3.8. (Calderón-Zygmund decomposition)

Let $f \in L^1(\mathbb{R}^n)$, $\lambda > 0$, there exists a collection of disjoint dyadic cubes $\{Q_k\}$ and $g \in L^1(\mathbb{R}^n)$ and $\{b_k\}$ such that $f = g + \sum b_k$, where $||g||_{L^{\infty}} \leq 2^n \lambda$ and $||g||_1 \leq ||f||_1$ (good part), $supp(b_k) \subset Q_k$ and $\int_{Q_k} b_k dx = 0$.

Proof. Let $\{Q_k\}$ be constructed as above. Define

$$b_k = \left(f(x) - \oint_{Q_k} f\right) \chi_{Q_k}(x).$$

So b_k satisfies all conditions. Define

$$g(x) = f(x) - \sum_{k} b_k(x)$$

Need to show that $\|g\|_{\infty} \leq 2^n \lambda$, $\|g\|_1 \leq \|f\|_1$. If $x \in \cup_j Q_j$ and note that $\{Q_j\}$ disjoint then $g(x) = \oint_{Q_j} f(x) dx \ \forall \ x \in Q_j$.

For $x \notin \bigcup_j Q_j$, f(x) = g(x). We know that $M_d f(x) \leq \lambda$ for $x \notin \bigcup_j Q_j$. Also $|f(x)| \leq M_d f(x)$ a.e., then $|g(x)| \leq \lambda \forall x \notin \bigcup_j Q_j$. For $x \in \bigcup_j Q_j$, $|g(x)| \leq |f_{Q_j} f(x)| \leq 2^n \lambda$. Thus $||g||_{\infty} \leq 2^n \lambda$. On the other hand

$$\begin{split} \int_{\mathbb{R}^n} |g| &= \int_{\cup_j Q_j} |g(x)| + \int_{\mathbb{R}^n - \cup_j Q_j} |g(x)| \\ &\leq \int_{\cup_j Q_j} |f(x)| + \int_{\mathbb{R}^n - \cup_j Q_j} |f(x)| \\ &= \|f\|_1. \end{split}$$

$\mathbf{3.4}$ Another maximal functions defined by cubes

Definition 3.9. Let $x \in \mathbb{R}^n$ and Q_r be the cube with centered at x and $l(Q_r) =$ 2r, then if $f \in L^1_{loc}(\mathbb{R}^n)$, we define

$$M'f(x) = \sup_{r>0} \frac{1}{|Q_r|} \int_{Q_r} |f(y)| dy = \sup_{r>0} \frac{1}{(2r)^n} \int_{Q_r} |f(y)| dy$$

Note that $\exists c_1, c_2$ (depends only on n) s.t.

$$c_1 M' f(x) \le M f(x) \le c_2 M' f(x)$$

Here Mf is Hardy-Littlewood maximal function.

Theorem 3.10. We have that $\forall \lambda > 0$,

$$|\{x \in \mathbb{R}^n : M'f(x) > 4^n\lambda\}| \le 2^n |\{x \in \mathbb{R}^n : M_d f(x) > \lambda\}|.$$

Proof. Recall that

$$\{x \in \mathbb{R}^n : M_d f(x) > \lambda\} = \cup_j Q_j$$

 $\{Q_j\}$: dyadic cubes (disjoint). So it suffices to show that

$$\{x \in \mathbb{R}^n : M'f(x) > 4^n\lambda\} \subset \cup_j 2Q_j$$

 $(Q_j \text{ and } 2Q_j \text{ have the same center})$. Equivalently, we want to show

$$x \notin \bigcup_j 2Q_j \Rightarrow M'f(x) \le 4^n \lambda$$

Let Q be any cube centered at x. Then we know that $\exists k \in \mathbb{Z}$ s.t.

$$2^{-(k+1)} \le l(Q) < 2^{-k}$$

l(Q): the length of side of Q. Observe that Q intersects m cubes in Q_k , where $m \leq 2^n$. We assume Q intersects $R_1, R_2, \cdots, R_m \subset \widetilde{Q}_k$. Note that none of these cubes R_1, \cdots, R_m is contained in any Q_j . If not,

then $x \in 2Q_j$. Hence on each R_i , $i = 1, \dots, m$, we have

$$\frac{1}{|R_i|} \int_{R_i} |f(x)| \le \lambda$$

 So

$$\begin{split} f_{Q} |f| &= \sum_{i=1}^{m} \frac{1}{|Q|} \int_{Q \cap R_{i}} |f| \\ &\leq \sum_{i=1}^{m} \frac{|R_{i}|}{|Q|} \frac{1}{|R_{i}|} \int_{R_{i}} |f| \\ &\leq \frac{2^{-kn}}{|Q|} \sum_{i=1}^{m} \frac{1}{|R_{i}|} \int_{R_{i}} |f| \\ &\leq \frac{2^{-kn}}{|Q|} \sum_{i=1}^{m} \lambda \\ &\leq \frac{2^{-kn}}{|Q|} 2^{n} \lambda \\ &\leq \frac{2^{-kn} 2^{n}}{2^{-(k+1)n}} \lambda \\ &= 4^{n} \lambda. \end{split}$$

Thus, $M'f(x) \leq 4^n \lambda$.

3.5 The Hilbert transform

Consider the mapping H

$$Hf(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(y)}{x - y} dy$$

The definition does not make sense since $\frac{1}{x-y}$ is not locally integrable! In fact, H is defined by the sense of principle value, i.e.

$$Hf(x) = \lim_{\epsilon \to 0} \frac{1}{\pi} \int_{|x-y| > \epsilon} \frac{f(y)}{y} x - y dy = p.v. \int_{-\infty}^{\infty} \frac{f(y)}{x - y} dy$$

To see that the definition makes sense, we let $f \in C_0^1(\mathbb{R})$ f(u) = f(u) = f(u)

$$\begin{split} \int_{|x-y|>\epsilon} \frac{f(y)}{x-y} dy &= \int_{x-y} > \epsilon \frac{f(y)}{x-y} dy + \int_{x-y} < -\epsilon \frac{f(y)}{x-y} dy \\ &= \int_{|x-y|>\epsilon} \frac{f(y)}{x-y} dy - f(x) \int_{|x-t|>\epsilon} \frac{dy}{x-y} \\ &= \int_{|x-y|>\epsilon} \frac{f(y) - f(x)}{x-y} dy \\ &= \int_{\epsilon < |x-y| < 1} \frac{f(y) - f(x)}{x-y} dy + \int_{|x-y|>1} \frac{f(y) - f(x)}{x-y} dy \end{split}$$

The second of RHS is finite. Since $f \in C^1(\mathbb{R})$, we have

$$\begin{split} |\int_{\epsilon < |x-y| < 1} \frac{f(y) - f(x)}{x - y} dy| &\leq \int_{\epsilon < |x-y| < 1} |\frac{f(y) - f(x)}{x - y}| dy\\ &\leq \|f'\|_{\infty} \int_{\epsilon < |x-y| < 1} dy \leq 2\|f'\|_{\infty}. \end{split}$$

This method is called regularization.

Note that the same method does not work for $\frac{1}{|x-y|}$ (no cancellation !)

Remark 3.11. The Hilbert transform of any function (compactly supported) is not always defined pointwise, e.g. if $f = \chi_{[0,1]}$ then $Hf(x) = -\infty$. Check the above example (exercise).

Goal : to study the mapping property of H in L^p , $1 \le p \le \infty$ In fact, the kernel of H is a tempered distribution, i.e.

$$p.v.\frac{1}{x}(\psi) = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\psi(x)}{x} dx \quad \psi \in \mathcal{S}(\mathbb{R})$$

3.6 Connect to complex analysis

Let $u(x,t) = (P_t * f)(x)$, where $P_t(x), x \in \mathbb{R}^n, t > 0$ is the Poisson kernel of the half plane

$$\widehat{P}_t(\xi) = e^{-2\pi t|\xi|} \Leftrightarrow P_t(x) = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \frac{t}{(t^2 + |x^2|)^{\frac{n+1}{2}}}$$

and

$$u(x,t) = \int e^{-2\pi t |\xi|} \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

Also, $\lim_{t\to 0} (P_t * f)(x) = f(x)$ in L^p , $1 \le p < \infty$ and a.e. Now we take n = 1,

$$P_t(x) = \frac{1}{\pi} \frac{t}{(t^2 + x^2)}$$

Let z = x + it, then

$$u(x,t) = u(z) = \int_0^\infty \hat{f}(\xi) e^{i2\pi z\xi} d\xi + \int_{-\infty}^0 \hat{f}(\xi) e^{i2\pi \bar{z}\xi} d\xi$$

Now if we let

$$iv(x,t) = iv(z) = \int_0^\infty \hat{f}(\xi) e^{i2\pi z\xi} d\xi - \int_{-\infty}^0 \hat{f}(\xi) e^{i2\pi \bar{z}\xi} d\xi$$

then $u + iv = 2 \int_0^\infty \hat{f}(\xi) e^{i2\pi z\xi} d\xi$ is analytic in Imz > 0Note that u and v are harmonic. Also, u and v are real if f is real. Prove it (exercise). So v is a harmonic conjugate of u. Observe that

$$\begin{split} iv(x,t) &= \int_0^\infty \hat{f}(\xi) e^{i2\pi(x+it)\xi} d\xi - \int_{-\infty}^0 \hat{f}(\xi) e^{i2\pi(x-it)\xi} d\xi \\ &= \int_0^\infty e^{-2\pi t\xi} \hat{f}(\xi) e^{2\pi ix\xi} d\xi + \int_{-\infty}^0 (-1) e^{-2\pi t(-\xi)} \hat{f}(\xi) e^{i2\pi x\xi} d\xi \\ &= \int_{-\infty}^\infty \operatorname{sign}(\xi) e^{-2\pi t|\xi|} \hat{f}(\xi) e^{i2\pi x\xi} d\xi \end{split}$$

Then

$$v(x,t) = \int_{-\infty}^{\infty} -i \text{sign}(\xi) e^{-2\pi t |\xi|} \hat{f}(\xi) e^{i2\pi x\xi} d\xi = (Q_t * f)(x)$$

where $\widehat{Q}_t = -i \operatorname{sign}(\xi) e^{-2\pi t |\xi|}$. We can compute

$$Q_t = \frac{1}{\pi} \frac{x}{(t^2 + x^2)}$$
 (Conjugate Poisson Kernel)

If we write

$$P_t + iQ_t = \frac{1}{\pi} \frac{t + ix}{(t^2 + x^2)} = \frac{1}{\pi} \frac{i\bar{z}}{z\bar{z}} = \frac{1}{\pi} \frac{i}{z}$$

the second equivalent let z = x + it.

Lemma 3.12.

$$\lim_{t \searrow 0} Q_t = \frac{1}{\pi} p.v \frac{1}{x}$$

as a tempered distribution

Proof. Need to show that $\forall \ \psi \in \mathcal{S}(\mathbb{R})$,

$$\lim_{t \searrow 0} (Q_t - \frac{1}{\pi p.v.\frac{1}{x}})(\psi) = 0$$

Meaning

$$\begin{split} &\lim_{t \to 0} (\int_{-\infty}^{\infty} \frac{x\psi(x)}{t^2 + x^2} dx - \int_{|x| > t} \frac{\psi(x)}{x} dx) = 0 \\ &= \lim_{t \to 0} (\int_{|x| leqt} \frac{x\psi(x)}{t^2 + x^2} dx + \int_{|x| > t} \frac{x\psi(x)}{t^2 + x^2} dx - \int_{|x| > t} \frac{\psi(x)}{x} dx) \\ &= \lim_{t \to 0} (\int_{|x| leq1} \frac{x\psi(tx)}{1 + x^2} dx + \int_{|x| > 1} (\frac{x\psi(tx)}{1 + x^2} dx - \frac{\psi(tx)}{x}) dx). \end{split}$$