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Abstract

This notes were given in a series of lectures by Prof. Fan Chung in
National Taiwan University.

1 Introduction

1.1 Basic notations

Let G = (V,E) be a graph, where V is a vertex set and E is an edge set.

(Graph 1)
We denote the edge set E = {{a, b}, {b, c}, · · · }.

Definition 1.1. We say that {u, v} ∈ E

if and only if u ∼ v,
if and only if u is adjacent to v,

if and only if u is a neighborhood of v.

Moreover, we let

N(v) := {x ∈ V |x ∼ v},
dv := degree of v = |N(v)|.

(dv)v∈V denotes the degree of sequence.

Example 1.2. In graph 1, we say (dv)v∈V = {da, db, dc, dd} = {3, 2, 2, 1}.

Theorem 1.3. (Erdos-Gallai, 1960) Let (ai)i=1,2,··· ,n be a degree of sequence
of a graph ai ≥ ai+1 if and only if

r∑
i=1

ai ≤ r(r − 1) +

n∑
i=r+1

min{r, ai}.
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Proof. (⇒) Trivial, since when the graph has r vertices, it will be less than r(r−
1); outside r-graph part, it will be less than the second part of the inequality.

(⇐) Exercise !

There are many points of view of the graph theory. The graph theory will
involve topology, algebra, analysis and probability. It also can be applied to
the computer science (algorithm, complexity), network science (big data) and
optimization.

1.2 Classification

There are many types of graphs. We give brief definitions in the following.

Definition 1.4. We call G to be an undirected graph if E = {unordered pair}.
We call G is a simple graph if G satisfies

1.undirected,

2.no multiple angles,

3.no loops .

The directed graph will be denoted by

The hypergraph: E = {subsets}.
The weighted graph: w(e) ∈ R+ ∪ {0}.

Let G = (V,E), A be an adjacency matrix, which means

A(u, v) =

{
1 if u ∼ v,
0 otherwise.
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It is not hard to see du =
∑
v A(u, v). Path u = u0, u1, · · · , ut = v, where

ui ∼ ui+1. We call it to be a simple path if all u′is are distinct. Denote
At(u, v) =# of paths from u to v of length t.

Exercise 1.5. # of k paths in G = (V,E) ≥ nd−k, where n = |V |, d =average

degree=

∑
u du
n

. For instance, when k = 2, 2-paths, by using the Cauchy-

Schwarz inequality, we have ∑
d2i ≥ n(

∑ di
n

)2.

We also have

# of paths of length t in G =
〈
1, At1

〉
,

where 1 = (1, 1, · · · , 1).

Exercise 1.6. Let ρ0 =spectral radius of A (the largest eigenvalue of A). Prove
that

ρ0 = lim
k→∞

(〈
1, Ak1

〉
〈1,1〉

) 1
k

.

1.3 Random walk on G

In this section, we consider G to be undirected graphs. Let P (u, v) =the prob-
ability of matrix to u from v (transition probability matrix).

P (u, v) =


1

du
, if u ∼ v

0, otherwise.
=

1

du
A(u, v) = (D−1A)(u, v).

Note that P = D−1A with D being a diagonal degree matrix, D(u, v) = dv (not
symmetric in general).

Let f : V → R+ ∪ {0} be a probability distribution and
∑
v f(v) = 1.

Example 1.7. f0 = χu, where χu(v) =

{
1, if v = u

0, otherwise.

There are two versions to describe the graph. In the previous example, after
one step the probability becomes∑

v

χu(z)P (z, v) = (χu, P )(v).

After t steps, the probability from u reaching v is χuP
t(v). Here we use the row

vector multiplying with the matrix.

Example 1.8. Uniform distribution←→Stationary distribution. (
1

n
,

1

n
, · · · , 1

n
) =

1

n
. Does limt→∞ fP t exists ? unique ? If the existence holds, then we have

lim
t→∞

fP t = Π,

where Π is the stationary distribution (ergodic).
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Example 1.9. G is k-regular, du = k and
1

n
1 · P =

1

n
1, where P is the

probability matrix.

Example 1.10. Let G = G1∪G2 be disjoint union, where G1 is k1-regular, G2

is k2-regular. Then the limit Π = Π1 ×Π2, where

Π1 = (
1

k1
, · · · , 1

k1
, 0, · · · , 0),

Π2 = (0, 0, · · · , 0, 1

k2
, · · · , 1

k2
),

are stationary.

Example 1.11. Sk on k + 1 vertices.

χcP
odd(c) = 0 and χcP

even(c) = 1.
1

2k
(k, 1, · · · , 1) = Π is stationary.

Let G = (V,E) be a graph without isolated vertices, S ⊂ V . We define

VolS =
∑
v∈S

dv

and

Π(u) =

(
du

VolG

)
u∈V

.

Moreover,

(ΠP )(v) =
∑
u∼v

Π(u)P (u, v)

=
∑
u∼v

du
VolG

· 1

du
=

dv
VolG

= Π(v).

When the graph is directed, we can define

Π+ =

(
d+u

VolG

)
and Π− =

(
d−u

VolG

)
,

where VolG =
∑
u d

+
u =

∑
v d
−
v .

Π+P = Π−.
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Problem 1.12. Can we find a function f such that fP = f ?

In general, there is no close form for this f .

1.4 The note of convergence

Let M be a symmetric matrix, then all its eigenvalues are real. Let M t =
U∗ΛtU , where Λ is the diagonal matrix. Recall that P = D−1A = D−

1
2 (D−

1
2AD−

1
2 )D

1
2

and letM = D−
1
2AD−

1
2 , then P t = D−

1
2M tD

1
2 . Let φ′is are orthonormal eigen-

vectors associated with eigenvalues ρi of M , then φ0 =
1D

1
2

√
VolG

. We will see

more details in the following lecture.

2 Spectral graph theory - An introduction

The tool is based on the generalized fast Fourier transformation (GFFT). Let
M denote all positive entries matrices, A be adjacent matrices, A(u, v) ≥ 0,
∀u, v. Recall that the Perron-Frobenius theorem states that there exists a unique
eigenvector with positive components. All negative eigenvalues matrix can be
considered as a Laplacian.

2.1 The combinatorial Laplacian

Let G = (V,E) be a simple graph without isolated vertices, no loops, |V | = n.
Denote A to be adjacency matrix, D to be diagonal matrix and P = D−1A to
be the transition probability matrix with eigenvalues ρi = 1 − λi, where λi’s
will be introduced later.

Definition 2.1. Let L be (normalized) Laplacian, L = I −D− 1
2AD−

1
2 . L has

eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λn−1 (|V | = n).

L(u, v) =


1, if u = v,

1√
dudv

, if u ∼ v,

0, otherwise.

P (u, v) = Prob{moving to v from u}, fP (v) =
∑
u∼v f(u)P (u, v), where f is a

row vector. Let B(u, e) be oriented all edges arbitrarily, u ∈ V, e ∈ E such that

B(u, e) =


1, if u is the head of e,

−1, if u is the tail of e,

0, otherwise.

Fact 2.2. B ·B∗ = P −A = L: combinatorial Laplacian.

Fact 2.3. We have

Lf(u) = duf(u)−
∑
v,v∼u

f(v) =
∑
v,v∼u

(f(u)− f(v)).

Fact 2.4. L = D−
1
2LD−

1
2 = D−

1
2B ·B∗D− 1

2 = (D−
1
2B) · (D− 1

2B)∗.
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Fact 2.5. All eigenvalues λi ≥ 0 and λ0 = 0.

A homological view: We can regard C1 as 1-chains and C0 as 0-chains. Then

B : C0 → C1 and B∗ : C1 → C0.

Let −→e = {u, v} be oriented edge, then B sends −→e to u− v and

B :
∑
−→e ∈
−→
E

α−→e
−→e →

∑
v∈V

βvv.

Proposition 2.6. Consider the Rayleigh quotient and let f = gD−
1
2 ,

gLg∗

gg∗
=
gD−

1
2LD−

1
2 g∗

gg∗
=
fLf∗

fDf∗
,

where

fLf∗ =
∑
u

f(u)
∑
v,v∼u

(f(v)− f(u))

=
∑
u

f(u)
∑
v,v∼u

(f(u)− f(v))

=
∑

{u,v}∈E

(f(u)(f(u)− f(v)) + f(u)(f(v)− f(u))

=
∑

{u,v}∈E

(f(u)− f(v))2

and fDf∗ =
∑
v f(v)2dv. Therefore, the Rayleigh quotient is

gLg∗

gg∗
=

∑
{u,v}∈E(f(u)− f(v))2∑

x∈V f
2(x)dx

.

For zero eigenvalue, f(u) = f(v) if u ∼ v.

Fact 2.7. φ0 = f0D
1
2 =

1D−
1
2

√
VolG

, where VolG =
∑
v dv.

Fact 2.8. G has k connected components if and only if the zero eigenvalue has
multiplicity k.

Proof. (⇒) Easy. (⇐) Exercise.

Fact 2.9. λi ≤ 2 for all i.

Proof. By using the Rayleigh quotient, we have

λi ≤ sup
f

∑
{u,v}∈E(f(u)− f(v))2∑

x∈V f
2(x)dx

= sup
f

∑
{u,v}∈E(f(u)− f(v))2∑
u∼v(f

2(u) + f2(v))
≤ 2,

since (a− b)2 ≤ 2(a2 + b2).
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Example 2.10. Let A =

 0 1
. . .

1 0

, L =

 1 − 1
n−1

. . .

− 1
n−1 1

. Let

θ be the n-th root of θn = 1, then

L


1
θ
...

θn−1

 = (1− 1

n− 1
(θ + θ2 + · · ·+ θn−1))


1
θ
...

θn−1


=

{
0, if θ = 1,
n

n− 1
, if θ 6= 1.

Moreover, 0 has multiplicity 1 and
n

n− 1
has multiplicity n− 1.

Example 2.11. More complicated, we consider matrices

A =



0 1 0 · · · 0 1
1 0 1 0 0 0

0 1
. . .

. . .
. . . 0

... 0
. . .

. . . 1 0

0 0
. . .

. . . 0 1
1 0 0 0 1 0


and L =



1 − 1
2 0 · · · 0 − 1

2

− 1
2 1 − 1

2 0
. . . 0

0 − 1
2

. . .
. . .

. . . 0
... 0

. . .
. . . − 1

2 0

0
. . .

. . . − 1
2 1 − 1

2
− 1

2 0 · · · 0 − 1
2 1


.

Similar calculation, we have

L


1
θ
...

θn−1

 = (1− θ

2
− θ−1

2
)


1
θ
...

θn−1

 = (1− cos
2πj

n
)


1
θ
...

θn−1

 ,

where θ = e
2πij
n .

Example 2.12. A hypercubesQn has 2n vertices, n2n−1 edges. V = (0, 1)n ={string
of 0, 1 of length n }={subsets of an n-set {1, 2, · · · , n}}. Its eigenvalues of L are
2k

n
, k = 0, 1, 2 · · · , n with multiplicity

(
n
k

)
and eigenvectors θs, s ⊂ [n] =

{1, 2, · · · , n}. θs(T ) =
(−1)|s|

1
n

2
n
2

and Lθs =
2k

n
θs, with k = |s| (exercise).

2.2 More facts

Fact 2.13. G is a vertex disjoint union of G1 and G2, then we have ΛG =
ΛG1 ∪ ΛG2 , where ΛS denotes the spectrum of S.

Fact 2.14. If G is connected and G 6= Kn, then λ1 ≤ 1.
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Proof. Let φ0 be the first eigenfunction with respect to λ0 and f = D−
1
2 g. By

using the Rayleigh quotient, we have

λ1 = inf
g 6=φ0

〈g, Lg〉
〈g, g〉

= inf∑
f(x)dx=0

〈f, (D −A)f〉
〈f,Df〉

= inf∑
f(x)dx=0

∑
x∼u(f(x)− f(u))2∑

x f
2(x)dx

= inf∑
f(x)dx=0

R(f),

where R(f) is the standard Rayleigh quotient. Now, we choose f1 by picking
different vertices a and b with a � b,

f1(v) =


db, if v = a,

da, if v = b,

0, otherwise.

Then we have λ1 ≤ R(f) =
dad

2
b + dbd

2
a

dad2b + dbd2a
= 1.

Fact 2.15. Suppose G has diameter D, then λ1 ≥
1

D(VolG)
, where VolG =∑

v∈V dv.

Proof. Suppose that λ1 = R(f) for some f , f is the harmonic eigenfunction.∑
f(x)dx = 0, and choose u0 such that |f(u0)| = maxu |f(u)|, then ∃v such

that f(u0)f(v) < 0 and ∃ a path P = {u0, u1, · · · , ut = v}, t ≤ D. Again,

λ1 =

∑
x∼u(f(x)− f(u))2∑

x f
2(x)dx

≥
(
∑
{x,y}∈E(P ) |f(x)− f(y)|)2

(VolG) · |f(u0|2

≥
(
∑
x,y∈E(P ) |f(x)− f(y)|)2

D(VolG)|f(u0)|2
≥ |f(u0)− f(ut)|2

D(VolG)|f(u0)|2
≥ 1

D(VolG)
.

Remark 2.16. λ1 ≥
1

n3
.

Exercise 2.17. Find connected graphs with λ1 being the minimum.

3 More results for discrete Laplacian

3.1 Cartesian product

Let Gi = (Vi, Ei) be graphs. G1 �G2 has vertex set V1 × V2.

Definition 3.1. We say (u1, u2) ∼ (v1, v2) if and only if u1 = v1 and u2 ∼ v2
or u2 = v2 and u1 ∼ v1.

By the definition, it is easy to see Qn = P2 � P2 � · · ·� P2.
Let G = (V,E) be a graph with |V | = n and L = I − D− 1

2AD−
1
2 . Recall

the eigenvalues are 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2, if λ0 = 0, then the graph
G has disconnected components. In further, the spectral gap λ1 − λ0 plays an
important role in the spectral graph theory.
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3.2 Vertex transitive and edge transitive

Let G = (V,E) be a graph and σ be (graph) automorphism such that σ : V → V
satisfying x ∼ y if and only if σ(x) ∼ σ(y).

Definition 3.2. We say that G is vertex transitive if ∀u, v ∈ V , ∃σ automor-
phism such that σ(u) = v. We call G to be edge transitive if ∀e, e′ ∈ E, ∃σ
automorphism such that σ(e) = e′.

Exercise 3.3. Find examples of graphs such that vertex transitive will not
imply the edge transitive. Simultaneously, the edge transitive also cannot imply
the vertex transitive.

Hint: We can consider the Cartesian product of two triangles. Note that in
the following graph, the vertices are transitive, but the edges are not.

Theorem 3.4. If G is edge transitive, then λ1 ≥
1

D2
.

Theorem 3.5. If G is vertex transitive and G has degree k, then λ1 ≥
1

kD2
.

Definition 3.6. We define the index of G to be

IndG =
VolG

mini 2|Ei|
,

where Ei is the i-th equivalent class of edges (the graph above also shows that
these two triangular have equivalent edges).

Theorem 3.7. λ1 ≥
1

D2indG
if G is vertex transitive.

Proof. By using the Rayleigh quotient again,

λ1 = inf
f

sup
c

∑
x∼u(f(x)− f(u))2∑
x(f(x)− c)2dx

,

if we choose c =

∑
f(x)dx∑
dx

, then we have

λ1 = inf
f

∑
x∼u(f(x)− f(u))2∑

x f
2(x)dx − (

∑
f(x)dx)2∑
dx

= inf
f

∑
x∼u(f(x)− f(u))2VolG∑
u,v(f(u)− f(v))dudv

=
n

k
inf
f

∑
x∼u(f(x)− f(u))2∑
u,v(f(u)− f(v))2

.
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Fix a vertex x0, ∀y ∈ V , we consider P (x0, y) of length ≤ D and P (x0) =
{P (x0, y)|y ∈ V }. For x ∈ V , x = σ(x0), P (x) = {σP (x0, y)}. Now, for every
edges e ∈ E, we set Ne = # of recurrence of e in ∪P (x). In addition,

Ne ≤
n2D

2|Ei|
≤ n2D

2 min |Ei|
≤ n2DindG

VolG
≤ nDindG

k
.

Let e = {u, v} and f(e) = |f(u)− f(v)|, then∑
x

∑
y

(f(x)− f(y))2 ≤
∑
x

∑
y

(
∑

e∈P (x,y)

f(e))2 ≤
∑
x

∑
y

D ·
∑

e∈P (x,y)

f2(e)

≤
∑
e∈E

f2(e)D ·Ne ≤
∑
e∈E

f2(e)D · nDindG

k
.

Therefore, we can conclude

λ1 ≥
n
∑
e∈E f

2(e)

k
∑
u,v(f(u)− f(v))2

≥ 1

D2indG
.

Let G = (V,E) undirected weighted graph. Recall that we have introduced
P (x, y) = Prob{moving to y from x}, 0 ≤ P (x, y) ≤ 1 and

∑
y P (x, y) = 1.

Let Π be the stationary distribution, then we have ΠP = Π, which means∑
x Π(x)P (x, y) = ΠP (y).

Definition 3.8. We call P (x, y) to be the reversible random walk if

Π(x)P (x, y) = Π(y)P (y, x),

which means P (x, y) is reversible.

Let ωxy = cΠ(x)P (x, y), then ωxy = ωyx and

Π(x)P (x, y) =
1

c
ωxy =

dx
VolG

ωxy
dx

= Π(y)P (x, y),

where dx =
∑
y ωxy. The typical random walk is P (x, y) =

ωxy
dx

, Π(x) =
dx

VolG
and VolG =

∑
x∈G dx.

Recall that in Section 1, we have proposed the following questions: Does
fP t converge ? How long does it take ? How about the rates of convergence ?
Here are partial answers.

The necessary (also sufficient) conditions for the convergence is

1. Irreducibility - This is equivalent to the connectivity of graphs.

2. Aperiodicity - This is equivalent to non-bipartite of graphs.

If P = D−1A = D−
1
2 (D−

1
2AD−

1
2 )D

1
2 = D−

1
2MD

1
2 , we have P t = D−

1
2M tD

1
2 .

Let φi be orthonormal eigenvectors for M , i = 0, 1, · · ·n−1, if we write fD−
1
2 =
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∑
αiφi, αi = fD−

1
2 · D

1
2 1√

VolG
=

f1√
VolG

=
1√

VolG
and φ0 =

1D
1
2

√
VolG

. Thus,

(we denote ‖ · ‖ ≡ ‖ · ‖L2)

‖fP t −Π‖ = ‖fD− 1
2M tD

1
2 −Π‖ = ‖fD− 1

2 (I − L)tD
1
2 −Π‖

= ‖
n−1∑
i=0

αi(1− λi)tφiD
1
2 −Π‖ = ‖

∑
i>0

αi(1− λi)tφiD
1
2 ‖

≤ (max
i>0
|1− λi|t)C → 0 as t→∞,

if λ := |1− λi| < 1, for some constant C > 0. Moreover, we have the following
main results.

1. λ1 > 0 if and only if the graph is connected if and only if irreducibility
holds.

2. λn−1 < 2 if and only if the graph is non-bipartite if and only if the
aperiodicity holds.

3.3 Lazy walk

We give examples of the lazy walk in the following.

Example 3.9. Z =
I + P

2
, λ′1 =

λ1
2

, adding loops ωu,u = du.

Example 3.10. Z =
cI + P

c+ 1
, choose the best constant c (e.g. c =

λ1 + λn−1
2

−
1).

4 Cheeger’s inequality - graph version

Recall that L has eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, where λ1 controls the
connectivity of graphs. Moreover, λ1 gives information about the convergence
of random walks. In the spectral graph theory, we consider two important
problems: Expansion property and isoperimetric property.

4.1 Isoperimetric property

In the graph theory, there are two kinds of boundaries.

Definition 4.1. We call δ(S) to be a vertex boundary if

δ(S) = {v ∈ V |v /∈ S, v ∼ u for some u ∈ S}.

We call ∂(S) to be an edge boundary if

∂(S) = {{u, v} ∈ E|u ∈ S, v /∈ S}.

For a specific “volume” (say 100), what is the subset with volume ≤ 100
minimizing the vertex/edge boundary ? LetG = (V,E) be a graph with |V | = n,
we want to discuss the Cheeger’s inequality to help us to us to understand the
isoperimetric inequality.
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4.2 Cheeger’s inequality

Recall that Vol(S) =
∑
v∈S dv.

Definition 4.2. (Cheeger’s ratio) h(S) =
|∂S|

Vol(S)
.

Definition 4.3. The Cheeger constant hG of G is

hG := min{h(S)|S ⊂ V, Vol(S) ≤ 1

2
Vol(G)}.

Here we only consider all graphs with finite edges and vertices. It is easy to

see that for any S with Vol(S) ≤ 1

2
Vol(G), |∂S| ≥ hGVol(S).

Theorem 4.4. (Cheeger inequality) If graph is not complete, we have

hG ≥ λ1 ≥
h2G
2

and
√

2λ1 ≥ hG ≥
λ1
2
.

The complete graphs are much easier to understand, so we only consider the
incomplete graphs.

Exercise 4.5. Find graphs G,G′ for which hG1 = c1λ1 and hG′ = c2λ
2
1.

Lemma 4.6. 2hG ≥ λ1.

Proof. Use the Rayleigh quotient, we have

λ1 = inf∑
f(x)dx=0

∑
x∼y(f(x)− f(y))2∑

x f
2(x)dx

≤ R(g) with
∑

g(x)dx = 0.

hG is achieved by S, hG =
|∂S|

Vol(S)
with Vol(S) ≤ 1

2
Vol(G). Choose g defined

by

g(v) =


1

Vol(S)
, if v ∈ S,

1

Vol(Sc)
, if v /∈ S.

Then

λ1 ≤ R(g) =
( 1

VolS
+ 1

VolSc
)|∂S|

( 1

VolS
)2VolS + ( 1

VolSc
)2VolSc

= (
1

VolS
+

1

VolSc
)|∂S| = |∂S|VolG

VolS ·VolSc
≤ 2hG.

Theorem 4.7. λ1 ≥
h2G
2

.

Proof. Suppose

λ1 = R(f) =

∑
u∼v(f(u)− f(v))2∑

u f
2(u)du
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for some f . Order the vertices crossing f by f(u1) ≥ f(u2) ≥ · · · ≥ f(un). Let
Ci = {{vj , vk}|1 ≤ j ≤ i < k ≤ n}. Define

α := αf = min
1≤i≤n

|Ci|
min{

∑
j≤i dj ,

∑
j>i dj}

≥ hG

by the definition of hG. It suffices to show that λ1 ≥
α2

2
.

Now, we define V+ = {v : f(v) ≥ 0} and V− = {v : f(v) < 0}. WLOG, we
may assume

∑
f(v)<0 dv ≥

∑
f(y)≥0 du (if not, changing sign). Define

g(x) =

{
f(x), if x ∈ V+,
0, otherwise.

Then we have
λ1f(u)du =

∑
v,v∼u

(f(u)− f(v)).

The above equality holds since if we set φ1 = D
1
2 f , then λ1φ1 = Lφ1, then

λ1f(x)(dx)
1
2 = D−

1
2 (D −A)D−

1
2 (D

1
2 f(x))

=
1

d
1
2
x

∑
y

(f(x)− f(y))

and

λ1 = inf
g⊥φ0

〈Lg, g〉
〈g, g〉

= inf∑
f(x)dx=0

〈f, Lf〉
〈f,Df〉

.

Therefore,

λ1 =

∑
u∈V+

f(u)
∑
v∼u(f(u)− f(v))∑

u∈V+
f2(u)du

≥
∑
u∼v(g(u)− g(v))2∑

u g
2(u)du

·
∑
u∼v(g(u) + g(v))2∑
u∼v(g(u) + g(v))2

≥
(
∑
u∼v(g

2(u)− g2(v))2

2(
∑
u g

2(u)du)2
≥

(
∑
i |g2(ui)− g2(ui+1)| · |Ci|)2

2(
∑
u g

2(u)du)2

≥ (
∑

(g2(vi)− g2(vi+1)) · hG
2(
∑
u g

2(u)du)2
≥ hG

2

(
∑
i g(vi)(

∑
j≤i dj −

∑
j≤i−1 dj)

(
∑
u g

2(u)du)2
=
h2G
2
,

where we used the summation by parts in the last inequality.

Exercise 4.8. Prove that λ1 ≥ 1−
√

1− h2G by using (a+ b)2 = 2(a2 + b2)−
(a− b)2.

Remark 4.9. Cheeger’s inequality can be rewritten as

2hG ≥ λ1 ≥
α2

2
≥ h2G

2
.

5 Another characterization of hG

Let G = (V,E) be a graph with |V | = n and L = I −D− 1
2AD−

1
2 be harmonic.

0 = λ1 ≤ λ2 ≤ · · · ≤ λn−1, then we have 0 < λ1 <
1

2
. Recall that we have

13



defined the Cheeger’s constant

hG = min
S⊂V

VolS≤ 1
2
VolG

e(S, Sc)

VolS
,

where e(S, Sc) = |∂S| in the previous section. In fact, the Cheeger’s inequality
is

2hG ≥ λ1 >
h2G
2

and λ1 ≥
α2

2
≥ h2G

2
.

We have the following theorem.

5.1 Another characterization of Cheeger’s constant

Theorem 5.1. The Cheeger’s constant

hG = inf
f

sup
c

∑
x∼y |f(x)− f(y)|∑
x∈V |f(x)− c|dx

(:= h′).

Proof. First, we claim that hG ≤ h′. It is enough to show that “≤” holds for
all f : V → R. Choose a constant c0 to be the median of f , which means either∑

x,f(x)<c

dx ≤
∑

x,f(x)≥c

dx,

or ∑
x,f(x)≤c

dx >
∑

x,f(x)>c

dx,

which was obtained by the ideas of VolS ≤ 1

2
VolG (cut f from the middle...).

Now, we put g = f − c and for all σ > 0, we consider∑
x,g(x)<σ

dx ≤
∑

x,g(x)>σ

dx.

Let
g̃(σ) = |{{x, y} ∈ E|g(x) ≤ σ ≤ g(y)}| ≥ hG

∑
x,g(x)<σ

dx.

Thus, we have∑
x∼y
|f(x)− f(y)| =

ˆ ∞
−∞

g̃(σ)dσ

=

ˆ 0

−∞
(

g̃(σ)∑
x,g(x)<σ dx

∑
x,g(x)<σ

dx)dσ +

ˆ 0

−∞
(

g̃(σ)∑
x,g(x)>σ dx

∑
x,g(x)>σ

dx)dσ

≥ hG(

ˆ 0

−∞
(
∑

g(x)<σ

dx)dσ +

ˆ ∞
0

(
∑

g(x)>σ

dx)dσ

= hG
∑
x∈V
|g(x)|dx = hG

∑
x∈V
|f(x)− c|dx,

which implies h′ ≥ hG.

14



For hG ≥ h′, we suppose that hG =
|∂X|
VolX

for some X ⊂ V , with VolX ≤
VolXc. Define

ϕ(v) =

{
1, if v ∈ X
0, otherwise,

then we have

sup
c

∑
x∼y |ϕ(x)− ϕ(y)|∑
x |ϕ(x)− c|dx

= sup
c

2|∂X|
|1− c|VolX + |1 + c|VolXc

=
2|∂X|
2VolX

= hG,

which proves the theorem.

Now, we give another proof for λ1 ≥
h2G
2

(important mathematical theorems

should be proved more than one method).

5.2 A second proof of λ1 ≥
h2G
2

Proof. Suppose f achieves λ1, which means λ1 = R(f). Then

λ1 = R(f) = sup
c

∑
x∼y(f(x)− f(y))2∑
x(f(x)− c)2dx

≥
∑
x∼y(f(x)− f(y))2∑
x(f(x)− c0)2dx

,

where c0 is the median of f . If we set g(x) = f(x)− c0, then

λ1 ≥
∑
x∼y(g(x)− g(y))2∑

x g
2(x)dx

·
∑
x∼y(g(x) + g(y))2∑
x∼y(g(x) + g(y))2

≥
(
∑
x∼y g

2(x)− g2(y))2

2(
∑
x g

2(x)dx)2
≥ h′2

2
.

Remark 5.2. Note that L = D −A,

〈f, Lf〉 =
∑
x

f(x)
∑
y

(f(x)− f(y)) =
∑
x∼y

(f(x)− f(y))2,

since ”x→ f(x)(f(x)− f(y))” + ”y → f(y)(f(y)− f(x))”.

Exercise 5.3. Prove that

hG ≥ inf
f,
∑
f(x)dx=0

∑
x∼y |f(x)− f(y)|∑

x |f(x)|dx
≥ 1

2
hG.

5.3 More properties

Let G = (V,E) be a graph as before. L = I−D− 1
2AD−

1
2 = D−

1
2 (D−A)D−

1
2 =

D−
1
2LD−

1
2 . For edge expansion, we have h(S) =

|∂S|
VolG

. L has eigenvalues λ0 ≤

15



λ1 ≤ · · · ≤ λn−1 and its eigenvectors are ϕ0, ϕ1, · · · , ϕn−1. Let f0, f1, · · · , fn−1
be combinatorial eigenvectors, where fi = ϕiD

− 1
2 .

λ1 = inf
g⊥ϕ0

〈g,Lg〉
〈g, g〉

= inf∑
f(x)dx=0

〈f, Lf〉
〈f, f〉

= inf∑
f(x)dx=0

∑
x∼y(f(x)− f(y))2∑

x f
2(x)dx

.

If
∑
f(x)dx = 0, we have

〈f, Lf〉 ≥ λ1 〈f,Df〉 ,
〈f,Af〉 ≤ (1− λ1) 〈f,Df〉 ,
| 〈f,Af〉 | ≤ max

i6=0
|1− λi| 〈f,Df〉 .

Let gG := min{VolδS

VolS
|VolS ≤ 1

2
VolG}, moreover, if the graph is regular, we

can consider the quantity
|δS|
|S|

.

Theorem 5.4.
VolδS

VolS
≥ 1

(σ + 2ε)2
, where σ = 1 = λ1 and ε =

Vol(S ∪ δS)

VolG
.

Example 5.5. (Ramanujan k-regular) σ ∼ 2
√
k − 1

k
and

VolδS

VolS
≥ k

4
+lower order term.

Proof. Consider f = χS + σχδS , where χA is a characteristic function on A.

Let g = f − cχV with c =

∑
u f(u)du
VolG

,
∑
g(x)dx = 0. Note that

∑
g2(x)dx =∑

(f(x)− c)2dx =
∑
f2(x)dx − c2VolG. Then

〈f,Af〉 = 〈f, (D − (D −A))f〉 = 〈g + cI, (D − L)(g + cI)〉
= 〈g,Ag〉+ c2VolG ≤ (1− λ1) 〈g,Dg〉+ c2VolG

≤ (1− λ1) 〈f,Df〉+ λ1c
2VolG

≤ (σ + (1− σ)ε) 〈f,Df〉

since

c2VolG =
(
∑
u∈S∪δS f(u)du)2

VolG
≤
∑
u f

2(u) ·Vol(S ∪ δS)

VolG
≤ ε 〈f,Df〉 .

On the other hand,

〈f,Af〉 = 〈χS + χδS , A(χS + χδS)〉 = e(S, S) + 2σe(S, δS) + σ2e(δS, δS)

≥ (1− 2σ)e(S, S) + 2σe(S, S ∪ δS)

= (1− 2σ)e(S, S) + 2σVolS ≥ 2σVolS,

where e(S, T ) = #{(u, v)|u ∈ S, v ∈ T, u ∼ v} and e(S, S ∪ δS) = VolS. Thus,
we have

(σ + (1− σ)ε) 〈f,Df〉 ≤ (σ + (1− σ)ε)(VolS + σ2VolδS)

and
VolδS

VolS
≥ σ − ε
σ2(σ + ε)

≥ 1

(σ + 2ε)2
if σ ≤ 1

2
, λ1 ≥

1

2
.
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If λ1 <
1

2
, we have

VolδS

VolS
≥ |∂S|+ |∂(δS)|

VolS
≥ h(S) + h(S ∪ δS).

Exercise 5.6. h(S) ≥ λ1(1− VolS

VolG
) ≥ 2λ1(1− ε).

Theorem 5.7. We have

VolδX

VolX
≥ 1− σ2

σ2 + VolX
VolXc

,

where σ = maxi 6=0 |1− λi|.

5.4 Diameter of graphs

Consider d(u, v) =length of the shortest path joining u and v, then we have
diamG = maxu,v d(u, v) and d(X,Y ) = min{d(u, v)|u ∈ X, v ∈ Y }.

Theorem 5.8. When X 6= Y c,

d(X,Y ) ≤


log
√

VolXc·VolY c
VolX·VolY

log λn−1+λ1

λn−1−λ1

 .
Example 5.9. (Ramanujan k-regular)

diamG ≤ log(n− 1)

log 1
1−λ

∼ log n

log
√
k

= 2
log n

log k
.

Consider X,Y = Xc\δX, we have

0 =
〈
D

1
2 1Y , (I − L)D

1
2 1x

〉
≥ VolX ·VolY

VolG
− σ

∑
i 6=0

α2
i

∑
i 6=0

β2
i ,

where D
1
2 1Y =

∑
αiφi and D

1
2 1x =

∑
βiφi and α0β0 =

VolX ·VolY

VolG
. This

will imply that σ2VolXc ·VolY c ≥ VolX ·VolY , and

σ2(VolG−VolX)(VolX + VolδX) ≥ VolX · (VolG−VolX −VolδX)

and

VolδX(VolX + σ2(1−VolX)) = VolX(VolG−VolX)(1− σ2)).

6 Matchings and applications

Definition 6.1. A set edges M ⊂ E(G) is called matching if ∀e, e′ ∈ M ,
e ∩ e′ = ∅.
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6.1 Perfect matching

Definition 6.2. A matching is perfect if |M | = |V (G)|
2

, i.e., covers all vertices

in G. Sometimes we can think it as a permutation σ =

(
1 2 3
3 2 1

)
.

For X ⊂ V (G), NG(X) = {y : y ∼ x for x ∈ X}.

Theorem 6.3. (Hall’s theorem) A bipartite graph G = (A∪B,E) with |A| = |B|
has a perfect matching if and only if for any nonempty X ⊂ A, |NG(X)| ≥ |X|

or
|δ(X)|
|X|

≥ 1.

Proof. If G has a perfect matching, it is easy to see that |NG(X)| ≥ |X|. For
the other direction, it suffices to show that matching covering A. We use the
induction on |A|. Assume that (⇐) holds for 1 ≤ |A| < n and we let G have
|A| = n.

Case 1. If |NG(X)| > |X| for all nonempty X  A. Pick an edge {a, b} ∈
E(G), delete a, b to obtain H. For ∅ 6= X ⊂ A\{a}, |NH(X)| ≥ |NG(X)| − 1 ≥
(|X| + 1) − 1 = |X|. So H has matched covering A\{a}. Now, we add {a, b}
back to get matching covering A in G.

Case 2. Exists X  A with |N(X)| = |X|. By induction, matching covering
X in H. For Y ⊂ A\X, we have

|NH(X)|+ |NH(Y )| ≥ |NG(X ∪ Y )| ≥ |X ∪ Y | = |X|+ |Y |.

Since |NH(X)| = |X|, so |NH(Y )| ≥ |Y |, which implies matching covering A\X
in K.

Theorem 6.4. (Tutte’s theorem) Let q(G) denote the number of connected
components of odd order. G has perfect matching if and only if for any X ⊂
V (G), q(G\X) ≤ |X|, where G\X is a subgraph induced by V \X.

Proof. (Sketch) To see ⇒, note that each connected component of odd order
sends at least one edge to a vertex of X. Each vertex of X only receives at most
one edge from each component.

We leave ⇐ as an exercise.
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6.2 Doubly stochastic matrices / magic squares

Definition 6.5. A square matrix is doubly stochastic if nonnegative entries
with row/column sums are all 1.

Example 6.6. P = D−1A of random walks on regular graph.

Definition 6.7. A magic square of weight d is a square matrix, nonnegative
integers with row/column sums are all d.

Definition 6.8. An n×n permutation matrix Tσ, defined by Tij =

{
1, if j = σ(i),

0, otherwise,

where σ is a permutation of {1, 2, · · · , n}.

Theorem 6.9. (Birkhoff - Von Neumann) Every magic square of weight d is
the sum of d permutation matrices.

Proof. Let T be an n × n magic square of weight d ≥ 1. Define a bipartite
G = (A ∪ B,E), where i ∈ A, j ∈ B, i ∼ j if Tij > 0. Consider X ⊂ A,∑
i∈X Tij = |X|d, so

∑
j∈N(X) Tij ≥ |X|d. But

∑
j∈N(X) Tij = |N(X)|d, so

there is a perfect matching by Hall’s theorem, which we denote by σ. Let Tσ
be the associated permutation matrix and T − Tσ is a magic square of weight
d− 1. Finish with the induction on d.

6.3 Applications: Two-sided matching problems

Ordinal preferences:

Find the perfect matching that is “optimal” with respect to preferences.

Definition 6.10. A matching is stable if and only if the following doesn’t hold:
1. r1 is assigned to s1, but prefers r′js assignment of sj , or 2. sj prefers r1 over
than rj .
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This is related to the “Gale-Shapley Algorithm”.

Definition 6.11. A matching r-pareto efficient if no pair ri, rj switch assign-
ments and both receive prefered assignment.

Here

(
r1 r2 r3
s1 s2 s3

)
is only a stable matching not r-pareto efficient.
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