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Singularity of  function:

2
Consider , log log , , in , 1

1 It is easy to show 
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2 To show :
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Since lim log log log lim log 0

Clearly, log log log  must be continuous and

bounded. suppose bounded by 

Therefore,  is bounded.
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Def: A domain  has a Lipschitz boundary if 

        can be described by the graph of a Lipschitz

        function locally.
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Theorem 6.

Sobolev's inequality 1

Let  be a n-dimensional domain with Lipschitz boundary

Let  be a positive integer and 1

such that        when 1

then there is a comstant  such that 
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Something needs to be careful:

1 it can be shown

    if , 1  and ,  then  has an equivalent in ,

1
    1,  2 and 1  from * ,  we can conclude
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Theorem 7.

Sobolev inequality 2

Let  be a n-dimensional domain with Lipschtz boundary

Let ,  be positive integer  and let 1  such that
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Example: consider 2 or 3 ,  2, 2 and 0 2 0
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  The inequality shows  has a equivalent representer.

Compact Imbeddings:

A continuous linear mapping :

,  are normed linear space is
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in  is relatively compact in .

In particular, if ,   is called compact imbedding.
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Rellich Selection Theorem:

Given 0,   a lipschitz domain. Then the imbedding 

is compact.

More general case:
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General problems:

1  how many continuous derivatives  has? sobolev inequality

2 If  is sufficiently smooth, is it possible to determine the trace  of

      at ?

     i.e. the limit value of
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3 What is the differentiability of ?
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Trace Theorem:

example: consider ,  = , 1

1, ,
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The inequality sugguests

if the function is in ,  it makes sense to restrict  and

    

Proposition:

Let  denote the unit disk in . For all ,  the restriction

 is called the tra
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Remark: Not every element of  is the trace of some function

in .

Consider , sin ! , , 1
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n be shown by harmonic analysis  that  and there does

not exist any function in  that has the same boundary values as !
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Theorem 9.

Trace inequality: Let  be Lipschtz domain 1 . Then there is

a constant  such that   if p p
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Trace theorem in practice:

Example: Suppose we erect a tent over a disk with radius 1 such

that its height 1 at the center. Find the shap if the tent.
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It is well known the surface area is given by 

1
1    1 1  when 1
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To minimize ,  we minimize 1 Consider the variational problem.

2

Br

S u dx u u u

S u

 
         

 

  





 

 

 
 

21
min

2

subject to constrains

0 1
Case  

0

u
u dx

u
I

u




 





     

 

 

L a g r a n g e  m u l t i p l i e r

0

. .
0 1

0

eu x

E L eq
u

u





  



  

 

 

 0Consider the singular solution log log ,  ,  1
eR

w x r x R
r

    

 



 
 

 
 

0

''

0 22

1

1 log

log

1 log

w r
r r

r
w r

r r

  


 


    
 

 

 

0

01 , 1 ,

  f o r  

l o g l o g   f o r  0

c l e a r l y ,   a n d  0  a s  0
R R

e B B

w x x

w x eR
x

w w w












 


 
 



  

 

 

 

 

 

1 1
define    for 1, , ,

0 2 3

 is a minimizing sequence 0 function

requirement 0 1 is ignored.

Case

The situation is different if we require 1 on a curve segment
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In case : the pointwise constrain is meaningless in the weak sense

i.e. evaluation function value in H  does not make sense

1 variational principle simply ignores the constrain and produce

         wrong

I
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0
 answer variational principle gives 0

0

    2 minimizing sequence also wrong answer.

In case : evaluation of  on boundary segment i.e. the ring  is 

possible due to the trace theorem
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To solve this problem, one needs to introdue the constrained variational

principle!
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Now let's recall the original variational formulation:

:  be some Sobolev space say 

:  a quadratic functional , ,

Suppose we want to seek the global minimizer  of  in  under the 
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By trace theorem, the admissible is "ok" when 

But as mentioned before, not every 
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terms nor related
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terms not related
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linear in 

F is quadratic linear in 

linear in 
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Differential equations:

     here 

here ,  are the Teusor notation meaning summing over &  induces
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So the question now is:

In what conditon of  or what   and boundary data, there exist a solution?

In what condition of ?

Existence & uniqueness of the solution of  equation
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f f

EL

EL

EL



 

 

rived from the condition 0

Consider the  of in ex2 of p.10:
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Theorem 10. Suppose the operator  satisfies

1   bounded below of the bilinear form ,

     :  some constant.

2

     and 

      and  are some constants 
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0 bounded above of the operator 

3 0   for all 0,  

Then differential equation  in  with dirichlet condition

 is uniquely solvable.
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Homogenization: consider  0

             

Only needs to understand the existence and unigueness of 
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Poincare'ineq.
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             0 when  small enough
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Simple example:

Consider Differential equation

0

If , ,   is positive definite for all  and 

It can be easily shown 2  and 3  holds when 0
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To prove theorem 10, we need to ues the well-known

Lax-Molgram Theorem see p.17 between 9.20~9.21

See D.Gilbary and N.S.Trudinger, Elliptic Partial differentail Equations

of second order. 2  edition  chand pter 8.

In the following, we will introduce some concepts and theorems in functional

analysis that are important.
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