Singularity of H* function:

Consider u(x,y) = Iog(log%j, r= ,/xz +y%,inD= {(x y)‘x2 +y° <1}

dr
rlog®r
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(1) It is easy to show J'OE <o

(2)Toshow ueH*:

consider v e Cy" (D) and j;vD(l) log (Iog %)dr

_ _J':(v')log(log %jdr (Iet F:% w:v'j

} wioglog L7
:I wloglog=dr
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(i)
< (E( | )Zf (E( 10§ jz (By Holder inequality )

(A) (8)
By (1), we have (B) <. We only need to show A < c,

1 let u=—Ilogr

Since Ijmlog(—logF)~Iogr~r2 = Iimlogu-(u)-ef

r—0 u—o0

NS

=0
Clearly, w-log (— log F) -logr-r =w must be continuous and
bounded. (suppose bounded by M )

Therefore, (A) is bounded.

Hence, u(x,y)e H*(D)

Clearly, this example shows that H' (Q)  ¢(Q)

Def: A domain Q has a Lipschitz boundary if 6Q
can be described by the graph of a Lipschitz
function locally.



Ezxample:

) C>

_ _ non-lipschitz
Lipschitz

Theorem 6.
Sobolev's inequality (1)
Let Q be a n-dimensional domain with Lipschitz boundary
Let k be a positive integer and 1< p <o
k>n
such that ks when p=1
p
then there is a comstant ¢ such that u e H';
Jull. <cfull,, -(*)
= There is a continuous function in c’ (1) equivalent class of u
Something needs to be careful:
(1)it can be shown
if Q=[a,b]e R*(n=1) and u e H;, then u has an equivalent in c[a,b]

n=1 p=2andk=1> % :% (from (*), we can conclude)

(2)The previous example, n=2, p=2, k =1, the assumption k > n does

not hold. Indeed, the example shows Ioglog% e H* but is unbounded

= (*) does not hold! = (*) is sharp in this sense.



Theorem 7.

Sobolev inequality (2)

Let Q be a n-dimensional domain with Lipschtz boundary

Let k, m be positive integer m <k and let 1< p < oo such that
k—m>n whenp=1

k—m>ﬂ whenp >1
P

then 3 a constant ¢ such that ||u||mw < C||U||k,p -(**)

= There is ac™ function class of u in the equivalent.

Example: consider (n=2o0r3), k=2,p=2and m=0 [2—0 > %j
The inequality shows u e H? (Q) = u has a equivalent representer.

Compact Imbeddings:

A continuous linear mapping L:U —V

U,V are normed linear space is called compact if the image of unit ball

in U is relatively compact in V.

In particular, if U <V, L is called compact imbedding.

Rellich Selection Theorem:

m

Given m >0, Q a lipschitz domain. Then the imbedding H('E;)l —>H

(@)
is compact.
More general case:
k>1
Hy — H; when L Non
p q

General problems:
(1) f e H; = how many continuous derivatives f has?(sobolev inequality )
(2)1f Q is sufficiently smooth, is it possible to determine the trace ¢(x) of
f(x)atxedQ=T7
i.e. the limit value of f (s) ass —> x, se Y’
(3) What is the differentiability of ¢(x)?



Trace Theorem:
example: consider u e c'(f_z), Q= {(x y)‘ X2 +y? <1}
= u(Lo) = [-Z(ru(r0))ar

(boundary value)
1
= L 2(r?uu, +ru®)dr
:Zjlrquu-M+ ru’dr
0 r
< Zj:r|u||Vu|+ru2dr
< 2j:(|u||Vu|+u2)rdr
= J. u’dg < 2j|u||Vu|+u2dxdy
oQ Q
1

2 <2l [ l |vu|2}2 2oy
1 1
-l ([t (o

using the inqguality ab < %az +2ib2 forany £ >0
&

=yl

= (_[(Vu)z)5 +(_[u2)E < (2(.[|Vu|2 +ju2))E
= Julf oy < VB (Il o)
L*(6Q) < Jg[”“

1
= a+b<((l+g)a2 +(1+1jb2j2

1

= 1
» ||U||fzj ()

The inequality sugguests

= |u

= if the function is in H, (), it makes sense to restrict u|aQ and
uel? (OQ)

Proposition:

Let Q denote the unit disk in R*. For all u € H, (Q), the restriction

ul, € L*(6Q) is called the trace of u and (***) holds.



Remark: Not every element of L (aQ) is the trace of some function

in H;.

Consider u(x,y) Zk 2rsin(k!) g, Q {x, y|x* +y? <1}
={(r.p)0<r<10<p<2z]

It can be shown (by harmonic analysis) that I|Vu|2 =oo*"" and there does

not exist any function in H* that has the same boundary values as u!

Theorem 9.
Trace inequality: Let Q be Lipschtz domain 1< p <oo. Then there is

a constant ¢ such that |ul| < c||u|| ||u|| ifue H; (Q)

Lp 6(2
Trace theorem in practice:
Example: Suppose we erect a tent over a disk with radius R =1 such
that its height =1 at the center. Find the shap if the tent.

-

1

1

It is well known the surface area is given by
1 2
S= 1/1 vul’d ,h vuff x1+=|V hen [Vul<1
é[r +| u|x( +|Vul +2| u|wen|u|<<j

To minimize S, we minimize j1+%(Vu)2 = Consider the variational problem.

minlJ'(Vu)2 dx AU+ /1\_59_/()() =0
u-2 _ Lagrange muli
subject to constrains E.Leq= u(0)=1
u(0)=1
ul.. =0
Case(1) {u|agz:0 o0

Consider the singular solution w, (x) = log Iogﬁ, r=|x, R=1
r



~ 1 Wy (x) folx|>e
1-logr W (X)=
9r) - (x) log |(§§ £ <G
&

w(rj=———
o(r) r?(1-logr)’ clearlwl, <w|,  wanpoo0s—

WS(X) forezl,l,l,---
w, (0) 23

P

defineu, =

u, is a minimizing sequence — 0 function

converge
= requirement u(0) =1 is ignored.

Case(Il)

The situation is different if we require u =1 on a curve segment
(This is the case if the tent were attached to a ring)

-

1

In case (1): the pointwise constrain is meaningless in the weak sense
(i.e. evaluation function value in H* does not make sense)

=> (1) variational principle simply ignores the constrain and produce

=0

wrong answer[variational principle gives {Au =0 =u= 0)
u|aQ -
(2) minimizing sequence also wrong answer.
In case(ll ) :evaluation of u on boundary segment(i.e. the ring) IS
possible due to the trace theorem
= non-trivial solution can exist.
To solve this problem, one needs to introdue the constrained variational

principle!



Now let's recall the original variational formulation:

V : be some Sobolev space(say Hg)
f : a quadratic functional(f :_[F(x,u,u’)dxj
Q
Suppose we want to seek the global minimizer u of f in V under the
constrain u|, =¢
The admiisible space V:{u e H; (Q)‘ ul, = ¢}
By trace theorem, the admissible is "ok™ when ¢ € L* (0Q)

But as mentioned before, not every ¢ € L* (0Q)
u e H; such that ul,, = ¢!

oF o[ oF 0| oF
= - = |-=|=|=0
ou ox{ou, ) oylu
y

y

o oF . .
oDlutdu+ g ———>linear in u,
terms nor related X

Uty L(F is quadratic)—> ?F
u
y

oF . .
——linearinu
ou

—linear inu,

div(aD(ﬁ)u+bu)+ D@ ¢

—
terms not related
tou,uy Uy

= Differential equations:
L(u)=g+Df' here L(u)=D,(a’D;u+b'u)+c'Du+du
div( f)

here i, j are the Teusor notation (meaning summing over i & j induces)

So the question now is:
In what conditon of f or(what) f and boundary data, there exist a solution?
= In what condition of EL?
Existence & uniqueness of the solution of EL equation
(remember EL equation is derived from the condition f"=0)
Consider the L of in ex2 of p.10:
F(x, y,u,ux,uy), 0. 0<lo|<1



Theorem 10. Suppose the operator L satisfies
(1) a’g&, > A3[° (bounded below of the bilinear form a(&, ;) = fia”éj)

A some constant.
(X" () <2
and 4 (z(\b‘f )2 < v?)
A and v are some constants > O(bounded above of the operator L)

(3)jdv—b‘Divdxso forallv=0, vec; (Q)
Q

Then differential equation L(u) =g +D, f'" in Q with dirichlet condition
ul,, = ¢ is uniquely solvable.

Homogenization: considerw=u—-¢ = W|6Q =0

= L(w)=L(u)-L(p)=g-i'Dp—dep+ D{f‘—a” ngo—bil(}

el?

= g+D f

el? el?
= Only needs to understand the existence and unigueness of L(u)

= g+D,f wiht constrain u|, =0
UuL(u)‘:‘IaiijuDiv+I(Diu)biu +ui‘Diu+duv‘
> Ua” DjuDiv‘ —U D'vb'u+vi'D'u +duv‘
2
[golr?ivmeq.]/”d - I’(b2 I ﬁ|d |)‘g2‘

>(A2-1A%?)|g >0 when A small enough

Simple example:
Consider Differential equation
—Zi(a. G_U}L du=f
OX;

U ox j

Ul =0
Ifa,, del”(Q), [aij] is positive definite for all x and f  L*(Q)

It can be easily shown (2) and (3) holds whend >0



To prove theorem 10, we need to ues the well-known
Lax-Molgram Theorem (see p.17 between 9.20~9.21)
See D.Gilbary and N.S.Trudinger, Elliptic Partial differentail Equations
[of second order. (2nd edition) chapter 8. ]

In the following, we will introduce some concepts and theorems in functional
analysis that are important.



