A complete normed linear space *V* equipped with inner product (,) is called a Hilbert space. Hilbert space

The Sobolev space H_2^k with sobolev inner product $(u,v)_k = \sum_{0 \le |\hat{o}| \le k} (u^{(\hat{o})}, v^{(\hat{o})})_{L^2}$ is a Hilbert space.

Definition: Let *H* be a Hilbert space, and $S \subset H$ be a linear subset $(u, v \in S, \partial \in R)$ that is closed in *H*. Then *S* is called a subspace of *H*. Proposition: If *S* is a subspace of *H*, then (S, (,))

is also a Hilbert space.

Example:

(1) Let $T: H \to K$ be a contineous linear mapping.

(H, K are linear space)

Then ker(T) is a subspace.

 $(2)x^{\perp} = \{v \in H | (x, v) = 0\}, x \in H \text{ is a subspace.}$

$$M \subset H$$
 is a subspace $\Rightarrow M^{\perp} = \{v \in H | (x, v) = 0 \text{ for all } v \in M \}$

is also a subspace.

Theorem: Paralleogram law

$$||v + w||^{2} + ||v - w||^{2} = 2(||v||^{2} + ||w||^{2})$$

Proposition:

Let *M* be a subspace of *H*. Let $v \in H \setminus M$ and define $\delta = \inf \{ \|v - w\| : w \in M \} \ (\delta > 0)$

Then there exists $w_0 \in M$ such that

(i)
$$||v - w_0|| = \delta$$

(ii) $v - w_0 \in M^+$ (i.e. $(v - w_0, w) = 0 \quad \forall w \in M$)

Pf. Let $\{w_n\}$ be a minimizing sequence

(i)
$$\lim_{n \to \infty} ||w_n - v|| = \delta$$

Since $||w_n - w_m||^2 = ||(w_n - v) - (w_m - v)||^2$
 $\Rightarrow \frac{1}{2} ||w_n - w_m||^2$
 $||(w_n - v) - (w_m - v)||^2 + ||(w_n - v) + (w_m - v)||^2$
 $= 2(||w_n - v||^2 + ||w_m - v||^2)$
 $\Rightarrow ||w_n - w_m||^2 = 2(||w_n - v||^2 + ||w_m - v||^2) - ||w_n + w_m - 2v||^2$
 $= 2(||w_n - v||^2 + ||w_m - v||^2) - 4 \left||\frac{w_n + w_m}{2} - v||^2\right|$
Since $\frac{1}{2}(w_n + w_m) \in H$, $\left||\frac{w_n + w_m}{2} - v||^2 = \delta$
 $\Rightarrow ||w_n - w_m||^2 \le 2(||w_n - v||^2 + ||w_m - v||^2) - 4\delta^2$
 $\lim_{n,m \to \infty} ||w_n - w_m||^2 \le 2(\delta^2 + \delta^2) - 4\delta^2 = 0$
Therefore $\{w_n\}$ is a Cauchy sequence.
Since M is closed, $\exists w_0 \in M$ such that $w_n \to w_0$ and
 $\lim_{n \to \infty} ||w_n - v|| = ||w_0 - v|| = \delta (|| \cdot || \text{ is continueous})$
(ii) Let $z = v - w_0$ and $w \in H$. For $t \in R$, we have $w_0 + tw \in M$
 $\Rightarrow ||z - tw||^2 = ||v - (w_0 + tw)||^2$ has an absolute minimum at

$$t = 0$$

$$\Rightarrow \frac{d}{dt} ||z - tw||^2 \Big|_{t=0} = 0 \Rightarrow -2(z, w) = 0 \text{ for any } w \in M$$

$$\stackrel{\parallel}{\underset{d}{dt}(z - tw, z - tw)}{\underset{z \in M^+}{}}$$

Remark:

Given $M \subset H$ and $v \in H$. One can decompose $v = w_0 + w_1$ here $w_0 \in M$, $w_1 \in M^{\perp}$ "uniquely". Furthermore, one can define projection operator

$$P_{M}: H \to M$$

$$P_{M}^{\perp}: H \to M^{\perp} \quad \text{by} \quad P_{M}^{\perp}v = \begin{cases} v & \text{if } v \in M \\ w_{0} & \text{if } v \in H \setminus M \end{cases}$$

$$P_{M}^{\perp}v = \begin{cases} 0 & \text{if } v \in M \\ w_{1} & \text{if } v \in H \setminus M \end{cases}$$

Moreover, uniqueness of the decomposition implies $P_M^{\perp} = P_{M^{\perp}}$

Proposition 2.

Given subspace *H* of *M*, there exists unigue decomposition $v = P_M v + P_{M^{\perp}} v$. In other word, $H = M \oplus M^{\perp}$. Riesz-Representation theorem: Any contineous linear functional *L* on a Hilbert space *H* can be represented uniquely as L(v) = (u, v)

In R^3 , L(0) = 0 L(x, y, z) = ax + by + cz linear functional can be represented by $L(x, y, z) = \underbrace{(a, b, c)}_{u} \cdot \underbrace{(x, y, z)}_{v}$

A plane cna be represented by $\{(x, y, z) | L(x, y, z) = 0\} = \ker(L)$

Pf.

(i) uniqueness: suppose $\exists u_1 \neq u_2 \in H$ such that $L(v) = (u_1, v) = (u_2, v)$ for any v $\Rightarrow (u_1 - u_2, v) = 0$ choose $v = u_1 - u_2 \Rightarrow (u_1 - u_2, u_1 - u_2) = 0$ $\Rightarrow u_1 - u_2 = 0 \rightarrow \leftarrow$

Therefore, the representation u of L is unique.

(ii) Define $M = \{v \in H | L(v) = 0\}$. we want to show $\exists u \in M^{\perp}$ such that L(v) = (u, v) for all v. (same idea as in the plane representation in R^3) case (1): if $M^{\perp} = \{0\}$, then by the proposition 2 at p.38, it is clearly H = M. This means $L: H \to 0$ $\Rightarrow L \equiv 0 \Rightarrow L(v) = (0, v)$ for all v. case (2): if $M^{\perp} \neq 0$, then pick $z \in M^{\perp}$, $z \neq 0 \Rightarrow L(z) \neq 0$ For $v \in H$, and $\beta = \frac{L(v)}{L(z)}$, we have $L(v - \beta z) = L(v) - \frac{L(v)}{L(z)} \cdot L(z) = 0$ $\Rightarrow v - \beta z \in M$. Since $v = (v - \beta z) + (\beta z)_{eM}$, if $v \in M^{\perp}$ then $v - \beta z = 0 \Rightarrow v = \beta z$ $\Rightarrow M^{\perp}$ is one dimensional. Now choose $u = \frac{L(z)}{2} \cdot z \in M^{\perp}$

$$\|z\|^{2}$$

We have $(u, v) = \left(u, v - \beta z + \beta z \atop \in M\right)$
$$= (u, \beta z) = \frac{L(z)}{\|z\|^{2}} \beta(z, z)$$
$$= \beta L(z) = L(v) \text{ for all } v \in H$$

Thus, u is the desired representation of L in H.

The Lax-Milgram Theorem

Lemma Contraction Mapping Principle: Given a Banach Space *V* and a mapping $T: V \rightarrow V$ satisfies $||Tv_1 - Tv_2|| \le M ||v_1 - v_2||$ (*T* is contineous!) for all $v_1, v_2 \in V$ and fixed $0 \le M < 1$, then $\exists ! u \in V$ such that T(u) = u.

T is called the contraction mapping and *u* is called a fixed point.

Pf. (sketch) Pick
$$v_0 \in V$$
, $v_k = Tv_{k-1}$, $k = 1, 2, 3, \cdots$
 $||v_{k+1} - v_k|| = ||T(v_k) - T(v_{k-1})|| \le M ||v_k - v_{k-1}||$
 $\Rightarrow ||v_{k+1} - v_k|| \le M^k ||v_1 - v_0||$
 $\Rightarrow \text{For } N > n,$
 $||v_N - v_n|| = ||\sum_{k=n}^{N-1} v_{k+1} - v_k||$
 $\le \left(\sum_{k=n}^{N-1} M^k\right) \cdot ||v_1 - v_0|| \le \left(\sum_{k=n}^{\infty} M^k\right) ||v_1 - v_0||$
 $\le \frac{M^n}{1 - M} ||T(v_0) - v_0|| \to 0 \text{ as } n \to \infty$

 $\{v_n\}$ is a Cauchy sequence.

Since V is a complete space $\Rightarrow \exists u, v_n \rightarrow u$ and by the continuity of T, $\lim_{n\to\infty} T(v_n) = T(u)$

$$\lim_{n \to \infty} v_{n+1}$$

Hence, *u* is a fixed point.

uniqueness: suppose \exists two fixed points u_1, u_2

$$||T(u_1) - T(u_2)|| \le M ||u_1 - u_2||$$

 $\Rightarrow ||u_1 - u_2|| \le M ||u_1 - u_2||$

This is contradict with the condition $0 \le M < 1$.

 \therefore the fixed point *u* is unique.

Theorem (Lax-Milgram) Given a Hilbert space $(v, (\cdot, \cdot))$ and a bilinear form a (\cdot, \cdot) satisfies

(i)(continuity) $|a(u,v)| \le \beta ||u||_{v} ||v||_{v}$ for some $\beta > 0$

(ii)(coercivity)
$$|a(u,v)| \ge \rho ||u||_{v}^{2}$$
 for some $\rho > 0$

and a continuous linear functional $F \in V'_{(collection of linear mapping from V \to R)}(F: V \to R)$ Then there

Then, there exists a unique $u \in V$ such that

$$a(u,v) = F(v) \text{ for all } v \in V \left(\left\| F \right\|_{v'} = \sup_{\substack{w \in V \\ w \neq 0}} \frac{L(w)}{\left\| v \right\|_{v}} \right)$$

Remark:

Consider (example in p.33)

$$a(u,v) \underset{\substack{\uparrow \\ \text{weak formulation} \\ \text{veriational principle}}}{=} \underbrace{\int \left(-\sum_{i} \left(a_{ij} \frac{\partial u}{\partial x_{j}} \right) + du \right)_{\text{linear in } v} dx}_{\substack{\downarrow \\ \text{linear in } u \\ \text{bilinear form}}} \right)$$

or more general example in p.31

$$\int \underbrace{\left(p_i\left(a^{ij}p_ju+b^iu\right)+i^ip_iu+du\right)}_{\text{linear in } u,D^{(\hat{o})}u}\underbrace{v}_{\text{linear in } v}$$

conditions (1)(2)(3) in Theorem 10 guarantee a(u,v) satisfies (i)&(ii) of the Lax-Milgram.