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A complete normed linear space  equipped with

inner product   ,   is called a Hilbert space.

Hilbert space

The Sobolev space  with sobolev inner product

, ,  is a Hilbert space.
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n: Let  be a Hilbert space, and  be

a linear subset , ,  that is closed in . 

Then  is called a subspace of .

Proposition: If  is a subspace of ,  then ,   ,  

is also a Hilbert space.
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Example:

1 Let :  be a contineous linear mapping.

    ,  are linear space

    Then ker  is a subspace.

2 , 0 ,   is a subspace.
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Theorem: Paralleogram law
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Proposition: 

Let  be a subspace of . Let \  and 

define inf :  0

Then there exists  such that
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Pf. Let  be a minimizing sequence
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     Therefore  is a Cauchy sequence.

     Since  is closed,   such that  and
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    lim     is continueous

ii Let  and . For ,  we have 

     has an absolute minimum at

     0

    0 2 , 0 for any 

n
n

t

d
z tw z tw

dt

w v w v

z v w w H t R w tw M

z tw v w tw

t

d
z tw z w w M

dt






 

    

     

    



      

    .z M  

 

0 1 0 1

0

1

Remark:

Given  and . One can decompose

 here ,   "uniquely".

Furthermore, one can define projection operator

   if 

 if \:
    by  

: 0   if 

 if 
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Moreover, uniqueness of the decomposition implies M M
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Proposition 2.

Given subspace  of ,  there exists unigue decomposition

. In other word, .

Riesz-Representation theorem:

Any contineous linear functional  on a Hilbert space  can

be repre
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3In ,  0 0

, ,  linear functional can 

be represented by , , , , , ,

A plane cna be represented by , , , , 0 ker
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i uniqueness: suppose   such that

    , ,  for any 

   , 0

    choose  , 0

   0 

    Therefore, the representation  of  is unique.
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ii Define 0 . we want to show

       such that ,  for all .

    same idea as in the plane representation in 

    case 1 : if 0 ,  then by the proposition 2 at

    p.38, it is clearly . 
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This means : 0

    0 L 0,  for all .

    case 2 : if 0,  then pick ,  0 L 0

    For , and , we have 0
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   is one dimensional.

   Now choose  

   We have , ,
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The Lax-Milgram Theorem

Lemma Contraction Mapping Principle:

Given a Banach Space  and a mapping :

satisfies   is contineous!

for all ,  and fixed 0 M 1,  then ! 

such that 
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 is called the contraction mapping and  is called a 

fixed point.
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 is a Cauchy sequence.

Since  is a complete space ,   and 

by the continuity of ,  lim

Hence,  is a fixed point.
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uniqueness: suppose  two fixed points ,

    

This is contradict with the condition 0 1.

the fixed point  is unique.
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Theorem Lax-Milgram  Given a Hilbert space ,  ,  

and a bilinear form a  ,  satisfies

  i continuity  ,  for some 0

 ii coercivity  ,  for some 0

and a continuous linear functional 
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linear in weak formulation
resulted from
veriational principle       

linear in 

bilinear form

Remark:

Consider example in p.33
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  or more general example in p.31
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