Pf. Sketch of proof:

- (1) For any given u, consider a functional Au(v) = a(u, v)show Au is linear & continuous from $V \to R$ $\Rightarrow Au \in V'$
- (2) Consider A as a mapping from $V \to V'$ define by $A: u \to (Au)$ show A is also linear continuous by showing $\|A\|_{L(v,v')} \le C$ $\sup_{u} \frac{\|Au\|}{\|u\|} \left(\|Au\| = \sup_{v \in V} \frac{\|A(u)(v)\|}{\|v\|} \right)$
- (3) To find unique u such that Au(v) = F(v) for all $v \in V$ \equiv find a unique Au such that Au = F in V'

$$\equiv \text{ find } u \ \tau \left(Au \right) = \tau \left(F \right) \text{ in } V \begin{cases} \text{Riesz representation, } \exists F^* \in V \text{ s.t. } \left(F^*, u \right) = F \left(u \right) \\ \exists a_u^* \in V \text{ s.t. } \left(a_u^*, v \right) = Au \left(v \right) \ v \in V \end{cases}$$
 define a mapping $\tau: V' \to V$, $\left(\tau \phi; v \right) = \phi \left(v \right) \ \phi \in v'$

(4) define a mapping $T: V \to V$ $Tv = v - \rho (\tau A v - \tau F) \ \forall v \in V$ if $\exists \rho \neq 0$ such that T is a contraction then \exists unique $u \in V$ such that $Tu = u - \rho (\tau A u - \tau F) = u$ $\Rightarrow \tau A u = \tau F$

(5) Try to find ρ

For any
$$v_1, v_2 \in V$$

$$||T(v_{1})-T(v_{2})||^{2} = ||v_{1}-v_{2}-\rho(\tau A v_{1}-\tau A v_{2})||^{2}$$

$$= ||v-\rho(\tau A v)||^{2}, \quad v = v_{1}-v_{2}$$

$$= ||v||^{2} - 2\rho(\tau A v, v) + \rho^{2} ||\tau A v||^{2}$$

$$= ||v||^{2} - 2\rho A v(v) + \rho^{2} (A v)(\tau A v)$$

$$= ||v||^{2} - 2\rho a(v, v) + \rho^{2} a(v, \tau A v)$$

$$\leq ||v||^{2} - 2\rho a ||v||^{2} + \rho^{2} \beta ||v|| ||\tau A v||$$

$$\leq ||v||^{2} - 2\rho \alpha ||v||^{2} + \rho^{2} \beta^{2} ||v||^{2}$$

$$= (1 - 2\rho \alpha + \rho^{2} \beta^{2}) ||v_{1} - v_{2}||^{2}$$

$$(\tau A v, \tau A v) = (A v)(\tau A v) = a(v, \tau A v)$$

$$\|\tau Av\|^2 = a(v, \tau Av) \le \beta \|v\| \|\tau Av\| \implies \|\tau Av\| \le \beta \|v\|$$
one can choose $\rho \in \left(0, 2\frac{\alpha}{\beta^2}\right) \implies 1 - 2\rho\alpha + \rho^2\beta^2 < 1$

 $\Rightarrow T$ is a contraction.

Finite element space

Part 1. Galerkin approximation

Given a finite dimensional subspace $V_n \subset (V, <,>)$ and $F \in V'$, find $u_n \in V_n$ such that

$$a(u_n, v) = F(v)$$
 for all $v \in V_n$

Question:

- 1.Do there exist unique solution u_n ?
- 2. What are the error estimates for $u u_n$?

Ans:

(1) One only needs to show V_n is indeed a subspace of the normal linear space.

By definition of subspace:
$$V_n$$
 is linear & closed $\Rightarrow V_n$ is complete $\Rightarrow V_n$ is a Hilbert space.

$$\overline{V_n} = V_n$$
 (every limit points are in V_n)

 \Rightarrow Lax-Milgram can be appied accumulative points. i.e. show V_n is linear & V_n is closed under the given norm $\|\cdot\|_{v}$

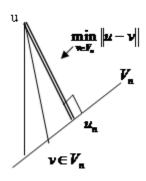
(2) Estimates of the error

Theorem (Cea) Suppose the assumptions in L-M theorem hold and V_n is a linear subspace of (V, <, >) Suppose u_n is the solution of the Galerkin approximation

Then
$$\|u-u_n\|_{v} \le \frac{\beta}{\alpha} \min_{v \in V_n} \|u-v\|_{v}$$

Pf. Since $a(u,v) = F(v)$ and $a(u_n,v) = F(v)$ for all $v \in V_n$
 $\Rightarrow a(u-u_n,v) = 0$ for all $v \in V_n$
 $\Rightarrow \alpha \|u-u_n\|_{v}^{2} \le a(u-u_n,u-u_n)$
 $= a(u-u_n,u-v) + a(u-u_n,u-v_n)$ for all $v \in V_n$
 $\le \beta \|u-u_n\|_{v} \|u-v\|_{v}$
 $\Rightarrow \|u-u_n\|_{v} \le \frac{\beta}{\alpha} \|u-v\|_{v}$ for all $v \in V_n$
 $\Rightarrow \|u-u_n\|_{v} \le \frac{\beta}{\alpha} \inf_{v} \|u-v\|_{v}$

Geometric explanation:



- (1) u_n is almost the "best approximation" of u in V_n when $\frac{\beta}{\alpha} \approx 1$
- (2) The conclusion in (1) is not exactly true when $\frac{\beta}{\alpha} \gg 1$

Example:

Consider
$$a(u,v) = \int_{\Omega} A\nabla u \nabla v + cuv dx$$
, $A > 0$, $C > 0$ (positive)

general inner produce $\langle u, v \rangle_A = \int A \nabla u \nabla v + cuv$ and the energy

norm
$$|||u||| = \sqrt{\langle u, v \rangle_A}$$

Let V be the Hilbert space $(H_2^1, <,>_A)$

(Can you explain why V is a Hilbert space?)

It is clear that

$$a(u,v) = \langle u,v \rangle_A \le |||u||| \cdot |||v|||$$
 the continuity const $\beta = 1$ and $a(u,v) \ge |||u|||^2$ and the coercivity const $\alpha = 1$

 \Rightarrow The cea theorem $\Rightarrow u_n$ is indeed the projection of u in V_n . This also explains why we said the "energy" norm is a good norm in previous lectures.

Q: Consider
$$a(u, v) = \int_{\Omega} A \nabla u \nabla v + \underbrace{\beta \nabla u \cdot v}_{\text{skew symmetric}} + cuv$$

$$\uparrow \begin{pmatrix} \text{can't define } \langle u, v \rangle_a = a(u, v) \text{ because} \\ \langle u, v \rangle_a \neq \langle v, u \rangle_a \\ \text{define } \langle u, v \rangle = \int_{\Delta} A \nabla u \nabla v + \int_{\Delta} cuv \end{pmatrix}$$

Can you find the α and β in terms of A, B and C? (not so trivial!) You need to decide the "inner product" and the norm defined by the "inner product" and the space for V.

Poincare' inequality:

$$\int_{\Omega} u^2 \le \int_{\text{poincare constant }\Omega} \int_{\Omega} |\nabla u|^2$$

here Ω is a Lipschtz domain and $u \in H^1_{2,0}$

Proof by example:

In 1-D: Consider
$$u(x) = u(0) + \int_0^x \left(\frac{du}{dx}\right) d\varsigma \, \left(\text{let } u(0) = 0\right)$$

$$u^2(x) = \left|\int_0^x \frac{du}{dx} d\varsigma\right|^2 \le \int_0^x 1^2 d\varsigma \cdot \int_0^x \left|\frac{du}{dx}\right|^2 d\varsigma$$

$$\Rightarrow \int_0^1 u^2(x) dx \le \int_0^1 x \cdot \int_0^x \left(\frac{du}{dx}\right)^2 d\varsigma dx$$

$$\left(0 \le x \le 1\right) \le \int_0^1 \int_0^1 \left(\frac{du}{dx}\right)^2 d\varsigma dx = \int_0^1 \left|\frac{du}{dx}\right|^2 dx$$

$$\int_{\Omega} v^2 dx = \int_{\Omega} v^2 \Delta \phi dx \qquad \phi = \frac{1}{2d} |x|^2$$

$$= 2v \nabla v \nabla \phi$$

$$= \int_{\partial \Omega} v^2 \nabla \phi \cdot \vec{n} - \int_{\Omega} 2v \nabla v (\nabla \phi)$$

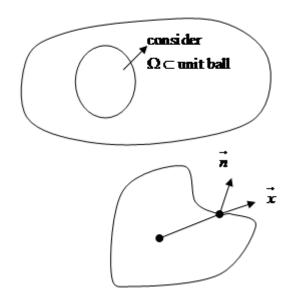
$$(I) \qquad (II)$$

$$\nabla \phi = \frac{1}{2d} (\nabla x, x) \cdot 2 = \frac{1}{d} x$$

$$\Delta \phi = \nabla (\nabla \phi) = \frac{1}{d} (\nabla \cdot x) = \frac{1}{d} \cdot d = 1 \ (d = \text{dimension of the domain})$$

$$\nabla \phi \cdot \vec{n} = \frac{1}{d} \vec{x} \cdot \vec{n}$$

bounded above



$$(I) \underset{\text{inequality}}{<} \frac{1}{d} \|v\|_{L^2(\partial\Omega)}^2$$

$$(II) \leq \int \frac{2}{d} v \left(\nabla v \cdot \vec{x} \right) dx$$

$$\leq \frac{2}{d} \left(\int |v|^2 \right)^{\frac{1}{2}} \left(\int_{\Omega} |\nabla v \cdot x|^2 dx \right)^{\frac{1}{2}}$$

$$\leq \frac{2}{d} \|v\|_{L^2(\Omega)} \left(\int_{\Omega} |\nabla v|^2 |x|^2 dx \right)^{\frac{1}{2}}$$

$$\leq \frac{2}{d} \|v\|_{L^2(\Omega)} \left(\int_{\Omega} |\nabla v|^2 \right)^{\frac{1}{2}}$$

Combine (I) & (II), one can imply

$$\Rightarrow \left(\int_{\Omega} v^{2}\right)^{\frac{1}{2}} \leq c \left(\int_{\partial \Omega} v^{2} dx + \int_{\Omega} |\nabla v|^{2}\right)^{\frac{1}{2}}$$
For $v|_{\partial \Omega} = 0 \Rightarrow \left(\int_{\Omega} v^{2}\right)^{\frac{1}{2}} \leq c \left(\int_{\Omega} |\nabla v|^{2}\right)^{\frac{1}{2}}$

$$(\partial < 1)$$

$$a^{2} \le b^{2} + \partial ac$$

$$\Rightarrow a^{2} + \frac{\partial^{2}}{4}c^{2} \le b^{2} + \partial ac + \frac{\partial^{2}}{4}c^{2}$$

$$\Rightarrow \left(a - \frac{\partial}{2}c\right)^{2} \le b^{2} + \frac{\partial^{2}}{4}c^{2}$$

$$\Rightarrow a \le \frac{\partial}{2}c + \sqrt{b^{2} + \frac{\partial^{2}}{4}c^{2}} < \tilde{c}\sqrt{b^{2} + c^{2}}$$

(1)

$$\underset{\text{coercivity}}{\Rightarrow} \int_{\Omega} \vec{\beta} \nabla u \cdot u = \int div (\vec{\beta}v) \cdot u$$

$$= -\int_{\Omega} \beta u \cdot \nabla u + \int_{\partial \Omega} \vec{\beta} u \cdot u \cdot \vec{n} \implies \text{if } u = 0 \text{ on } \partial \Omega$$

$$\Rightarrow \int_{\Omega} \vec{\beta} \nabla u \cdot u = 0 \implies a(u, u) > ||u||| \implies \text{coercivity astisfies.}$$

Error:

$$\begin{aligned} \|u - u_n\| &\leq \min_{v \in V_n} \|u - v\| \\ &= \min_{v \in V_n} \sqrt{\int A \cdot \nabla (u - v) \cdot \nabla (u - v) + \int c (u - v) (u - v)} dx \\ &\leq c \min_{v \in V_n} \|u - v\|_{1,2} \underset{\text{poincare positive modelity}}{\leq} c \left(\int_{\Omega} (\nabla (u - v))^2 \right)^{\frac{1}{2}} dx \end{aligned}$$

Now consider v as on interpolation of u over a given mesh (Think of Taylor formula)

$$\begin{pmatrix}
i.e. \ v(x_i) = u(x_i) \\
u(x) = \underbrace{u(x_i) + u'(x_i)(x - x_i) + \frac{1}{2}u''(x_i)(x - x_i)^2}_{u}
\end{pmatrix}$$

we have $\left| \left(u - v \right)' \right| < h \cdot u''$

$$\Rightarrow \left\| \left\| u - u_n \right\| \le c \cdot h \quad \left| u \right|_{H_2^2} \quad , \left| u' - v' \right| \approx \left| u'' \left(x_i \right) \underbrace{\left(x - x_i \right)}_{< h} \right|$$

by assuming regularity of u $\begin{pmatrix} a(u,v) = f(v) & (\Delta u = f) \\ \text{assume } u \in H_2^2 \text{ and } \Delta u = f \\ |u|_{2,2} \le c ||f||_{L^2} \end{pmatrix}$

$$\Rightarrow ||u - u_n|| < c \cdot h \cdot ||f||_{L^2(\Omega)}$$

Remark:

Regularity analysis is important! Even for the equation $\Delta u = f$ where $f \in L^2$, one might not have $u \in H_2^2$! Example 1.

Consider
$$\Omega = \left\{ (u, v) \middle| 0 \le v \le 1, \ 0 < \theta < \frac{\pi}{\beta} \right\}$$

if
$$\frac{1}{2} < \beta < 1(\Omega \text{ is not convex})$$
, consider $u = (1 - r^2)v(r, \theta)$,

here
$$\underbrace{v(r,\theta) = r^{\beta} \sin \beta \theta}_{\Rightarrow \theta = 0, \theta = \frac{\pi}{\beta} \Rightarrow v(r,\theta) = 0}$$
 $\Rightarrow u|_{\partial\Omega} = 0$

$$\Delta u = (1 - r^2) \Delta v + 2\nabla (1 - r^2) \cdot \nabla v + v \Delta (1 - r^2)$$
$$= -4r \frac{\partial v}{\partial r} - 4v = -(4\beta + 4)v = f$$

Since v is bounded, $f \in L^2(\Omega)$ (L-M theorem is satisfied)

However,
$$\frac{\partial^2 u}{\partial r^2} \approx r^{\beta-2}$$
 near $r = 0 \implies \beta < 1 \implies \frac{\partial^2 u}{\partial r^2}$: unbounded $\implies u \notin H_2^2$ (By the Sobolev inequality (2) Theorem 7)

What's known about regularity?

If $\partial\Omega$ is smooth (or convex), the solutions of elliptic

P.D.E with pure Dirichlet B.C. or Neumann B.C has H^2 regularity.

Part II.

Finite element spaces for V_n

Consider V_n consists of piecewise polynomials.

We have

$$V_n \subset H^1(\Omega) \iff V_n \subset C^0(\overline{\Omega})$$

$$V_n \subset H^2(\Omega) \Leftrightarrow V_n \subset C^1(\overline{\Omega})$$

here $C^0(\overline{\Omega}) = \{v | v \text{ is continuous on } \overline{\Omega}\}$

$$C^{1}\left(\overline{\Omega}\right) = \left\{v \middle| D^{\hat{\sigma}} \in C^{0}\left(\overline{\Omega}\right), \middle| \hat{\sigma} \middle| = 1\right\}$$

To define a finite element space, we need to specify (a) mesh T_n (generally a triangulation) on the domain Ω