Pf. Sketch of proof:
(1)For any given u, consider a functional $A u(v)=a(u, v)$
show $A u$ is linear \& continuous from $V \rightarrow R$
$\Rightarrow A u \in V^{\prime}$
(2) Consider A as a mapping from $V \rightarrow V^{\prime}$
define by $A: u \rightarrow(A u)$
show A is also linear continuous by showing

$$
\quad\|A\|_{L\left(v, v^{\prime}\right)} \leq C
$$

(3)To find unique u such that

$$
A u(v)=F(v) \text { for all } v \in V
$$

\equiv find a unique $A u$ such that $A u=F$ in V^{\prime}
\equiv find $u \tau(A u)=\tau(F)$ in $V\left\{\begin{array}{r}\text { Riesz representation, } \exists F^{*} \in V \text { s.t. }\left(F^{*}, u\right)=F(u) \\ \exists a_{u}^{*} \in V \text { s.t. }\left(a_{u}^{*}, v\right)=A u(v) v \in V \\ \text { define a mapping } \tau: V^{\prime} \rightarrow V,(\tau \phi ; v)=\phi(v) \phi \in v^{\prime}\end{array}\right.$
(4)define a mapping $T: V \rightarrow V$
$T v=v-\rho(\tau A v-\tau F) \forall v \in V$
if $\exists \rho \neq 0$ such that T is a contraction
then \exists unique $u \in V$ such that

$$
\begin{aligned}
& \quad T u=u-\rho(\tau A u-\tau F)=u \\
& \rho \neq 0 \\
& \Rightarrow \tau A u=\tau F
\end{aligned}
$$

(5) Try to find ρ

For any $v_{1}, v_{2} \in V$

$$
\begin{aligned}
&\left\|T\left(v_{1}\right)-T\left(v_{2}\right)\right\|^{2}=\left\|v_{1}-v_{2}-\rho\left(\tau A v_{1}-\tau A v_{2}\right)\right\|^{2} \\
&=\|v-\rho(\tau A v)\|^{2}, v=v_{1}-v_{2} \\
&=\|v\|^{2}-2 \rho(\tau A v, v)+\rho^{2}\|\tau A v\|^{2} \\
&=\|v\|^{2}-2 \rho A v(v)+\rho^{2}(A v)(\tau A v) \\
&=\|v\|^{2}-2 \rho a(v, v)+\rho^{2} a(v, \tau A v) \\
& \leq\|v\|^{2}-2 \rho \alpha\|v\|^{2}+\rho^{2} \beta\|v\|\|\tau A v\| \\
& \leq\|v\|^{2}-2 \rho \alpha\|v\|^{2}+\rho^{2} \beta^{2}\|v\|^{2} \\
&=\left(1-2 \rho \alpha+\rho^{2} \beta^{2}\right)\left\|v_{1}-v_{2}\right\|^{2} \\
&(\tau A v, \tau A v)=(A v)(\tau A v)=a(v, \tau A v) \\
&\|\tau A v\|^{2}=a(v, \tau A v) \leq \beta\|v\|\|\tau A v\| \Rightarrow\|\tau A v\| \leq \beta\|v\|
\end{aligned}
$$

one can choose $\rho \in\left(0,2 \frac{\alpha}{\beta^{2}}\right) \Rightarrow 1-2 \rho \alpha+\rho^{2} \beta^{2}<1$
$\Rightarrow T$ is a contraction.
Finite element space
Part 1. Galerkin approximation
Given a finite dimensional subspace $V_{n} \subset(V,<,>)$
and $F \in V^{\prime}$, find $u_{n} \in V_{n}$ such that

$$
a\left(u_{n}, v\right)=F(v) \text { for all } v \in V_{n}
$$

Question:
1.Do there exist unique solution u_{n} ?
2. What are the error estimates for $u-u_{n}$?

Ans:
(1) One only needs to show V_{n} is indeed a subspace of the normal linear space.
$\binom{$ By definition of subspace: V_{n} is linear \& closed }{$\Rightarrow V_{n}$ is complete $\Rightarrow V_{n}$ is a Hilbert space. }
$\overline{V_{n}}=V_{n}$ (every limit points are in V_{n})
\Rightarrow Lax-Milgram can be appied accumulative points. i.e. show V_{n} is linear \& V_{n} is closed under the given norm $\|\cdot\|_{v}$
(2)Estimates of the error

Theorem(Cea) Suppose the assumptions in L-M theorem
hold and V_{n} is a linear subspace of $(V,<,>)$
Suppose u_{n} is the solution of the Galerkin approximation
Then $\left\|u-u_{n}\right\|_{v} \leq \frac{\beta}{\alpha} \min _{v \in V_{n}}\|u-v\|_{v}$
Pf. Since $a(u, v)=F(v)$ and $a\left(u_{n}, v\right)=F(v)$ for all $v \in V_{n}$
$\Rightarrow a\left(u-u_{n}, v\right)=0$ for all $v \in V_{n}$
$\Rightarrow \alpha\left\|u-u_{n}\right\|_{v}^{2} \leq a\left(u-u_{n}, u-u_{n}\right)$ $=a\left(u-u_{n}, u-v\right)+a\left(u-u_{n}, u-v_{n}\right)$ for all $v \in V_{n}$ $\leq \beta\left\|u-u_{n}\right\|_{v}\|u-v\|_{v}$
$\Rightarrow\left\|u-u_{n}\right\|_{v} \leq \frac{\beta}{\alpha}\|u-v\|_{v}$ for all $v \in V_{n}$
$\Rightarrow\left\|u-u_{n}\right\|_{v} \leq \frac{\beta}{\alpha} \inf _{v}\|u-v\|_{v}$
Geometric explanation:

(1) u_{n} is almost the "best approximation" of u in V_{n} when $\frac{\beta}{\alpha} \approx 1$
(2) The conclusion in (1) is not exactly true when $\frac{\beta}{\alpha} \gg 1$

Example:
Consider $a(u, v)=\int_{\Omega} A \nabla u \nabla v+c u v d x, \underset{(A, C \text { are constant) }}{A>0, C>0}$ (positive) general inner produce $\langle u, v\rangle_{A}=\int A \nabla u \nabla v+c u v$ and the energy norm $\|u\|=\sqrt{\langle u, v\rangle_{A}}$
Let V be the Hilbert space $\left(H_{2}^{1},<,>_{A}\right)$
(Can you explain why V is a Hilbert space?)
It is clear that

$$
\left.\begin{array}{l}
a(u, v)=\langle u, v\rangle_{A} \leq\|u\| \cdot \cdot\|v\| \| \\
a(u, v) \geq\|u\|^{2}
\end{array}\right\} \Rightarrow \begin{array}{r}
\text { the continuity const } \beta=1 \\
\text { and the coercivity const } \alpha=1
\end{array}
$$

\Rightarrow The cea theorem $\Rightarrow u_{n}$ is indeed the projection of u in V_{n}.
This also explains why we said the "energy" norm is a good norm in previous lectures.

Can you find the α and β in terms of A, B and C ? (not so trivial!)
You need to decide the "inner product" and the norm defined by the "inner product" and the space for V.

Poincare' inequality:

$$
\int_{\Omega} u^{2} \leq \underset{\text { poincare constant }}{c} \int_{\Omega}^{c}|\nabla u|^{2}
$$

here Ω is a Lipschtz domain and $u \in H_{2,0}^{1}$
Proof by example:
In 1-D: Consider $u(x)=u(0)+\int_{0}^{x}\left(\frac{d u}{d x}\right) d \varsigma(\operatorname{let} u(0)=0)$

$$
\begin{gathered}
u^{2}(x)=\left|\int_{0}^{x} \frac{d u}{d x} d \varsigma\right|^{2} \leq \int_{0}^{x} 1^{2} d \varsigma \cdot \int_{0}^{x}\left|\frac{d u}{d x}\right|^{2} d \varsigma \\
\Rightarrow \int_{0}^{1} u^{2}(x) d x \leq \int_{0}^{1} x \cdot \int_{0}^{x}\left(\frac{d u}{d x}\right)^{2} d \varsigma d x \\
\\
(0 \leq x \leq 1) \leq \int_{0}^{1} \int_{0}^{1}\left(\frac{d u}{d x}\right)^{2} d \varsigma d x=\int_{0}^{1}\left|\frac{d u}{d x}\right|^{2} d x \\
\int_{\Omega} v^{2} d x= \\
=\int_{\Omega} v^{2} \Delta \phi d x \quad \phi=\frac{1}{2 d}|x|^{2} \\
=\underbrace{\int_{\partial \Omega} v^{2} \nabla \phi \nabla \cdot \vec{n}}_{(I)}-\underbrace{\int_{\Omega} 2 v \nabla v(\nabla \phi)}_{(I I)} \\
\nabla \phi=\frac{1}{2 d}(\nabla x, x) \cdot 2=\frac{1}{d} x \\
\Delta \phi=\nabla(\nabla \phi)=\frac{1}{d}(\nabla \cdot x)=\frac{1}{d} \cdot d=1(d=\text { dimension of the domain })
\end{gathered}
$$

$\nabla \phi \cdot \vec{n}=\frac{1}{d} \vec{x} \cdot \vec{n}$
bounded above

$$
\begin{aligned}
&(I)_{\substack{\text { holder } \\
\text { inequality }}} \frac{1}{d}\|v\|_{L^{2}((\Omega))}^{2} \\
&(I I) \leq \int \frac{2}{d} v(\nabla v \cdot \vec{x}) d x \\
& \leq \frac{2}{d}\left(\int|v|^{2}\right)^{\frac{1}{2}}\left(\int_{\Omega}|\nabla v \cdot x|^{2} d x\right)^{\frac{1}{2}} \\
& \leq \frac{2}{d}\|v\|_{L^{2}(\Omega)}\left(\int_{\Omega}|\nabla v|^{2}|x|^{2} d x\right)^{\frac{1}{2}} \\
& \leq \frac{2}{d}\|v\|_{L^{2}(\Omega)}\left(\int_{\Omega}|\nabla v|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Combine (I) \& (II), one can imply

$$
\Rightarrow\left(\int_{\Omega} v^{2}\right)^{\frac{1}{2}} \leq c\left(\int_{\partial \Omega} v^{2} d x+\int_{\Omega}|\nabla v|^{2}\right)^{\frac{1}{2}}
$$

For $\left.v\right|_{\partial \Omega}=0 \Rightarrow\left(\int_{\Omega} v^{2}\right)^{\frac{1}{2}} \leq c\left(\int_{\Omega}|\nabla v|^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& (\partial<1) \\
& a^{2} \leq b^{2}+\partial a c \\
& \Rightarrow a^{2}+\frac{\partial^{2}}{4} c^{2} \leq b^{2}+\partial a c+\frac{\partial^{2}}{4} c^{2} \\
& \Rightarrow\left(a-\frac{\partial}{2} c\right)^{2} \leq b^{2}+\frac{\partial^{2}}{4} c^{2} \\
& \Rightarrow a \leq \frac{\partial}{2} c+\sqrt{b^{2}+\frac{\partial^{2}}{4} c^{2}}<\tilde{c} \sqrt{b^{2}+c^{2}}
\end{aligned}
$$

(1)

$$
\begin{aligned}
\underset{\text { coercivity }}{\Rightarrow} \int_{\Omega} \vec{\beta} \nabla u \cdot u & =\int_{\Omega} \operatorname{div}(\vec{\beta} v) \cdot u \\
& =-\int_{\Omega} \beta u \cdot \nabla u+\int_{\partial \Omega} \vec{\beta} u \cdot u \cdot \vec{n} \Rightarrow 0 \\
\Rightarrow \int_{\Omega} \vec{\beta} \nabla u \cdot u= & 0 \Rightarrow \mathrm{a}(u, u)>\mid\|u\| \Rightarrow \text { if } u=0 \text { on } \partial \Omega
\end{aligned}
$$

Error:

$$
\begin{aligned}
\left\|u-u_{n}\right\| & \leq \min _{v \in V_{n}}\|u-v\| \\
& =\min _{v \in V_{n}} \sqrt{\int A \cdot \nabla(u-v) \cdot \nabla(u-v)+\int c(u-v)(u-v)} d x \\
& \leq c \min _{v \in V_{n}}\|u-v\|_{\substack { 1,2 \\
\begin{subarray}{c}{\uparrow \\
\text { poincare } \\
\text { inequality }{ 1 , 2 \\
\begin{subarray} { c } { \uparrow \\
\text { poincare } \\
\text { inequality } } }\end{subarray}}^{\leq}\left(\int_{\Omega}(\nabla(u-v))^{2}\right)^{\frac{1}{2}} d x
\end{aligned}
$$

Now consider v as on interpolation of u over a given mesh(Think of Taylor formula)

$$
\binom{\text { i.e. } v\left(x_{i}\right)=u\left(x_{i}\right)}{u(x)=\underbrace{u\left(x_{i}\right)+u^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)+\frac{1}{2} u^{\prime \prime}\left(x_{i}\right)\left(x-x_{i}\right)^{2}}_{u}}
$$

we have $\left|(u-v)^{\prime}\right|<h \cdot u^{\prime \prime}$

$$
\begin{array}{ll}
\Rightarrow\left|\mid u-u_{n}\| \| \leq c \cdot h\right. & |u|_{H_{2}^{2}}
\end{array},\left|u^{\prime}-v^{\prime}\right| \approx|u^{\prime \prime}\left(x_{i}\right) \underbrace{\left(x-x_{i}\right)}_{<h}|
$$

$\Rightarrow\left|\left|u-u_{n}\|\mid<c \cdot h \cdot\| f \|_{L^{2}(\Omega)}\right.\right.$

Remark:

Regularity analysis is important! Even for the equation $\Delta u=f$ where $f \in L^{2}$, one might not have $u \in H_{2}^{2}$!
Example 1.
Consider $\Omega=\left\{(u, v) \mid 0 \leq v \leq 1,0<\theta<\frac{\pi}{\beta}\right\}$
if $\frac{1}{2}<\beta<1(\Omega$ is not convex $)$, consider $u=\left(1-r^{2}\right) v(r, \theta)$,
here $\left.\underbrace{v(r, \theta)=r^{\beta} \sin \beta \theta}_{\Rightarrow \theta=0, \theta=\frac{\pi}{\beta} \Rightarrow v(r, \theta)=0} \Rightarrow u\right|_{\partial \Omega}=0$

$$
\begin{aligned}
\Delta u & =\left(1-r^{2}\right) \Delta v+2 \nabla\left(1-r^{2}\right) \cdot \nabla v+v \Delta\left(1-r^{2}\right) \\
& =-4 r \frac{\partial v}{\partial r}-4 v=-(4 \beta+4) v=f
\end{aligned}
$$

Since v is bounded, $f \in L^{2}(\Omega)$ (L-M theorem is satisfied)
However, $\frac{\partial^{2} u}{\partial r^{2}} \approx r^{\beta-2}$ near $r=0 \Rightarrow \beta<1 \Rightarrow \frac{\partial^{2} u}{\partial r^{2}}$: unbounded
$\Rightarrow u \notin H_{2}^{2}$ (By the Sobolev inequality (2) Theorem 7)
What's known about regularity?
If $\partial \Omega$ is $\underset{\left(\partial \Omega \Omega C^{2}\right)}{\operatorname{smooth}}$ (or convex), the solutions of elliptic
P.D.E with pure Dirichlet B.C. or Neumann B.C has
H^{2} regularity.
Part II.
Finite element spaces for V_{n}
Consider V_{n} consists of piecewise polynomials.
We have

$$
\begin{aligned}
V_{n} \subset H^{1}(\Omega) & \Leftrightarrow V_{n} \subset C^{0}(\bar{\Omega}) \\
V_{n} \subset H^{2}(\Omega) & \Leftrightarrow V_{n} \subset C^{1}(\bar{\Omega})
\end{aligned}
$$

here $C^{0}(\bar{\Omega})=\{v \mid v$ is continuous on $\bar{\Omega}\}$

$$
C^{1}(\bar{\Omega})=\left\{v\left|D^{\partial} \in C^{0}(\bar{\Omega}),|\partial|=1\right\}\right.
$$

To define a finite element space, we need to specify
(a) mesh T_{n} (generally a triangulation) on the domain Ω

