Pf. Sketch of proof:
(1) For any given u, consider a functional Au(v)=a(u,v)
show Au is linear & continuous fromV — R
= AueV'’
(2)Consider A as a mapping fromV —V'’
define by A:u — (Au)
show A is also linear continuous by showing ||A||L(V]V,) <C

I
A
supM HAuH:supH (U)(V)H
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(3)To find unique u such that
Au(v)=F(v) forallveV
= find a unique Au such that Au=F inV'’
Riesz representation, IF " eV s.t. (F™,u)=F (u)

=findu r(Au)=7(F) inV Ja; eV st (a,v)=Au(v) veV
define a mapping z:V' >V, (¢;v)=¢(v) geV’

(4)define a mapping T :V >V
Tv=v-p(rAv—7F) WeV
if 3p = 0 such that T is a contraction
then 3 unique u eV such that
Tu=u-p(rAu—7F)=u

p#0
=7Au=rF



(5)Tryto find p
Foranyv,,v, eV
T (w)-T (v, )HZ = v = v, = p(zAv, - A, )HZ
= Hv—,o(rAv)H2 L V=V, -V,
I - 2p(cAv)+ o fef
= ||v||2 —2pAv(v)+ p*(AV)(7AV)
= ||v||2 —2pa(v,v)+p*a(v,7Av)
<V ~20alvff + o 2]
<V ~20a vl + o267 I
= (l— 2pa+ p°f° )||v1 —V2||2
(rAv,7Av)=(Av)(rAv)=a(v,7Av)
e vl =a(v,cav) < lrAv] = feav]< gl

one can choose p e[O,Z%j =1-2pa+p’p* <1

=T is a contraction.

Finite element space
Part 1. Galerkin approximation
Given a finite dimensional subspace V, = (V,< , >)
and F eV’ find u, €V, such that
a(u,,v)=F(v) forallveV,

Question:

1.Do there exist unique solution u, ?

2.What are the error estimates for u—u,?

Ans:

(1)One only needs to show V, is indeed a subspace
of the normal linear space.

By definition of subspace: V, is linear & closed
(:Vn is complete =V, is a Hilbert space. ]
V, =V, (every limit points are in V,)
= Lax-Milgram can be appied accumulative points.
I.e. show V, is linear & V, is closed under the given
norm | - |,



(2)Estimates of the error

Theorem(Cea) Suppose the assumptions in L-M theorem
hold and V, is a linear subspace of (V,< , >)

Suppose u, is the solution of the Galerkin approximation

B

Then u—-u,| <=min
o VeVh

Ju=vl,

Pf. Since a(u,v)=F(v) anda(u,,v)=F(v) forallveV,
=a(u-u,,v)=0 forallveV,

:a||u—un||j <a(u-u,u-u,)

=a(u-u,,u-v)+a(u-u,u-v,) forallveV,
=0

< Bllu=u, ], Ju=v,

= Ju-u,], < ﬁ”u —v|, forallveV,
o

B

=fu-u], < Zinfu-y],

Geometric explanation:




s

(1)u, is almost the "best approximation™ of u in V, when = ~1

(04
(2) The conclusion in (1) is not exactly true when £ sq
(04

Example:

Consider a(u,v) = I AVuUVv +cuvdx, A>0, C>0 (positive)
Q

(A,C are constant)

general inner produce <u,v>A = j AVUVV +cuv and the energy

norm [ = {7,

Let V be the Hilbert space (Hj,< , >,)

(Can you explain why V is a Hilbert space?)
It is clear that

a(uv)=(uv),< H|U||H||V|” - the continuity const 5 =1
and a(u,v)> H|u|”2 and the coercivity const o =1

= The cea theorem = u, is indeed the projection of u inV,.
This also explains why we said the "energy"” norm is a good norm in
previous lectures.

Q: Consider a(u,v):IAVqu+ BVu-v +cuv
Q

skew symmetric
(thanks to integration by part)

can't define (u,v), =a(u,v) because
T (uv), =(v.u),
define <u,v>=j AVqu+Icuv

Can you find the & and S in terms of A, B and C? (not so trivial!)

You need to decide the "inner product” and the norm defined by the
"inner product™ and the space for V.



Poincare' inequality:

luz S J|Vu|2

poincare constant

here Q is a Lipschtz domain and u € H,,
Proof by example:

In1-D: Consider u<x>=u<o>+fo*(‘;—§jdg (1etu(0)=0)

u? (x)= <['1
:,;;UZ(X)M;X.;;((;_;JZdgdx

osxey <L (] s Ifg]

1, .
vidx = | VPAgdX ¢ =—|x
s 4=
=2VVVWW¢
= IV2V¢-H—IZVVV(V¢)
oQ Q

[

dx

(1) (1

1 l
Vo=
/ 2d( )2 d
Ag = V(V¢)=%( ):ad =1 (d =dimension of the domain)
Vé-n= =x-n

d

bounded above
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Comblne I1), one can imply

e oo
For vl =0 :micuwf

.l



(0<1)

a® <b?+oac
0° 0°
= a’ +7C2 <b®+0ac+—c?

2 2
:(a—gcj <b? +a—c2
2 4
2 ~
:>a£§C+ b%%c2 <cab? +c?

(2)
= IZ’Vu-u :jdiv(ﬁv)-u

coercivity
Q

=—[pu-vu+ [ fu-u-n =ifu=00noQ
Q o0

>0

= jﬁVu u=0 =a(u,u)>Ju|] = coercivity astisfies.
Q

Error:

<min

veV,

= min\/IA-V(u—v)-V(u—v)+J'c(u—v)(u—v)dx

VeV,

Jlu—ui|

Ju—v]

bl o Jv ey [ o

poincare
inequality

<cmin

vev,

Now consider v as on interpolation of u over a given mesh (Think of Taylor formula)

e v(x)=u(x)

we have <h-u"

(u-v)

:>H|u—un|| "\

Ju

z‘u”(xi)(x—xi)

<c-h |u, 1 (x-x)
(1] )
a(u,v)="f(v) (Au=f)
by assuming regularity of u | assume u e H2 and Au = f
ul, . <c[[ .

= JJu-u,|

<C'h'”f”L2(Q)



Remark:

Regularity analysis is important! Even for the equation
Au = f where f e L*, one might not have ue H.!
Example 1.

Consider Q = {(u,v)‘o <v<l 0<O< %}

if %< B <1(Q is not convex), consider u =(1-r?)v(r,0),

here v(r,0)=r"singo =u| =

:,9:0,9:%:\/0,9):0

Au:( )Av+2V(1 r )on+vA(l—r2)
—4r——4v_ —(4B+4)v=f

Since v is bounded, f e *(Q) (L-M theorem is satisfied)

o’u o°u
However, 7 r’2nearr=0 = f<1 = Fea : unbounded
r r

= u ¢ H; (By the Sobolev inequality (2) Theorem 7)

What's known about regularity?

If 0Q2 is s(moot)h (or convex), the solutions of elliptic
2QeC?

P.D.E with pure Dirichlet B.C. or Neumann B.C has
? regularity.

Part 1l.

Finite element spaces for V,

Consider V, consists of piecewise polynomials.

We have
V,cH'(Q) <V, cC’(Q)
V,cH’(Q) <V, cc(Q)

here C° (g_z) = {v|v is continuous on 5}

c'(Q)={vp’ec’(Q), Jo|=1}
To define a finite element space, we need to specify
(a)mesh T, (generally a triangulation ) on the domain O



