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Condition number of the sitffness matrix:
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The following Lemma holds
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With the help of the Lemma 1, we can show the condition number
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Remark:

1 Recall that when solving linear system  by iterative method,

    let  be the iterative solution i.e. ,  we have
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The a posteriori error estimation:
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Using more advance interpolation estimation, it can be shown
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FEM for parabolic problem

consider the heat equation
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1  Model problem:
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An initial phase for  small where certain derivatives of  are large

is called an "initial transient"

Observation: based on 1 & 2

  initial transient small time step for discretization of 
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In general, we have the following estimation
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Exercise: using Energy method to prove 
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the general solution can now be expressed as 
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As mentioned previously, one should use methods which adapt the

size of each time step according to the smoothness of . Moreover,

if explicit time discretization is employed, one should choose the st
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