Condition number of the sitffness matrix:
Assume the triangulation J_{h} satisfies

$$
\begin{array}{ll}
h_{k} \geq \beta_{1} h & h=\max _{k \in J_{h}} h_{k}, h_{k}=\text { diameter of element } k \\
\frac{\rho_{k}}{h_{k}} \geq \beta_{2} \quad \rho_{k}=\text { radius of the circle incribed in } k=\int \nabla u \nabla v d x
\end{array}
$$

Consider bilinear form $a(u, v)$ satisfying the coercivity and continuity on $H_{2,0}^{1}(\Omega)\left(V_{h} \subset H_{2,0}^{1}\right)$
$\left\{\begin{array}{l}(i) a(u, v) \geq \partial\|u\|^{2} \\ (i i) a(u, v) \leq \beta\|u\|\|v\| \quad\left(\Omega \subset R^{2}\right)\end{array}\right.$

The following Lemma holds
Lemma $1 . \exists$ constants c and C (depends on α, β) such that for all

$$
v_{h}=\sum_{i=1}^{m} v_{i} \varphi_{i} \in V_{h}, \text { the following inequalities hold. }
$$

(10) ch $h^{2}|\vec{v}|^{2} \leq\left\|v_{h}\right\|^{2} \leq C h^{2}|\vec{v}|^{2} \quad\left(\vec{v}=\left(v_{1}, v_{2}, \cdots, v_{m}\right)\right)$
(11) $a\left(v_{h}, v_{h}\right) \equiv \int_{\Omega}\left|\nabla v_{h}\right|^{2} d x \leq c h^{-2}\left\|v_{h}\right\|^{2}\binom{$ inverse estimate compare with poincare }{ inequality $\|v\|_{L^{2}}<\|\nabla v\|_{L^{2}}}$
(prove: Skip. See claes Johnson's section 7.7)
(exercise)

With the help of the Lemma 1, we can show the condition number of the stiff matric K is $\mathrm{O}\left(h^{-2}\right)$.
$\operatorname{cond}(K)=\|K\|\left\|K^{-1}\right\|_{(\checkmark \text { matrix norm })}\|K\|=\sup _{x \in R^{n}}\left(\frac{\|A x\|}{\|x\|}\right)$
Since
$\frac{\vec{v}^{T} K \vec{v}}{|\vec{v}|^{2}}=\frac{a\left(v_{h}, v_{h}\right)^{(11)}}{|\vec{v}|^{2}} \leq c h^{-2} \frac{\left\|v_{h}\right\|^{2}}{|\vec{v}|^{2}} \leq c^{*} \stackrel{\text { sup }}{\Rightarrow} \lambda_{\text {max }} \leq c^{* *}\binom{\vec{v}:$ evector corresponding }{ to max evalue }
and $\frac{\vec{v}^{T} K \vec{v}}{|\vec{v}|^{2}}=\frac{a\left(v_{h}, v_{h}\right)}{|\vec{v}|^{2}} \geq \partial \frac{\left\|v_{h}\right\|^{2}}{|\vec{v}|^{2}} \geq c^{* * *} h^{2} \underset{\text { inf }}{\Rightarrow} \lambda_{\text {max }} \geq c^{* * *} h^{2}\binom{\mathrm{v}:$ evector corresponding }{ to min evalue }
$\Rightarrow \lambda_{\text {max }}(K) \leq C^{*}$ and $\lambda_{\text {min }}(K) \geq c^{* * *} h^{2}$
$\Rightarrow \operatorname{cond}(K) \leq \widetilde{C h^{-2}}\left(\widetilde{\left.C=\frac{c^{*}}{c^{* *}}\right)}\right.$
(exercise: In 3D, ch $\left.{ }^{3}|\vec{v}| \leq\|u\|^{2}<\operatorname{ch}^{3}|v| \Rightarrow \operatorname{cond}(K)<\widetilde{C h^{2}}\right)$
Remark:
(1) Recall that when solving linear system $A x=b$ by iterative method, (let x be the iterative solution i.e. $A x=b+\Delta b$), we have
$\frac{|\Delta x|}{|x|} \leq \operatorname{cond}(A) \frac{|r|}{|b|} \quad$ here $r=b-A x$ (the residual)
If the relative error is required to be less than ε, the relative residual $\left(\frac{|r|}{|b|}\right)$

$\Rightarrow \frac{|\Delta x|}{\substack{\text { 个vector }}}|x|<\varepsilon \Rightarrow|\Delta x|<\varepsilon|x|_{(10)}<\varepsilon\left\|x_{h}\right\| h^{-1}$
(2)How large ε should be?

Recall that $\left\|x_{\text {turur }}-x_{\text {FEM }}\right\|_{L^{2} \uparrow \text { Duality argument }}^{<} c h^{2}\left\|x_{\text {true }}\right\|_{H^{2}(\Omega)} \underset{\substack{\uparrow \text { Assuming } \\ \text { resuraty } \\ \text { esitimate }}}{<} c h^{2}\|f\|$
($x_{\text {FEM }}$ is the FEM solution, $x_{\text {true }}$ is the PDE solution)
Since we don't want $|\Delta x|>\left\|x_{\text {true }}-x_{\text {FEM }}\right\|$, $\left.\begin{array}{r}\text { i.e. we want }|\Delta x| \ll h^{2}\|f\| \\ |\Delta x|<\varepsilon\left|x_{\text {FEM }}\right|\end{array}\right)$ $\left(\Delta x=x_{\text {iter }}-x_{\text {FEM }}\right)$
we set $\varepsilon \ll \underbrace{\frac{\|f\|}{\left|x_{\text {FEM }}\right|} \cdot h^{2}}_{v}$
$\Rightarrow \varepsilon \ll \underset{\substack{\text { rede on } f \\ \text { and } x_{\text {true }}}}{r} \cdot h^{3}, \frac{\|f\|}{\left\|x_{\text {FEM }}\right\|} h^{3}>\frac{\|f\|}{\left\|x_{\text {true }}\right\|} \cdot \frac{\left\|x_{\text {true }}\right\|}{\left\|x_{\text {true }}\right\|+c h^{2}\left\|x_{\text {tue }}\right\|_{H^{2}}} h^{3}$
The a posteriori error estimation:
$-\Delta u+c u=f$
consider $a(u, v)=\int \nabla u \nabla v+c \int u v$ and u be the solution of
$a(u, v)=\int f v d x=L(f)\|u\|_{E}:$ the energe norm \backslash
let $\left\{\begin{array}{l}e=u-u^{h} \\ e^{h}=u^{h}-u^{h} \\ \eta=u^{h}-u\end{array}\right.$, here $u^{h}=I u$ (interpolant of $\left.u\right)$
clearly we have $e=e^{h}+\eta$

Since

$$
\begin{aligned}
\|e\|_{E}^{2} & =|a(e, e)|=\left|a\left(e^{h}+\eta, e\right)\right| \stackrel{\substack{\text { orthogonality } \\
\left(a\left(x_{h}, e\right)=0 \\
\varphi_{h} \in V_{h}\right)}}{=}|a(\eta, e)| \\
& =\left|a\left(\eta, u-u^{h}\right)\right| \\
& =\left|a(\eta, u)-a\left(\eta, u^{h}\right)\right| \\
& =\left|L(\eta)-\left(\int_{\Omega} \nabla \eta \nabla u^{h}+c \int_{\Omega} \eta u^{h}\right)\right| \\
& =\left|L(\eta)-\sum_{K \in J_{h}} \int_{e} \nabla \eta \nabla u^{h}+c \int_{\Omega} \eta h^{h}\right|
\end{aligned}
$$

$\binom{$ integration }{ by part }
by part
$=$
$=|L(\eta)+\int_{\Omega} \eta\left(\Delta u^{h}-c u^{h}\right)+\sum_{\substack{s \in \partial \\ K \in J_{h}}} \int_{K} \eta \underbrace{\left.\llbracket \nabla u^{h} \cdot \overrightarrow{n_{1}}\right]}_{\left({ }^{*}\right)}|$
$\leq \underbrace{\left\langle\left\langle\eta, r^{n}\right\rangle\right|}_{(I)}+\sum_{s=1}^{\text {\#of edges }}|\int_{(I I)}^{\int_{s} \eta(x) \underbrace{\left.\llbracket \nabla u_{k}^{h} \cdot \vec{n}_{s}\right]}_{J_{k, s}^{h}}}|$

$$
r^{h}=f+\Delta u_{h}-c u_{h}
$$

$((*)$ flux jump : $\int_{\partial e_{1}}\left(\nabla u_{2}^{h}-\nabla u_{1}^{h}\right) \eta=\llbracket \underbrace{\left(\nabla u_{2}^{h}-\nabla u_{1}^{h}\right)}_{J} \cdot n \rrbracket)$

Using more advance interpolation estimation, it can be shown

$$
\begin{aligned}
& \Rightarrow(I) \leq\left\|h^{-1} \eta\right\|\left\|h r^{h}\right\|_{L^{2}} \leq c\left\|h r^{h}\right\|_{L^{2}}\|e\|_{E} \\
& (I I) \leq \sum_{K \in J_{h}} \sum_{s \rightarrow O K} h_{k}^{-\frac{1}{2}} \eta\left(x_{k}\right) \cdot h^{\frac{1}{2}} J_{k, s}^{h} \\
& \leq \sum_{K \in J_{h}} \sum_{s \rightarrow \partial K} c_{2}\|e\|_{E, K}\left[\int_{\partial s}\left(h^{\frac{1}{2}} J_{K, s}^{h}\right)^{2} d s\right]^{\frac{1}{2}} \leq \sum_{k \in J_{h}} \overline{c_{2}\|e\|_{E, K}}\left(h J_{k, s}^{h}\right) \\
& \leq<c_{2}\left(\sum_{k \in J_{h}}\|e\|_{E, K}^{2}\right)^{\frac{1}{2}}\left(\sum_{k \in J_{h}}\left(h J_{k, s}^{h}\right)^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

let $R_{h}=\sum_{k \in J_{h}}\left(J_{k, s}^{h}\right)$, we have

$$
\|e\|_{E}^{2} \leq \tilde{\tilde{c}}\left(\left\|h r^{h}\right\|_{L^{2}(\Omega)}+\sum_{\substack{K \in J_{h} \\ s \in \operatorname{Jdgeses}^{\prime} \\ J_{h} \\ \text { only depends on } u_{h}}} h_{s} \cdot J_{K, s}^{h}\right)
$$

here $J_{K, s}^{h}= \begin{cases}\frac{1}{2}\left|\nabla u_{1}^{h} \cdot \overrightarrow{n_{s}}-\nabla u_{2}^{h} \cdot \overrightarrow{n_{s}}\right| & , s \text { in the interior of } \Omega \\ 0 & \text { if } s \text { on the } \partial \Omega\end{cases}$

FEM for parabolic problem consider the heat equation
$(+)\left\{\begin{array}{l}\dot{u}-\operatorname{div}(\mu \nabla u)=f \text { in } \Omega \times I \\ u=0 \text { on } \Gamma_{1} \times I \\ \mu \frac{\partial u}{\partial n}=0 \text { on } \Gamma_{2} \times I \\ u(x, 0)=\dot{u}(x) \quad x \in \Omega\end{array}\right.$
(initial boundary value problem)

1-D Model problem:
$(+)\left\{\begin{array}{l}\frac{d}{d t} u-\frac{d^{2} u}{d x^{2}}=f \\ u(0, t)=u(\pi, t)=0 \\ u(x, 0)=u^{0}\end{array}\right.$
In case $f=0$, by seperation of variables

$$
\begin{aligned}
\text { consider } u(x, t)=e^{-u^{2} t} h(x) & \Rightarrow \frac{\partial u}{\partial t}=-w^{2} e^{-w^{2} t} h(x), \frac{\partial^{2} u}{\partial x^{2}}=e^{-w^{2} t} h^{\prime \prime}(x) \\
& \Rightarrow-w^{2} e^{-w^{2} t} h(x)-e^{-w^{2} t} h^{\prime \prime}(x)=0 \\
& \Rightarrow e^{-w^{2} x}\left(h^{\prime \prime}(x)+w^{2} h(x)\right)=0
\end{aligned}
$$

Consider $h(x)=d e^{i v x}$ for any $d \in \mathbb{C}$
From $u(0, t)=u(\pi, t)=0$, we have $h(x)=(-i) e^{i v x}$
real part
$\Rightarrow h(x)=\sin w x$
Therefore a general solution of $(+)$ has the following form

$$
u(x, t)=\sum_{w} w e^{-w^{2} t} \sin w x-(* *)
$$

Since $u(x, 0)=\sum_{w} c_{w} \sin w x=u^{0} \Rightarrow \underset{\substack{\uparrow \\ \text { fourier coefficient }}}{c_{w}}=\frac{2}{\pi} \int(\sin w x) u^{0} d x$
$\Rightarrow u(x, t)=\sum_{w=1}^{\infty} c_{w} e^{-w^{2} t} \sin w x$
\Rightarrow each component $\sin w x$ lives on a time scale $o\left(w^{-2}\right)$
\Rightarrow High freq modes quickly get damped! -(1)
\Rightarrow The solution u becomes smoother as $t \rightarrow \infty$
But $u(x, t)$ will not be smooth for $t \ll 1$
$\|u(t)\|=\left(\int_{\Omega} u^{2}(x, t) d x\right)^{\frac{1}{2}}=\left\|\frac{\partial^{2} u}{\partial x^{2}}\right\|=\left\|\sum c_{w} w^{2} e^{-i w t} \sin w x\right\| \rightarrow \infty$ as $t \rightarrow 0-(2)$
$\|\dot{u}(t)\|=\left\|\frac{\partial^{2} u}{\partial x^{2}}\right\| \rightarrow 0$ the rate is depends on how small $\underset{\substack{\text { mutude of } \\ \text { high freq modes }}}{c_{w}}$ is for large w
\Rightarrow In general smooth initial u^{0} gives small c_{w} for large w_{2}
An initial phase for t small where certain derivatives of u are large is called an "initial transient"
Observation: based on (1) \& (2)
(i) initial transient \Rightarrow small time step for discretization of $\frac{d}{d f} u$
if rough initial u^{0} (oscillating discontinuity etc.)
\Rightarrow small mech size for discretization of $u_{x x}$
(ii) smooth $u(x, t)$ as $t \rightarrow \infty \Rightarrow$ largertime step and larger mesh size.

In general, we have the following estimation
$\left\{\begin{array}{l}\|u(t)\| \leq\left\|u^{0}\right\| \quad t \in I \\ \|\dot{u}(t)\| \leq \frac{c}{t}\left\|u^{0}\right\| t \in I\end{array}\right.$
Exercise: (1) prove (3) by using ($* *$)
(2) prove (3) using Energy method

$$
\begin{aligned}
& u\left(\frac{d u}{d t}-\frac{d^{2} u}{d x^{2}}\right)=0 \stackrel{(9)}{\Rightarrow} \int \frac{1}{2} \frac{d u^{2}}{d t}+\int|\nabla u|^{2}=0 \\
& \Rightarrow \frac{1}{2} \frac{d}{d t}\|u\|^{2}=-\|\nabla u\|_{\text {poincare inea. }}^{<}-\|u\|^{2} \\
& \Rightarrow\|u\|<e^{-t}\left\|u^{0}\right\| \Rightarrow\|u\|<\left\|u^{0}\right\|
\end{aligned}
$$

Exercise: using Energy method to prove $\|\cdot\|\left\|\leq \frac{1}{t}\right\| u^{0} \|$
Semi-discretization in space for $(+)$ with dinichlet data $\left(\Gamma_{2}=\phi\right)$
consider $u_{h}(x, t)=\sum_{i=1}^{m} \psi_{i}(t) \varphi_{i}(x)\left(\begin{array}{l}\text { in previous example } \\ \psi_{i}(t)=c_{w} e^{-w^{2} t} \\ \varphi_{i}(x)=\sin w x \quad m=\infty\end{array}\right)$
$\Rightarrow \sum_{i=1}^{m} \dot{\psi}_{i}(x) \underbrace{\left(\varphi_{i}, \varphi_{j}\right)}_{M}+\sum_{i=1}^{m} \psi_{i}(t) \underbrace{\left\langle\nabla \varphi_{i}, \nabla \varphi_{j}\right\rangle}_{K}$
$\left\{\begin{array}{ll}=\underbrace{\left\langle f(t), \varphi_{j}\right\rangle}_{F}, \quad j=1 \sim m \\ \sum_{i=1}^{m} \psi_{i}(0)\left(\varphi_{i}, \varphi_{j}\right)=\underbrace{\left(u^{0}, \varphi_{j}\right)}_{U^{0}} & j=1 \sim m\end{array} \quad \vec{\psi}=\left(\psi_{1}, \psi_{2}, \cdots \psi_{m}\right)\right.$
$\Rightarrow\left\{\begin{array}{l}\overrightarrow{(4)} \dot{\overrightarrow{\vec{\psi}}}+K \vec{\psi}=F(t) \\ M \vec{\psi}(0)=U^{0}\end{array} \Rightarrow\right.$ system of ordianry equation
Recall that the condition of $M(\chi(M)=\Delta(1))$
and the condition of $K\left(\chi(k)=o\left(h^{-2}\right)\right)$ as $h \rightarrow 0$
cosider $\vec{\psi}=e^{-i \vec{w} t} \vec{v}$ for the homogeneous case $M \vec{\psi}+K \vec{\psi}=0$
$\Rightarrow[-(M i) \vec{w}+K] \vec{v}=0 \underset{\substack{\text { Solve the } \\ \text { genearized } \\ \text { eifenvile } \\ \text { problem gives }}}{\Rightarrow}$ the eigenvalue w and V_{w}
the general solution can now be expressed as
$\vec{\psi}=\sum_{j=1}^{m} c_{j} e^{i w_{j} t} v_{j}$ here $\vec{c}=\left\{c_{j}\right\}_{j=1 \sim m}$ satisfies $M \cdot V \cdot \vec{c}=U^{0}, V=\left[v_{1}, v_{2}, \cdots v_{m}\right]$
Similar to the model problem,
one has smooth mode corresponding to the $\min _{j=1 \sim m}\left\{w_{j}\right\} \approx o(1)$
and highly oscillatory mode corresponding to the $\max _{j=1 \sim m}\left\{w_{j}\right\} \approx o\left(h^{-2}\right)$
$\vec{\psi}$ has components live on time scales from $\underset{\text { (smooth mode) }}{o\left(h^{-2}\right)}$ to $\underset{\text { (osciliatory mode) }}{o(1)}$
(or say from $o(1)$ to $\left.o\left(h^{2}\right)\right)$
As mentioned previously, one should use methods which adapt the size of each time step according to the smoothness of $\vec{\psi}$. Moreover, if explicit time discretization is employed, one should choose the step as small as $o\left(h^{2}\right)$ in order to prevent potential instability. $\binom{\Rightarrow$ trancation error }{$\Rightarrow o(\Delta t)=o\left(h^{2}\right)}$
To avoid extreme small time step, implicit time discretization such as implicit Euler or Crnak-Nicolson method can be employed.

