Condition number of the sitffness matrix:
Assume the triangulation J, satisfies
h.>ph h= max h., h, =diameter of element k
&Jh
% > [, p. =radius of the circle incribed in k = IVqudx
Kk
Consider bilinear form a(u,v) satisfying the coercivity and continuity

on Hj,(Q) (vh c Hgvo)

{(i)a(u,vwnunz
(ia(uv)< gl (Q<r?)

The following Lemma holds
Lemma 1. 3 constants c and C (depends on a,ﬂ) such that for all

Vv, = ivi(pi eV,, the following inequalities hold.
i=1
(10) c® V[ <[w [ <ch?’V (v=(w.v;0v,))
(1D)a(v,.v,)= J. |Vvh|2 dx < ch-? ||Vh||2 ?nverse.estimate compare with poincare
o inequality |v] . <[Vv|..
(prove: Skip. See claes Johnson's section 7.7)

(exercise)



With the help of the Lemma 1, we can show the condition number
of the stiff matric K is O(h?).

cond (K) = ”K“H Kil”('\matrix norm) ” K“ Sup(”” ““]

Since

T~ - .
v Ky _avv)® || || (10) <20 < | Vevector corresponding
—-2 - 2 = st = max —
M M ‘ ‘ v to max evalue

V' Kv a(Vh’Vh)>6” “
W W

= A (K)<C" and 4, (K)2c"h?

:>cond(K)sCh‘2 (C: C**J

2
>c"h = Anax 2

2 (v: evector corresponding j

v to min evalue

(exercise: In 3D, ch?® M < ||u||2 <ch®lv| = cond (K)<Ch?)
Remark:
(1) Recall that when solving linear system Ax =b by iterative method,

(Iet X be the iterative solution i.e. AX=b+ Ab), we have

|A | <cond (A )U here r =b— Ax (the residual)

_ . i ) ) r
If the relative error is required to be less than &, the relative residual (UJ

bl

should be required to be less that &-h’
|Ax|

[X

Tvector

stiff matirx

ond (A) (T_FET/' . j

= <<9:>|Ax|<g|x|<g||xh||h1



(2)How large & should be?

ch?[x < cn?|f]

true ”HZ(Q) T Assuming

regularity
estimate

(Xeew is the FEM solution, X, is the PDE solution)
i.e. we want [Ax| < h?| f ||J

|AX| < &|Xeem|

Recall that |[x,. —X <
” trur FEM ”Lz T Duality argument

Since we don't want |AX| > X = Xeew (

(AX = Xiter — Xrem )

we set g<<M~h2
|XFEM|
v
- r .h3’ ”f” h3 > ”f” . ”Xtrue” h3
rdepon f ”XFEM ” ”Xtrue ” ”Xtrue ” + Ch2 ||Xtrue ”Hz
and Xy e

The a posteriori error estimation:
—Au+cu=f
consider a(u,v)= IVqu+cJuv and u be the solution of
a(u,v) :I fvdx =L(f) |ul. :the energe norm\
e=u-u
let 7" =u"—u", here u" = lu (interpolant of u)
n=u"—u

clearly we have e =e" + 7



Since

orthogonality
(a(xn.€)=0 pyeVy)

lel: =[a(e.e)| =[a(e"+ne) = fa(ne)
= a(n,u—u“)‘
- a(ry,u)—a(n,uh)‘

| epo])

=IL(n)- >, jVnVuh+CJ-77hh

KEJh e

(integration)

" L(n)+J.77(Au“—cu“)+ZIU—VU“-E]I
o ko T
#of edges ~
gKn,r”>+ g n(x)[[VuC-ns]]
A w
|
(i)

r"=f +Au, —cu,

[(*)fluxjump: j (Vu -vul )y = ﬂ(VuQ Vuf)-nﬂ]

e




Using more advance interpolation estimation, it can be shown

”U N Iu||L2(K) <ch ”e” E. K

energy element
norm

1
A ”e”E,K

Ju =10z,
= (1) <[ e, <cfnr]. el
(||)ng; Zth'in(xk)-hiJk“,S
2 T
P ||e||E‘{ j[mj ds} < 3 &l (nz.)

1 1
2 2
sc?fznenz,KJ [Z(maﬂ
keJy, kely,

letR, =" (Jy, ), we have

keJy,

e <c| |nr"

+ h,-Jp
LZ(Q) Ke; S K,S

seedges of
Jn

only depends on uj,

A l‘Vulh .n, —Vul-n, s in the interior of O
here Ji , =42

0 if s on the 0Q)

FEM for parabolic problem
consider the heat equation

u-div(4vu)=f inQxl
u=0onT,xI

+ ou
( ) /U%:O OnF2X|

u(x,O):d(x) XeQ

(initial boundary value problem)



I

1— D Model problem:
d du

TR
(+)]u(0)=u(z1)=0

u(x,0)=u’

In case f =0, by seperation of variables

2
consider u(x,t)=e""*h(x) = 2—1: = —w?e™""h(x), % =e™"'h"(x)

— w2 "'h (x)- e’Wzth”(x) =0

— g™ (h"(x)+wh(x))=0




Consider h(x)=de"™ foranyd e C
From u(0,t) =u(z,t)=0, we have h(x) = (-i)e™

real part

= h(x)=sinwx

Therefore a general solution of (+) has the following form
u(xt)=> we™ sinwx —(**)

Sinceu(x,0)=> c,sinwx=u’ = ¢, =£I(sinwx)u°dx
w T

4

fourier coefficient

u(x,t):icwe’wzt sin wx

w=1
= each component sin wx lives on a time scale o(w‘z)
= High freq modes quickly get damped! —(1)
= The solution u becomes smoother as t — o
But u(x,t) will not be smooth for t «1

' : o’u .
6(0] - Jurngen | <2 e sinan] e st 20 (2
Q
. 2
HU(I)H = % — 0 the rate is depends on how small ¢, s for large w

multitude of
high freq modes

= In general smooth initial u® gives small ¢, for large w,

An initial phase for t small where certain derivatives of u are large
is called an "initial transient"
Observation: based on (1) &(2)

(i)initial transient = small time step for discretization of (;j—fu

if rough initial u® (oscillating discontinuity etc.)
= small mech size for discretization of u,,
(ii)smooth u(x,t) ast — oo = largertime step and larger mesh size.



In general, we have the following estimation

Ju(e)] <u]
u(t)

Exercise: (1)prove (3) by using (**)

<SJue] e

(2)prove (3) using Energy method
du d-u 1 du
u (E 7j j j|VU|2 =0

= ——IIUII =—|vuff ~Julf

pomcare ineq.

= Juf<e™ HuOH = |ul< Hu H

Exercise: using Energy method to prove

< il

Semi-discretization in space for (+) with dinichlet data (T, = ¢)

in previous example

consider u, ( Z‘/’- o.(x) |w (t)=c.e™
@ (X)=sinwx m=oo

=2 ()(e.0,) + 2w (Ve Vo)

:M j=1~m
Z::wi(o)(¢i,¢j):Mj:1~m v =y ¥a)

_ IMy+Ky =F(t)

; " = system of ordianry equation

Recall that the condition of M ( z(M)=A(1))
and the condition of K (;((k) = o(h‘z)) ash—0

cosider y ="V for the homogeneous case My + Ky =0

= [—(MI)W+ K]v =0 = theeigenvaluewandV,
Solve the
genearlized
eigenvalue
problem gives



the general solution can now be expressed as

—_— m B — —

w=>ce"'v, herec= {Cj}j:l~m satisfies M -V -c =U°, V =[v,,v,, -V, ]
=1

Similar to the model problem,

one has smooth mode corresponding to the mlin
J

=1~m

{Wj} r 0(1)

and highly oscillatory mode corresponding to the max {w; } ~ o(h™*)
J

j=1~m

1; has components live on time scales from o(h’z) to 0(1)

(smooth mode) (oscillatory mode)

(or say from o(1) to o(h*))

As mentioned previously, one should use methods which adapt the

size of each time step according to the smoothness of 1; Moreover,
if explicit time discretization is employed, one should choose the step

_ o (= trancation error
as small as o(h?) in order to prevent potential instability. )
= O(At) = o(h )
To avoid extreme small time step, implicit time discretization such as

implicit Euler or Crnak-Nicolson method can be employed.



