Remark: We don't want the error from solving the ODE system
to exceed the error bound in the above theorem.
Otherwise, the error from time discretization will be the
dominant error source.
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as n— oo, we have error ~ ——9
[AAt
= meaning the accumulated error from time discretization is controlled
by the truncation error.
Similarly, one can prove the same result for the Crank-Nicolson scheme.
Exercise: prove this.
Remark:

(1) From the error estimation in Theorem 1, we want At ~ o(hz) for the Euler
method. In this choice of the step size, we have 6 = truncation error(in time)
=o(h?) and ||AjAt ~o(h™*)o(h*) ~ o(1) = the accumulated error from the
discretization in the same order as in Theorem 1.

(2)For smoother solution ||A| ~ o(hz) larger time step is possible, can you
explain why?

Exercise: How to choose At when forward Euler method is employed and

explain your reason at the stability point of view.
Theorem 1.
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Exercise:
ou
E—Au 0 onQ= [ 1,1]><[—1,1]\C,
C :circle center at (0,0) wiht radius 1
Solve the Heat equation 2
u|r =10’ u|r =
M o iz2~4
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10 x=-1
with initial u(x, y) = _
0 elsewise



Iy

(1) using Forward Euler, back Euler, Crank-Nicolson method for
time-discretization of 8_u

(2)using linear triangular element to discretize Au.
(3)compare your answer at t =1,5,10,20 over diff mesh sizes.
Can you confine the conclusion in Theorem 1?

Recall the FEM modeling of 1-D solid(bar, beam, fream) and structure,
the virtural work principle leads to the following equation:
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In 2-D, the stress-strain relationship for a plate is as following
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shear stram:stram
inv along y direction

o, . stress along x-direction (due to strain in x-direction)
o,, . stress along y-direction (due to strain in y-direction)
stress along y-direction + stress along x-direction
due to shear due to shear

o, . .. . . . shear stress
x strain in x-direction strain in y-direction
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the equation (*)
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Choose FEM space (Suppose linear element)
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Exercize:
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Plate Bending:
Recall in 1-D Beam bending, the virtual work principle leads to
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In 2-D, similarly, we have the strain-stress relationship
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To discretize (*), one can use the finite element space in example 6 at p.58
which is the piecewise cubic polynomial spaces.

(with 10 coefficients for each polynomial)

Since we only have 9 state variables = the state varibles can't be determined
uniquely. By ignoring the center node = Gives us an "incomplete” cubic
polynomial space. Now we have 9 nodal basis ¢, @, &,, ¢ ¢, &5, ¢’ &) ¢,.
The coefficients can now be determined uniquely.

This special Finite element is called the BCIE element.

(Bazeley, Cheung, Irons and Zienkiewicz)
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Remark:

(1) This element does not satisfy the conforming property
i.e. the state variables are not continuous = in fact the state variables
(may not continuous at element edges. j
but the state variables are continuous at nodal points.

(2) To ensure continuity of the state variables (i.e ensure FEM space is C' in this case)
conforming elements such as Argyris triangle or the so called Clough-Tocker element
are needed. More unknown coefficients (involving second derivatives) are required
(Agyris triangle: 21 unknowns _ _

= Program usually is too complicated.
Clough-Tocker: 30 unknowns



