Remark: We don't want the error from solving the ODE system to exceed the error bound in the above theorem.
Otherwise, the error from time discretization will be the dominant error source.

By Cholesky decomposition, we have $M=L^{T} L$
$(4) \Rightarrow\left\{\begin{array}{l}\dot{0}+A \psi=F \\ \psi+ \\ \psi_{0}=U_{0}\end{array}\right.$ here $\left\{\begin{array}{l}\psi=L \psi \\ A=L^{-T} K L^{-1} \\ F=L^{-T} F \\ U_{0}=L^{-T} U_{0}\end{array}\right.$
\Rightarrow general solution of (5)

$$
\begin{equation*}
\psi=e^{-A t} \psi_{0}+\int_{0}^{t} e^{-A(t-s)} F(s) d s \tag{5}
\end{equation*}
$$

$\dot{\psi}=-A e^{-A t} \psi_{0}$
$\psi=e^{-A t} \psi+e^{-A t} \int_{0}^{t} F(s) d s+\int_{0}^{t} e^{A s} F(s) d s$
$\frac{d}{d t} \int_{0}^{t} e^{-A(t-s)} F(s) d s=\frac{d}{d t} \int_{0}^{t} e^{-A t} \cdot e^{A s} F(s) d s$

$$
=\frac{d}{d t} e^{-A t} \int_{0}^{t} e^{A s} F(s) d s
$$

$$
=-A e^{-A t} \int_{0}^{t} e^{A s} F(s, d)+e^{-A t}\left(e^{A t} F(t)\right)
$$

$$
=-A \int_{0}^{t} e^{-A(t-s)} \overline{F(s)} d s+\overline{F(t)}
$$

$\overline{\bar{\psi}=-A} \underbrace{\left(e^{-A t} \widehat{\psi_{0}+\int_{0}^{t} e^{-A(t-s)}} \overline{F(s)} d s\right)}_{\psi}+\widetilde{F(t)}$

Homogeneous
problem $F=0$
$\stackrel{ }{\Rightarrow}\|\psi(t)\|<\|\psi(0)\|$
$\|\dot{\psi}(t)\|<\frac{c}{l}\|\psi(0)\| \quad c$ depends on considiton of A
(*)Prove using $\left(\sum \frac{\Lambda_{\text {min }}^{n}(A)}{n!}<\left\|e^{A}\right\|<\sum \frac{\Lambda_{\text {max }}^{n}(A)}{n!}\right)$

Backward Euler

$\Rightarrow \frac{\psi^{n+1}-\psi^{n}}{\Delta t_{n}} A \psi^{n+1}=F_{n+1}\left(=F\left(t_{n+1}\right)\right)$
Crank-Nicolson
$\Rightarrow \frac{\psi^{n+1}-\psi^{n}}{\Delta t_{n}}+\frac{1}{2} A\left(\psi^{n+1}+\psi^{n}\right)=\frac{1}{2}\left(F_{n+1}+F_{n}\right)$
Consider the exact solution of (5) satisfies
$\frac{\psi\left(t_{n+1}\right)-\psi\left(t_{n}\right)}{\Delta t_{n}}+A \psi\left(t_{n+1}\right)=F\left(t_{n+1}\right)+\delta_{n}\left(\delta_{n}=o\left(\Delta t_{n}\right)\right)$ (truncation error)
(6) - (8) $\Rightarrow \frac{e_{n+1}-e_{n}}{\Delta t_{n}}+A e_{n+1}=\delta_{n}$

$$
\begin{aligned}
& \Rightarrow\left(I+\Delta t_{n} A\right)^{-1} e_{n+1}=e_{n}+\Delta t \delta_{n} \\
& \left.\Rightarrow e_{n+1}=\left(I+\Delta t_{n} A\right)^{-1} e_{n}+(I+\Delta t A)^{-1} \widehat{\delta_{n}\left(\delta_{n}=\Delta t\right.} \delta_{n}=o\left(\Delta t^{2}\right)\right)
\end{aligned}
$$

Since A is positive definite $\Rightarrow \Lambda_{\text {evalue }}(I+\Delta t A)>1$
$\binom{\delta_{n}=o\left(\Delta t_{n}\right)$ depends on $\overrightarrow{\psi \text { if }} \overrightarrow{\psi \text { changes smoothly than the constant }}}{$ in $o\left(\Delta t_{n}\right)$ can be small. }
$\left.\begin{array}{l}e_{n+1}-r e_{n}<r e \delta_{n} \\ r e_{n}-r^{2} e_{n-1}<r^{2} \delta_{n-1} \\ r^{2} e_{n-1}-r^{3} e_{n-2}<r^{3} \delta_{n-2} \\ r^{n} e_{1}-r^{n+1} e_{0}<r^{n+1} \delta\end{array}\right\} \Rightarrow e_{n+1}-r^{n+1} e_{0}<\left(\sum_{k=1}^{n} r^{r}\right) \delta=r\left(\frac{1-r^{n+1}}{1-r}\right) \delta$
$\Rightarrow\left\|e_{n+1}\right\|<\left(\left\|e_{n}\right\|+\delta_{n}\right) \cdot r \quad r=\frac{1}{1+\|A\| \Delta t}<1$.
for stability: one can assume $\delta_{n} \ll e_{n}\left(\because \delta_{n}=o\left(\Delta t^{2}\right)\right.$ and $\left.e_{n}=o(\Delta t)\right)$
$\Rightarrow\left\|e_{n+1}\right\|<\left\|e_{n}\right\|$!
For global error estimate, we have

$$
\begin{aligned}
\Rightarrow\left\|e_{n+1}\right\| & <r^{n+1}\left\|e_{0}\right\|+r\left(\frac{1-r^{n+1}}{1-r}\right) \underset{\substack{\uparrow \\
\text { truncation erroo o }\left(\Delta t^{2}\right)}}{\widetilde{\delta}} \\
& \approx \mathrm{r}^{n+1}\left\|e_{0}\right\|+\frac{1-r^{n+1}}{\|A\| \Delta t} \widetilde{\delta} \\
& \approx r^{n+1}\left\|e_{0}\right\|+\left(\frac{1-r^{n+1}}{\|A\| \Delta t}\right) \cdot \underset{\substack{\text { truncaion o(} \Delta t)}}{\delta}
\end{aligned}
$$

as $n \rightarrow \infty$, we have error $\approx \frac{1}{\|A\| \Delta t} \delta$
\Rightarrow meaning the accumulated error from time discretization is controlled by the truncation error.
Similarly, one can prove the same result for the Crank-Nicolson scheme.
Exercise: prove this.
Remark:
(1) From the error estimation in Theorem 1, we want $\Delta t \approx o\left(h^{2}\right)$ for the Euler method. In this choice of the step size, we have $\delta=$ truncation error (in time) $=o\left(h^{2}\right)$ and $\|A\| \Delta t \approx o\left(h^{-2}\right) o\left(h^{2}\right) \approx o(1) \Rightarrow$ the accumulated error from the discretization in the same order as in Theorem 1.
(2) For smoother solution $\|A\| \approx o\left(h^{2}\right)$ larger time step is possible, can you explain why?
Exercise: How to choose Δt when forward Euler method is employed and explain your reason at the stability point of view.
Theorem 1.
There is a constant c such that $I \in[0, T]$

$$
\max _{t \in I}\left\|u(t)-u_{h}(t)\right\| \leq c\left(1+\left|\log \frac{T}{h^{2}}\right|\right) \max _{t \in I} h^{2}\|u(t)\|_{H^{2}(\Omega)}
$$

pf: Consider the auxiliary problem $\left(a(u, v)=\int \mu \nabla u \nabla v d x\right)$
$(++)\left\{\begin{array}{l}-\left(\dot{\varphi}_{h}(s), v\right)+a\left(\varphi_{h}(s), v\right)=0 \quad \forall v \in V_{h}, s \in(0, t) \\ \varphi_{h}(t)=e_{h}(t)\end{array}\right.$
let $e_{h}(t)=u_{h}(t)-\widetilde{u_{h}(t)}\left(e_{h}(s)=u_{h}(s)-\widetilde{u_{h}(s)}\right)$ and $\widetilde{u_{h}(s)}$ satisfies
$(+++) a\left(u(s)-\widehat{\left.u_{h}, v\right)}=0 \quad\right.$ for all $v \in V_{h}, s \in(0, t)$
let $w_{h}(t)=u-u_{h}=\left(u-\widetilde{\left.u_{h}\right)-\left(u_{h}-\widetilde{\left.u_{h}\right)} \text { and } \theta(s)=u(s)-\widetilde{u_{h}(s)}\right.}\right.$
$\Rightarrow e_{h}(s)=\theta_{h}(s)-w_{h}(s)$

$$
\left\|e_{h}\right\|^{2}=\int_{0}^{t}-\left(\dot{\varphi}_{h}, e_{h}\right)+a\left(\varphi_{h}, e_{h}\right) d s+\left(\varphi_{h}(t), e_{h}(t)\right)
$$

$$
\begin{aligned}
& \stackrel{\text { integration }}{\stackrel{\cdot}{\text { by parts }}}=\int_{0}^{t}\left(\varphi_{h}, e_{h}\right)+a\left(\varphi_{h}, e_{h}\right) d s-\left.\left(\varphi_{h}, e_{h}\right)\right|_{0} ^{t}+\left(\varphi_{h}(t), e_{h}(t)\right) \\
& \stackrel{e_{h}=\theta_{h}-w_{h}}{=} \int_{0}^{t}\left(\varphi_{h}, \dot{\theta_{h}}\right)+a\left(\varphi_{h}, \theta_{h}\right)-\underbrace{\left[\left(\varphi_{h}, \dot{w}_{h}\right)+a\left(\varphi_{h}, w_{h}\right)\right.}_{\substack{=0 \\
\text { orthogonally of FEM error } \\
w_{h}=\text { FEM error }}} d s+\varphi_{h}(0) e_{h}(0)
\end{aligned}
$$

$a\left(\varphi_{h}, \theta_{h}\right)=0$ by $(+++)$
and $w_{h}(0)=0$
(initial error=0)

$$
\stackrel{\text { error= }=0)}{=} \quad \int_{0}^{t}\left(\dot{\varphi}_{h}, \theta_{h}\right) d s+\left(\varphi_{h}(t), \theta_{h}(t)\right)
$$

$\Rightarrow\left\|e_{h}\right\|^{2} \leq \max _{s \in(0, t)}\left\|\theta_{h}(s)\right\|\left(\int_{0}^{t}\left\|\dot{\varphi}_{h}\right\|+\left\|\varphi_{h}\right\|\right)$
Since φ_{h} is the condition of $(++)$ with homogeneous right hand side,
by $(5)^{*}$, it can be shown $\left.\left|\int_{0}^{t}\left\|\dot{\varphi}_{h}\right\|+\frac{1}{t}\left\|\varphi_{h}\right\| d s\right|<c\left(1+\log \left(\frac{t}{h^{2}}\right)\right) \| \begin{array}{c}\text { initial of }(++) \\ \text { in }\end{array}\right)$
$\Rightarrow\left\|e_{h}\right\|<c\left(1+\log \frac{t}{h^{2}}\right) \cdot \max _{s \in(0, t)}\left\|\theta_{h}(s)\right\|$
Finally, since $u-u_{h}=u-\overline{u_{h}+u_{h}-u_{h}}$
$\Rightarrow\left\|u-u_{h}\right\| \leq \| u-\overline{u_{h}\|+\| e_{h} \|}$

$$
\begin{aligned}
& \stackrel{\substack{\text { by the } L^{2} \text {-error } \\
\text { estimation of }(+++)}}{\leq} c h^{2} \max _{t \in I}\|u(t)\|_{H^{2}}+c\left(1+\log \frac{t}{h^{2}}\right) h^{2} \max _{t \in I}\|u(t)\|_{H^{2}} \\
& \quad<c\left(1+\log \frac{t}{h^{2}}\right) h^{2} \max _{t \in I}\|u(t)\|_{H^{2}}
\end{aligned}
$$

Exercise:

Solve the Heat equation

$$
\frac{\partial u}{\partial t}-\Delta u=0 \quad \text { on } \Omega=[-1,1] \times[-1,1] \backslash C,
$$

$$
\begin{aligned}
& \left.u\right|_{\Gamma_{1}}=10,\left.u\right|_{\Gamma_{5}}=0 \\
& \left.\frac{\partial u}{\partial n}\right|_{\Gamma_{i}}=0, i=2 \sim 4
\end{aligned}
$$

with initial $u(x, y)= \begin{cases}10 & x=-1 \\ 0 & \text { elsewise }\end{cases}$

(1) using Forward Euler, back Euler, Crank-Nicolson method for time-discretization of $\frac{\partial u}{\partial t}$.
(2) using linear triangular element to discretize Δu.
(3)compare your answer at $\mathrm{t}=1,5,10,20$ over diff mesh sizes.
Can you confine the conclusion in Theorem 1?

Recall the FEM modeling of 1-D solid(bar, beam, fream) and structure, the virtural work principle leads to the following equation:

In 2-D, the stress-strain relationship for a plate is as following

$$
\sigma_{x x}: \text { stress along } x \text {-direction (due to strain in } x \text {-direction) }
$$

$$
\sigma_{y y}: \text { stress along } y \text {-direction (due to strain in } y \text {-direction) }
$$

$$
\left.\begin{array}{cc}
\text { stress along } y \text {-direction }+ \text { stress along } x \text {-direction } \\
\text { due to shear } & \begin{array}{c}
\text { due to shear } \\
\text { strain in } x \text {-direction } \\
\text { strain in } y \text {-direction } \\
\text { (i) }
\end{array}
\end{array}\right\} \text { (ii) } \quad \text { shear stress }
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right)=\underbrace{\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1}{2}(1-v)
\end{array}\right]}_{C}\left(\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y}
\end{array}\right) \text {, here } \\
& \varepsilon_{x x}=\frac{\partial u}{\partial x} \\
& \varepsilon_{y y}=\frac{\partial v}{\partial y} \quad,(u, v)=\text { displacement vector } \\
& \varepsilon_{x y}=\underbrace{\frac{\partial u}{\partial y}}_{\substack{\text { shear stram:stram } \\
\text { in } v \text { along } y \text { direction }}}+\frac{\partial v}{\partial x}
\end{aligned}
$$

the equation $(*)$

$\Rightarrow(\mathrm{I})=\int\lfloor\delta u, \delta v\rfloor\left[\begin{array}{ccc}\frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\ 0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}\end{array}\right] \cdot C \cdot\left[\begin{array}{cc}\frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x}\end{array}\right]\binom{u}{v} d A$
parametrizing:
Consider $\binom{\frac{\partial u}{\partial \zeta}}{\frac{\partial u}{\partial \eta}}=\underbrace{\left(\begin{array}{ll}\frac{\partial x}{\partial \zeta} & \frac{\partial y}{\partial \zeta} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta}\end{array}\right)}_{J}\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}$
$\Rightarrow\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\frac{1}{\operatorname{det} J}\left[\begin{array}{cc}\frac{\partial y}{\partial \eta} & -\frac{\partial y}{\partial \zeta} \\ -\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial \zeta}\end{array}\right]\binom{\frac{\partial u}{\partial \zeta}}{\frac{\partial u}{\partial \eta}}=\underset{\left.\begin{array}{c}\text { Y can be determind by } \\ \text { the map function by } \\ \text { considering }\binom{x}{y}=\sum_{i}\binom{x}{y}_{i} \psi_{i}\end{array}\right)}{\left[\begin{array}{cc}Y_{11} & Y_{12} \\ Y_{21} & Y_{22}\end{array}\right]}$
$\Rightarrow\left(\begin{array}{c}\frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\end{array}\right)=\underbrace{\left[\begin{array}{cccc}Y_{11} & Y_{12} & 0 & 0 \\ 0 & 0 & Y_{21} & Y_{22} \\ Y_{21} & Y_{22} & Y_{11} & Y_{12}\end{array}\right]}_{\Phi}\left(\begin{array}{c}\frac{\partial u}{\partial \zeta} \\ \frac{\partial u}{\partial \eta} \\ \frac{\partial v}{\partial \zeta} \\ \frac{\partial v}{\partial \eta}\end{array}\right)$

Choose FEM space (Suppose linear element)

$$
\text { (II) } \partial \Omega=\bigcup_{e \in \delta \Omega} \int_{\partial \Omega}\lfloor\delta u, \delta v\rfloor \cdot \vec{T} d e=\sum_{\substack{e \in J J(\partial \Omega) \\ \uparrow \\ \text { assembling over boundary line segments }}} \int\lfloor\delta u, \delta v\rfloor \cdot \overrightarrow{T^{e}} d e
$$

$$
\begin{aligned}
\int_{e}\lfloor\delta u, \delta v\rfloor \cdot\binom{T_{x}^{e}}{T_{y}^{e}} d s & =\int_{e}\left\lfloor\delta u_{1} \delta v_{1} \delta u_{2} \delta v_{2}\right\rfloor\left(\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2}
\end{array}\right) \cdot\left(\begin{array}{cccc}
N_{1} & 0 & N_{2} & 0 \\
0 & N_{1} & 0 & N_{2}
\end{array}\right]\left(\begin{array}{c}
T_{x}^{(1)} \\
T_{y}^{(1)} \\
T_{x}^{(2)} \\
T_{y}^{(2)}
\end{array}\right) \cdot|e| d s \\
& =\lfloor\overrightarrow{\delta u}\rfloor \int_{0}^{1}\left(\begin{array}{cccc}
N_{1}^{2} & 0 & N_{1} N_{2} & 0 \\
0 & N_{1}^{2} & 0 & N_{1} N_{2} \\
N_{2} N_{1} & 0 & N_{2}^{2} & 0 \\
0 & N_{2} N_{1} & 0 & N_{2}^{2}
\end{array}\right)|e| d s N_{1}=1-s, N_{2}=s
\end{aligned}
$$

(III)Skip when zero body force

$$
\begin{aligned}
& u^{(i)}=\sum_{i} N_{i} u_{i}^{(i)}, \quad N_{1} \sim N_{4} \text { are basis functions(shape) }
\end{aligned}
$$

Exercise:

Plate Bending:
Recall in 1-D Beam bending, the virtual work principle leads to

$$
\int_{0}^{L} E I \frac{\partial^{2} \delta w}{\partial x^{2}} \frac{\partial^{2} w}{\partial x^{2}} d x+\int_{0}^{L} v \bar{f} d x=0 \quad \bar{f}=\int_{A} f d A, I=\int_{A} z^{2} d y d z
$$

The state varibles are w, θ where $\theta=-\frac{\partial w}{\partial x}$ and the shap functions $\operatorname{are} N_{w_{1}}, N_{\theta_{1}}, N_{w_{2}}, N_{\theta_{2}}$

In 2-D, similarly, we have the strain-stress relationship

$$
\left(\begin{array}{l}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y} \\
\sigma_{z z} \\
\sigma_{z x} \\
\sigma_{z y}
\end{array}\right)=C \cdot\left(\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\varepsilon_{x y} \\
\varepsilon_{z z} \\
\varepsilon_{z x} \\
\varepsilon_{z y}
\end{array}\right) \quad \begin{array}{r}
\varepsilon_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
\varepsilon_{z x}=\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z} \\
\varepsilon_{z y}=\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}
\end{array}
$$

here we assume $\left\{\begin{array}{l}\varepsilon_{x z} \text { very small } \\ \varepsilon_{y z} \text { very small } \\ \varepsilon_{z z} \text { very small }\end{array}\right.$ (thin plate)

$$
\varepsilon_{x z}=\varepsilon_{y z}=0 \quad \theta_{y}=-\frac{\partial w}{\partial x}
$$

Kirchhoff theory assume $\frac{\partial u}{\partial z}=-\frac{\partial w}{\partial x}, \frac{\partial v}{\partial z}=-\frac{\partial w}{\partial y} \Rightarrow \theta_{x}=-\frac{\partial w}{\partial y}$
$\varepsilon_{x x}=\frac{\partial u}{\partial x} \stackrel{\left(\begin{array}{c}u \approx z \cdot \frac{\partial u}{\partial u} \\ =z\left(\frac{\partial w}{\partial x}\right. \\ =\end{array}\right)}{=}-z \frac{\partial \theta_{y}}{\partial x}=-z \frac{\partial^{2} w}{\partial x^{2}}$

$\varepsilon_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=-2 z \frac{\partial^{2} w}{\partial x \partial y} \quad \Rightarrow$ Total number of unknowns over a triangle 9
(rectanguler) 12
\Rightarrow The strain Energy (internal energy)
$U=\iint\left(\delta \varepsilon_{x x}, \delta \varepsilon_{y y}, \delta \varepsilon_{x y}\right) \cdot C \cdot\left(\begin{array}{c}\varepsilon_{x x} \\ \varepsilon_{y y} \\ \varepsilon_{x y}\end{array}\right) d A-(*)$
here $C=\left[\begin{array}{ccc}D & v D & 0 \\ v D & D & 0 \\ 0 & 0 & \frac{D(1-v)}{2}\end{array}\right]$ where $D=\frac{t^{3}}{12} \frac{E}{1-v^{2}}, t$ is the thickness of the plate.

To discretize $\left(^{*}\right)$, one can use the finite element space in example 6 at p .58 which is the piecewise cubic polynomial spaces.
(with 10 coefficients for each polynomial)
Since we only have 9 state variables \Rightarrow the state varibles can't be determined uniquely. By ignoring the center node \Rightarrow Gives us an "incomplete" cubic polynomial space. Now we have 9 nodal basis $\phi_{1} \phi_{2} \phi_{3}, \phi_{1}^{x} \phi_{2}^{x} \phi_{3}^{x}, \phi_{1}^{y} \phi_{2}^{y} \phi_{3}^{y}$. The coefficients can now be determined uniquely. This special Finite element is called the BCIE element. (Bazeley, Cheung, Irons and Zienkiewicz)

$$
\begin{gathered}
\Rightarrow U=\iint_{\left[\begin{array}{lll}
\frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right] \cdot C \cdot \underbrace{\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\binom{\frac{\partial w}{\partial x}}{\frac{\partial w}{\partial y}}}_{D} d x d y=\sum_{\tau \in J_{h}} \iint_{\tilde{\tau}}}^{\left(\begin{array}{ll}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right)\binom{\frac{\partial w}{\partial x}}{\frac{\partial w}{\partial y}}}=\Phi_{3 \times 4} \cdot\left[\begin{array}{cc}
\frac{\partial}{\partial \zeta} & 0 \\
\frac{\partial}{\partial \eta} & 0 \\
0 & \frac{\partial}{\partial \zeta} \\
0 & \frac{\partial}{\partial \eta}
\end{array}\right]_{4 \times 2} \\
\\
\end{gathered}
$$

$$
\begin{aligned}
& =B \cdot\binom{\frac{\partial}{\partial \zeta} \sum_{i=1}^{9} w_{i} \phi_{i}}{\frac{\partial}{\partial \eta} \sum_{i=1}^{9} w_{i} \phi_{i}}=\left(\begin{array}{ccc}
\frac{\partial}{\partial \zeta} \phi_{1} & \cdots & \frac{\partial}{\partial \zeta} \phi_{9} \\
\frac{\partial}{\partial \eta} \phi_{1} & \cdots & \frac{\partial}{\partial \eta} \phi_{9}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{9}
\end{array}\right)=B \cdot D \\
& =\underbrace{\left[\begin{array}{cccc}
Y_{11} & 0 & Y_{12} & 0 \\
0 & Y_{11} & 0 & Y_{12} \\
Y_{21} & 0 & Y_{22} & 0 \\
0 & Y_{21} & 0 & Y_{22}
\end{array}\right]}_{3 \times 4} \underbrace{\left[\begin{array}{ll}
\frac{\partial}{\partial \zeta} & 0 \\
\frac{\partial}{\partial \eta} & 0 \\
0 & \frac{\partial}{\partial \zeta} \\
0 & \frac{\partial}{\partial \eta}
\end{array}\right] \cdot\left(\begin{array}{c}
\frac{\partial}{\partial \zeta} \\
\frac{\partial}{\partial \eta}
\end{array}\right]}_{Y} \cdot\left[\phi_{1} \cdots \phi_{9}\right]
\end{aligned}
$$

$\Rightarrow U=\sum_{\tau \in J_{n}} \iint_{\tilde{\tau}} \delta \underbrace{\vec{w}}_{K^{c}} \underbrace{D^{*} \overline{\Phi C D D \cdot w}}$

Remark:

(1)This element does not satisfy the conforming property
$\binom{$ i.e. the state variables are not continuous \Rightarrow in fact the state variables }{ may not continuous at element edges. }
but the state variables are continuous at nodal points.
(2) To ensure continuity of the state variables (i.e ensure FEM space is C^{\prime} in this case) conforming elements such as Argyris triangle or the so called Clough-Tocker element are needed. More unknown coefficients(involving second derivatives) are required $\left(\begin{array}{l}\text { Agyris triangle: } 21 \text { unknowns } \\ \text { Clough-Tocker: } 30 \text { unknowns }\end{array} \Rightarrow\right.$ Program usually is too complicated.

