
Remark: We don't want the error from solving the ODE system

               to exceed the error bound in the above theorem.

               Otherwise, the error from time discretization will be the

               dominant error source.
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as ,  we have error 

meaning the accumulated error from time discretization is controlled

     by the truncation error.

Similarly, one can prove the same result for the Crank-Nicolson scheme.
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Exercise:
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1 using Forward Euler, back Euler, Crank-Nicolson method for

     time-discretization of .

2 using linear triangular element to discretize .

3 compare your answer at t 1,5,10,20 over diff mesh sizes.

C

u

t

u









an you confine the conclusion in Theorem 1?

 

 

 
                   
Hooke's constant dip       

virtual strain

Recall the FEM modeling of 1-D solid bar, beam, fream  and structure,

the virtural work principle leads to the following equation:
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In 2-D, the stress-strain relationship for a plate is as following
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Plate Bending:

Recall in 1-D Beam bending, the virtual work principle leads to
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In 2-D, similarly, we have the strain-stress relationship
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The strain Energy internal energy
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To discretize * ,  one can use the finite element space in example 6 at p.58

which is the piecewise cubic polynomial spaces.

with 10 coefficients for each polynomial

Since we only have 9 state variables th

1 2 3 1 2 3 1 2 3

e state varibles can't be determined 

uniquely. By ignoring the center node Gives us an "incomplete" cubic 

polynomial space. Now we have 9 nodal basis   ,   ,    .

The coefficient

x x x y y y        



 

s can now be determined uniquely.

This special Finite element is called the BCIE element.

Bazeley, Cheung, Irons and Zienkiewicz
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Remark:

1 This element does not satisfy the conforming property

i.e. the state variables are not continuous in fact the state variables
    

may not continuous at element edges.

    but the state vari

 
 
 

   

ables are continuous at nodal points.

2 To ensure continuity of the state variables i.e ensure FEM space is C  in this case

     conforming elements such as Argyris triangle or the so called Clough-Tocke



 

r element

     are needed. More unknown coefficients involving second derivatives  are required

Agyris triangle: 21 unknowns
     Program usually is too complicated.

Clough-Tocker: 30 unknowns






 


