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How Large the Real Simulations Are?

Large-scale Simulation of Polymer Electrolyte

Fuel Cells by parallel Computing
(Hua Meng and Chao-Yang Wang, 2004)
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FEM model with O(109) nodes

Car engine with O(10°) nodes Commercial Aircraft: 107 nodes

Three-Dimensional Finite Element Modeling of

Human Ear for Sound Transmission
(R. Z. Gan, B. Feng and Q. Sun, 2004)

CLES
InCyuGomaileolar poank
ML ESOSIAmEnS] o

Sapes
Stapedal arnuius

Orwal worciow

Tymaanic mamitnnnG

5 Lk
Al '
Ceontihiegd hind [pars Nncosda)

[CR——— Marubnum
Tympane: mambrans
Tympane annulus # (| Qs bersa)
iy
s Eustachian Tuba
Mlcicle aar caviby opaning

FEM model with 105 ~10® nodes

FINFET transistor: 10°nodes



What do we need 1n order to stmulate?

e Deep understanding to physical problems
e Good mathematical models.

e Good computable mathematical models.

e Computation grids (not necessary but ...)
* Discretizations

e Solve linear systems

e Solve linear systems fast!

Our goal is to introduce multigrid methods for solving sparse linear systems.
Why multigrid?

1.  Computation cost of multigrid is proportional to problem sizes.
2. Multigrid is “easy” to be parallelized.



Outlines

e Stationary Iterative Methods

e Some finite element error estimates
e Multigrid

e Algebraic Multigrid

e Nonlinear Multigrid (FAS)
e Multigrid Parallelization

Reference:

1. An introduction to multilevel methods (Jinchao Xu)

2.  Multigrid Methods (Stephen F. McCormick)

3. A multigrid tutorial (William L. Briggs)

4. Matrix iterative analysis (Richard S. Varga)

5. The mathematical theory of finite element methods (Brenner and Scott)
6. Introduction to Algebraic Multigrid (Christian Wagner)



Solving Linear System Ax=b
by Iterative Methods

Methods:

« Stationary Methods: Jacobi, Gauss Seidel (GS), SOR.

 Krylov Subspace Methods: Conjugate gradient, GMRES,
by Saad and Schultz 1986, and MINRES, by Paige and
Saunders 1975.

Multigrid Methods: Geometric multigrid (MG), by
Fedorenko 1961, and algebraic multigrid (AMG), by
Ruge and Stuben 1985.



Basic questions and some definitions

Basic questions are

1. How do we iterate?
2.  For what category of matrices A, the iteration converge?

3. What is the convergence rate?

Some definitions:

A A
A 1s 1rreducible if there 1s no permutation P such that PTAP=[ (;’1 Al’z}
2,2

A 1s non-negative (denoted as A 20)if a;; 20, forall 1 <1,j<n
A 1s an M-matrix if A is nonsingular, a,; <0 for 1# j, and A'>0

A 1s irreducibly diagonally dominant if A is irreducible,

n
> 2 a;; for some 1.
=1

diagonally dominant with |a,;

A=M-N is a regular splitting of A if M is nonsingular and M >0



Stationary Iterative Methods

1. I,ola' — f_ Auold enew — eold . B—l (f_Auold)
2. SOlVe e:B_ll"Old et — eOZd . B—IA(M _ uold)
3 update uneW — MOld +e =(I _ B-IA)eold

B 1s called an iterator or preconditioner of A.

E, =1-B"A is called the error reduction operator of the iterator B

Perron-Frobenius Theorem

Theorem: Let A>0 be an irreducible matrix. Then

A has a positive real eigenvalue equal to its spetral radius
There is an eigenvector x>0 corresponds to P(A)

p(A) increases when any entry of A increases.

p(A) is a simple eigenvalue of A.

il e



Some Well Known Iterative Methods

Suppose A= D — L —U, where

D is the diagonal, L and U are lower and upper triangular
parts, respectively.

1 2
Richardson: B = —, where O<w< .
w p(A)
Jacobi: B=D
. 1 2
Damped Jacobi: B =—D, where O<w< —
0 p(D' A)

Gauss-Seidel: B=(D-L)
B

SOR: — 1(D wL), where O<w<2.

)



Jacobi and Gauss-Seidel

n

a. . |
:. (m+1) _ E : L,J (m) i

=1\ 4;; a; ;

n

j#i
i—1
. a. . a. . 2
Gauss-Seidel: b = —E _LJ | lmD) E _Bd Uy T
1 J J
i da. . a. . da.

j=i+l i,i i,i

HW1: Write down a formula for SOR

1 1
HW?2: 1 o — —
4 4 o
1 1| % 1
0 1 —— ——
. 4 4 1 X2 | _ 1
Write a program to solve =0.5 by
1 1 X5 1
—— — 1 0
4 4 X, 1
1 1
—— — 0 1
4 4 i

Jacobi and Gauss-Seidel, starting with initial x =[0,0,0,0].



LetE, = (I - D_lA) and E( = (I —(D- L)_1 A). Since the solution of HW?2 1s

X=[1,1,1,1] and e’ = x — x' =[1,1,1,1]. Clearly, we have e}r’:(EJ)m e’ and s = (EGS )m e’,

One can easily check that

1 2
—111 1|2 0
e}“zz—i . andegsz4—n11 . . Thus, e‘f”:zi_l >||e§s||=4£m.
1 1

You might get a feeling that Gauss-Seidel method is faster than Jacobi method.

Stein-Rosenberg Theorem
Theorem: Let B, = L + U be the Jacobi matrix and By, = (1 — L)_1 U be the Gauss-

Seidel matrix. Then one and only one of the following relations is vaild:
1) p(B,)=p(Bgs)=0.

2) 0<p(Bg)<p(B,)<l.

3) p(B;)=p(Bgs)=1.

4) 1< p(B,)< p(Bgs)-



Convergence of Jacobi, Gauss-Seidel and
SOR Iterative Methods

Lemma 1. If A=( ) = 0 1s irreducible then either Zal J—p A) or

j=1
n
min| Y, [<p(A)<pay| Ma, | O

Proof: Case(1): All row sums of A are equal (=0): Let {=[1,1,---,1]. Clearly, A{=0¢ and o < p(A).
However, the Gerchgorin's Theorem implies p(A) < 0. Hence, p(A) = o.

Case(2): Not all row sums of A are equal:
Construct Bz(bi’j) >0 and C=(ci,j) > 0,by decreasing and increasing some entries of A,

respectively, such that

Zbe,j = :Eligrll[z‘a"’jj and Zcz =fB= max[Za ) forall 1</ <n.
j=1 RN =1

1<i<n

By Perron-Frobenius theorem, we have p(B) < p(A) < p(C).
Clearly, from the result of Case(1), the inequality (1) holds.

Lemma 2. Let A and B be two matrices with 0 <|B|< A. Then p(B) < p(A)



Theorem 1. Let A:(ai,j) be a strictly or irreducibly diagonally dominant matrix

then the Jacobi and Gauss-Seidel iterative methods converge.

0 i=j
Proof: Recall that E, = I-D'A=D"(L+U)= (bl. j), where b, =<-a,; . L From Lemma 2,
, , i
a.

1,1

it is clear that p(B) < p(|B|) Since A is strictly diagonally dominant, clearly, we have

i
=1

we have shown the Jacobi iterative method converge from p(B) < p(|B|)<1.

Now, since Egg=I-(D-L)" A= (D-L)' U=(I-D"'L)" D'U. Let L=D"'L and U=D"'U.

ooy

‘f]‘. Since we have already shown

<1 for all 1 <i<n. Therefore, Lemma 1 implies p(|B|) <1. As a result,

bl,]

~

L|) [|[U

U

Ol < ([C]+]L] +--+|L
O] < (1|2 L +---+

We have |(1-L)" 0| <[(1-L)

Now consider B, = ‘i‘ + ‘ﬁ‘ and By, = ‘(I"I:‘)_l

p(]~3J) <1, the Stein-Rosenberg theorem implies p(EGS) <l1.

Therefore, we conclude the Gauss-Seidel iterative method converges.



Theorem 2. Let A=D-E-E" and D be Hermitian matrices, where D is positive

definite, and D-wE is non-singular for 0 < @ < 2.
Let Eq,, = — (D~ ®E) " A. Then p(Eg, ) <1 if only if A is
positive definite and O<w<2.

Proof: First, assume e, is a nonzero vector, the SOR iteration can be written as

(D-wE)e,, =(0E +(1-®)D)e,, m20 2)

m+l

Let §, =e_—e_.,. Substracting (D — @E)e, and (a)E* +(1- co)D)em+1 from both side of (2),
we have (D - wE)§, = 0Ae,, — (3) and 0Ae,,, =|(1-0)D+wE" |5, -~ ).

Frome, x (3)—e,,, X (4) and "simplifying the expression" (HW), one has
(2-w)5;D5m=w{e*mAem — eanAemH} ------ (5).
Assume A is positive definite and 0<@<?2 and let e, be any eigenvector of E.,,. We have

e,=Ae, and 8,=(1-A)e, and (5) reduces to
2-0 " :
(F)H—MZ e,De, = (1—|)u|2)eOAeO ——————— (6).

Now, A # 1. Otherwise, 6, =0 = Ae, =0 (by (3)) = e, =0= contradiction!

Since A and D are positive definite and O<w<2, (6) implies 1 - |)u|2 > 0. Therefore, p(ESOR) <l.

Using similar arguments, one can show that the converse is also true.



 For SOR, it is possible to determined the optimal value of w
for special type of matrices (p-cyclic). The optimal value w,
1s precisely specified as the unique positive root

(O<p/(p-1)) of the equation

(p(E))w,) = |:pp(p— 1)1_p](a)b —1), (Varga 1959).

e Forp=2,
gt
1+ 1-p*(E

] (Young 1950)

e Semi-Iterative Method: Y. = ZVJ- (m)x ; Where Z"j (m)=1-
j=0 j=0
We have &, =Y v, (m)e,. In general, & = P, (E,)e, where
j=0
P 1s a polymonial and E; is the error reduction of an iterater S

This 1s so-called polynomial acceleration method.

The most important one is the Chebyshev polynomials.



Chebyshev Semi-Iterative Method

Algorithm:

Yims1 = Wiy {ESym +f - ym—1}+ Yu-1» form 21, where

o . =1+ Cpoi 1/ p), C_, and C,, are Chebyshev polynomials,

¢, (17p) )

p=p(E) andy, = x,. C,=1,C=x,0C, =2xC, —C,_,
Convergence:

) 2(w, —1)"" 2

e || e,|l, here w, =

.| (1+(a)b—1)’" o Tl fl-p?

The convergence rate 1s accelerated as p—0.

Remark: There are cases that the polynomial acceleration does not
improve asymptotic rate of convergence.



Some PDE and Finite Element Analysis

Finite Element Solutions:

Let S, be a given triangulation, V,={veHy: vl € P,(T), Te 3, } and
n.:-H' — V. be the interpolation defined by 7, ( l) ( )

Consider the weak solution u € H' satisfying a(u,v)=(f,v), for all v e Hy,

a finite element solution u, €V, satisfies a(u,v)=(f,v), forall veV,.

Interpolation Errors:

||V—71'hv||1 <Ch"|u

and ||V—7Z'hv||0 <Ch™'|u

r+1 r+1"°

H2-Regularity: a(--) is said to be H2-Regular if there exists a
constant C such that for all f € L’

lul, =Clirl,



Finite Element Solution 1s Quasi-Optimal

C .
< —mm”u — v||Hl
a VEVh
where, C is the continuity constant and ¢ is the coercivity constant of a(-, )

Céa Theorem: ||u — Uy ||,

Proof:

Stepl: a(u — uh,v) =0, forallveV,

2
|H1 Sa(u—uh,u—uh)z a(u—uh,u—v)+a(u—uh,v—uh)

Step2: OC”u —Uu,

=a(u—uh,u—v)SC|u—uh|H1 ||u—v|H1

HW4: Ifa(-,-) is self-adjoint, show that |ju —u,|, = min[u—v

VEVh

A,

where ||v|, = \/a(v,v) is the energy norm.

Remark: finite element solution is the orthogonal projection of
the exact solution with respect to the energy norm.



FEM Error Estimation

Theorem 3: Assume the interpolation error estimations holds for the given 3,

and a(-,-) has the H> — Regularity. The following estimates hold.
2 SCh 2 SCh™

| —u,

ul . ----(1) and ||u —u,

r+1 l/l|r+1 T (11)

Proof: From the interpolation estimation and Céa Theorem, (i) is trivial.
To prove (i1), we use the duality argument. Let w be the solution to the
adjoint problem, a(v,w)=(u-u,,v), for all ve H'. Choosing v=u-u, ,

we have

(u-uh,u-uh)= a(u-uh,w) = a(u—uh,w - wh), forany w, €V,

< Clu=, ], pw—w,

|, SCh

‘u - uhHH1 |W|2

< Ch|

u- “hqu H” — U,

L2 S Ch}’-l-l

>

Theretfore, |[u —u, U

r+1°



Definition: mesh dependent norm HMH = \/(Ak v,v)h forveV,, k=0,1, where

th( )) Clearly, HMH _||v||0 and HMHM E”V”A.

Lemma 3: A(Ah) <Ch™

Proof: Let A be an eigenvalue of A with eigenvector ¢.

a(9.0)=(A,0.9), = 2(9.0), = 2|J9],

2 _ 2
 Cloll, _ clols _ -
lell, — Noll,,

Lemma 4: (Generalized Cauchy-Schwarz Inequality)

HW|H1_M Vv,weV, andt € R.

‘a(v,w)‘ = H|V| 1+1,h



Multigrid Methods

Ideas:

e Approximate solutions on fine grid using iterative methods.
e Correct remaining errors from coarse grids.
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Why Multigrid Works?

1. Relaxation methods converge slowly but smooth the error quickly.

-U 1+2u.—u.
]+

. ‘_ 1
Exl:consider Lu=—-u"=Au = / / = Au .
finite difference hz J

. 4 k . [ K
Eigenvalues /lk=Fs1n2 (Z(Nn 1)) and eigenvectors gbj‘f = sm( N] EJ
+ +

here, k=1---N is the wave number and j 1s the node number.

1
Richardson relaxation: E = (/- o' A) where Ah=Ftridiag[-l 2 -1].

. . : 4 :
Fourier analysis: Choosing ¢ = 5 (largest eigenvalue).

e =i(1—ﬂ]m¢k :i[l_Sin2(2(N+l)j] ¢ Zock(p

, after m relaxation. @, — 0 more quickly for k close to N.




{\/\/\’\/\/\/\A/\ Ao —>

' '
(=] — (=] — (=]
T T T T

N V\} o
L Damped Jacobi

(2w 1 (lejm ) 1 . (32)% m -1 \"
e_sm[zvﬂ}r2sm(zv+1j+2sm(zv+1j € —(I—a)D A) ¢

2. Smooth error modes are more oscillatory on coarse grids. Smooth errors can
be better corrected by relaxation on coarser grids.

k=4 mode. N=12 gnd k=3 mode, =12 grid

Smooth error on fine grid Smooth error on coarse grid

» Relaxation convergence rate on fine grid is 1-O(h?)
» Relaxation convergence rate on coarse grid: 1-O(4h?)

2
Remember: o, =1— _r :I—O(hz) for N> 1
2(N +1)



3. The smooth error is corrected by coarse grid correction operator:

E=(I1-1 4174, )=(4"-1),41") 4,

H "H h H "H h

H h . . .
here /" and I, are called restriction and prolongation operator respectively.

\XJ/O\"\ = \\L/‘ A
N

. A, can be obtained from discretization on coarse grid

T
« A, =I1'AI, and I =c(1 Z) (Galerkin formulation)

(E° is an A-orthogonal projection <AhE ‘e, 1 ze> =0

!

N(E)=R7)

\R(Ec) = N([fAh) and E£° 1s identity on N([fAh)



A Picture That Show How Multigrid Works !

N
H \\\

(114
A

o

.

elaxation

--L

R(1},)

H
N(1]4,)
H. 4
correction
' f‘o”-L
f’\\”” > h
T R(1})
H
N(1]4,)
H . A
‘\\ correction _-L
- \,’ > R Ih
- H




1 1
Consider I" =[—,1,—]" (linear interpolation) and I” = —[—,1,—].
H[22]< p )hz[zz]

It is easy to check that A, =I'A I! is the discretization of L on 3,,.

Now, for any ve V,, letf, = A, v. One can consider v and v,, = I, A;'I} f, as
finite element approximations of v, the solution of a(ﬁ,w)=( V,w). Then,

from the FEM-error estimation and H”-regularity, we have

E¢(v ‘H —H A_1 I, A"llH AVH —Hv v, —(V— v)H ————— (*)
<C

Ch™"||Av],

: . : N . : :
Consider the eigenfunction ¢, k < —. ¢ is also an eigenfunction of A
J 2 J H

We have ‘

H < ChA, = O(h). This concludes the coarse-grid

o), =4S
h

the high frequency errors can be amplified by coarse-grid correction.

correction fixes the low frequency errors.



Multigrid Algorithm
Multigrid (MG) Algorithm:

X, =W,
(pre-smoothing) X, =w, +M (gk -A X, )

(restriction) ék =<' ( gk—Aka)

. (correction) inMGk_l(qi_l,ng) for <1<m, m=1 or 2 and q,=0
(prolongation) glm ZIE_lqm

set szxk+am

(post-smoothing) x, =x, +M' ( gk_Aka)

® N v A W

set MG (W, ,g =X,

MG Error reduction operator:

E =414 1")(4,E)=E(1-1,4,14,)

mg H "H  h H "H  h

Pre-smoothing only Post-smoothing only



Multigrid Cycles

\ 7 \ £
LR, VoA
\ VAP VAN
Multigrid V-cycle (m=1) Multigrid V-cycle (m=2)
A
AP
AN

Full Multigrid cycle (FMG)



The error-iteration plot k=3 k=32

The 2-norm of err.

R U‘ T e R ecEnial
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Damped Jacobi relaxation and smoothing effect

Multigrid V-cycle ( ex : sin(8nx), MG-level =3 )

2-norm of residual
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Multigrid V-cycle convergence for 1-D laplacian

Results provided by in NCTU



MG Convergence

Sn(m)

Approximation property: HA =1 HAz o f H

Smoothing property: HAIES > forall 0 <m < oo and /> 0.

l_l,foralll>0.

Ideas for proving the approximation property is shown in P.25 (*)
Proof of smoothing property:

1
Consider E(=E, :(I— XAh ) Let ve V, and vi = E!'(v). From Fourier expansion

1 A Y
V=) v,$,, we have v§ = (1 - XA) V= Z(l - ij v.@,. Therefore,

LN (A
(1——) ,fv,f=AZ(l—Xk (ijw

< A sup {(1 —x)" x}(vs AY,) < Ch‘zi v

0<x<1

|A,E L (

VS

S ‘0

2

1
4,0, < 1AL = [AE] < n(m)AL 7(m) -0 asm - e

HWS5: Prove MG with Richardson smoother is convergent in ||-||,-norm



Choices of Interpolations and Coarse Grids

1 2 1
: . : 1
 Linear interpolation: p=— 12 4 2| r=—
1 2 1

N

 Operator-dependent interpolation: De Zeeuw 1990

e The rule in chosing interpolation and restriction:

m,+m, >2m (Brandt 1977)

where 2m is the order of the PDE, m -1 is the degree

of polynomials exactly interpolated by I'; and m -1 is

the degree of ploynomials exactly interpolated by (If )T.

e Coarse grid selection: regular coarsening,
semi-coarsening, algebraic coarsening

——

—0

H



Choices of Smoothers

e Stationary 1iterative methods : Jacobi, Gauss-Seidel, SOR, ...

* Block-type stationary iterative methods (blocks can be
determined by the way we number the nodes)

—0—0—0—90 OTOTO

— —_ A

T
I

—_—

, T=[-14,-1]: AN

—_—

I
T N

— - .

Matrix of 2-D Laplacian Matrix Pattern for Matrix Pattern for
line ordering R-B ordering



_y” = f
u(0)=u(1)=0
using linear interpolant I, and I;' = 0.5 (I};I )T and the

Red-Black Gauss-Seidel smoother @—@®—@—@®—@-

HW6: Write a MG code for solving 1-D {

Update even (Red) points first: x,, = 0.5 ( foy T Xy + xml)
Update odd (Black) points: x5, = 0.5( f3,,, + X,; + %5112 )

Brandt’s Local Mode Analysis

For analyzing the robustness of a smoother. Brandt’s local mode
analysis 1s a useful tool. Here, we demonstrate the method by
considering the Jacobi and Gauss-Seidel relaxation for the 2-D
laplace equation with periodic boundary condition.



Brandt’s smoothing factor

Let € be the error before relaxation. From discrete Fourier

transform theory, £ can be written as

.= &0, (6) - (i), where 6=(6,,6,), ¢, .(6) =%,

0O,

(n+1 2 8k1¢k1 and

1<k,l<n
2 +1 + 3

@n:{ ’Tl(lc,z)—”2 <k,1<” ,nisodd}.
n-+

Similarly, the error € obtained after relaxation can be written

A

~

asE= Y 2,0, (6) —(ii). Let A(0) = =

—% . Brandt's smoothing
0cO, o

factor is defined as p=sup {M(O)




Smoothing Factor of Damped Jacobi Iteration

- 0,
Recall that &, = ¢, - 2(451., (&, + &+ e, +E ) Plug () and (i)
into it, we have

2 §0¢i,j (9) = 2 {ée(pi,j (9) - Q|:4é9¢i,j (0) - (ée¢i+1,j (9) + é9¢i—1,j (9) + §0¢i,j+1 (9)

9eO, 9cO, 4
()] i0 -0 i
+89¢1+1] )i|} 289{ l] _Z[4¢i,]‘(9)_¢i,]‘(9)ell _¢i,j(9)e 1 _¢i,j(9)e ’
o0 cos(@l)+ cos(@z)
}} 96264 €q {1 w( 5 j}ﬁbi,j ()

cos(@l) + 008(92)
2

Therefore, 1(0)=1- a)(l — ] It is easy to see

3w

@ 1= B } The optimal @ that

that p = max{

_. 4 _
minimize P 18 gand the smoothing factor p = 0.6 for such w.

HW7: Show that the smoothing factor of the Gauss-Seidel iteration is 0.5



How Much Multigrid Costs?

Convergence:

e Stationary method = 1-O(k™!) = 1-h?
e Conjugate gradient = 1-O(k""?) = 1-h
*Multigrid = O(1) independent with h

How much each MG step cost?

Ignore the cost associated with inter-grid transfer (typically

within 10-20%). Computation cost of one MG V-cycle is

d
2cn

T 1o

2cn’ (1 +274 427 +)

nd: total number of points

d: dimension of the problem

c: cost for updating a single unknown
cnd: cost per relaxation sweep.



Standard MG can fail!

* The original PDE has poor coercivity or regularity (for example,
crack problems, convection-diffusion problems, etc.)

- Relaxation may not smooth the error.
- coarse grid correction can only capture a small portion

of the error or even worse!

* The left figure 1s a sketch to illustrate
why MG slow convergence

e Next, let’s consider the following example:

r

Ex2: - _%(C(X)Z_Zj ) fere e (x) = -

H
N(1]4,
A relaxation
H %
\ o
A Aﬁrection

\
\ o
\ (& -L
\ -
\ _--"
\ -
\ --

(£, 0<x<ih

1, lol’l <x< llh e (_|_)

u(0)=u(1)=0

\

| & h<x<]



Discrete matrix of (+) = 4,=

Damped Jacobi E,
matrix of A,

U

1 -1/2
-1/2 1

[-oD'A,=1-w

—-1/2

—e/(1+¢€) 1
—-1/2

—-& 2& -—-¢€
—-& l+¢e -1
—1 2
-1/(1+¢€)
1 -1/2
-1/(1+¢€)

-1

-1 14+¢& -¢
—& 2€

1 —e/(1+¢)

-1/2

1

=&

—€ 2¢

—-1/2

-1/2 1




For € — 0, the eigen vector corresponding to the largest eigenvalue

2% of E, converges toward to the vector ') while 1 — 1, where

-

ih, 0<x<ih A
() =1 iyh. ih<x<ih . - -

i i (n+1) bh - 1h
: 0 ih — .0 h, llh <x<l1 Figure of ¢©®
L, —n—1 i, —n—1

Damped Jacobi fails to smooth the high frequency error!
MG convergence is deteriorated as € — 0

A remedy of this is to use operator-dependent interpolation!

Construct such interpolation is not easy.
But, there 1s a “easier and better” way to do it!



Algebraic Multigrid

MG AMG

1. A priori generated coarse grids are |1. A priori generated coarse grids
needed. Coarse grids need to be are not needed! Coarse grids are
generated based on geometric generated by algebraic coarsening
information of the domain. from matrix on fine grid.

2.  Interpolation operators are defined | 2. Interpolation operators are
independent with coarsening process. defined dynamically in coarsening

process.

3.  Smoother is not always fixed.
3.  Smoother is fixed.

Ideas:
* Fix the smoothing operator.
*Carefully select coarse grids and define interpolation weights




AMG Convergence

. . 2 2
Smoothing assumption: 3 >0 > HESe < He‘l — OcHeH2 foralleeV,

. 2 . .
Approximation assumption: mmHe —1 ZeH <pB ‘ eHl where f3 is independent with e.
€y

|vd|, = (arwe.£e= e, )< [Eve] | E7e- 1ie, |, < BEwe] | ],

o5 <l -l <1l <[1-5 )
,here HVHO =<DV,V>,HVH1 =<AV,V>,HVH2 =<D'1AV,AV>, forveV,

AMG works when A is a symmetric positive definite M-matrix.

In the following, we assume that A is also weakly diagonally
dominate



What Does the Smooth Assumption Tell?

C

S

« Smooth error is characterized by Eses s Hes‘ . , 1s very small

2 ~1/2 1/2
ell, < |72 4€|||D"el| = [le], [ell, = lle], << e,

p
(Ae,e) = %Z—ai’j(ei — ej)2 + Z \Z azl.’jjei2 << azl.’l.el.2
t,J l J

i
1 2
—E—a. .(e.—e.) << a.e’
N 4~ i,j i J i i
J

2
a, | (e —e)
E : << 2
—: a e’
J#i ii i

* Smoother errors vary slowly in the direction of strong connection, from e, to e

, where a. ; / a. . are large.

* AMG coarsening should be done in the direction of the strong connections.

 In the coarsening process, interpolation weights are computed so that the
approximation assumption is satisfied. (detail see Ruge and Stiiben 1985)



What Does the Approximation Assumption Tell?

Approximation assumption

Zaii(ei N Zwikekj S ﬁ(%z(_%)(el N ej)2 + Z(Zay]ezz]

ieF keC

[
3
B
QN
|
-
QN
=

Since zaii(ei N Zwikek] = 2“:1(2 w,(e—e)+( _Si)ez)

ieF keC ieF keC
<2a Zw (e —e ) +(1-s)e
= ii ik k i’ )
ieF keC

here w, >0 is the interpolation weight from node k to node 1, and s, = z w. <1,

clearly, if Za ZW (e,—e) < ﬁZ(— a,)e, —
(@) ) ieF keC

Y a,(1-5,)e <ﬁ2[2ayj

zeF

the approximation assumption holds. For (G)) to hold, we can simply require

(E) 0<aw, Sﬂ‘ai ‘ and 0<a, ( ) ﬁEaZk



Lemma 5: Given a 3 21, suppose the coarse grid C is selected such that

1
a..+§a..= a. . =2—a. .
1,1 l:] lﬂ] ﬁ L1
jeC, jeC,
JEL

where C.=N_(1C, C is the coarse grid and N = neighbors of i-th node

Then, the approximation assumption holds if the interpolation weights

are defined as W, = ‘al,’k‘ 2 a, ——-— ((ID)
jeC,
a, \
_all ‘alk‘—ﬁ‘a ‘
2., Z
J&C; jeC; /

‘ ‘ Zai,j
— _ _ _ J
a (1 - Si) =4, ; 1- 2 ;. |=4a, 1 2 =d; ;
keC, keC, 2 a ; 2 .
\ jeC; jeC;
< [32 4
J

Therefore, (Z) holds. From the arguments in previous page,
We can conclude the approximation holds.




Smoothing property holds for GS

Recall E, = I — B”'A. We have
[Easel; = (A(1-B"4)e.(1-B"a)c)
= (Ae,e)—(AB ™ Ae,e)— (Ae, B~ Ae) +(AB™ Ae, B™' Ae)

=|le|; —(B'Ae.BB™'Ae)— (BB ™' Ae, B~ Ae) +(AB™ Ae, B™' Ae)

= el = ((B" + B—A) B Ae. B Ae).
The smooth assumption = OCHeH2 < ((BT +B- A)B‘]Ae, B‘lAe) - (0)
Let &=B""Ae. Since ||, =(D™'Ae, Ae) = (D™'BB™'Ae, BB Ae),
clearly, (©) = «(D"'B2,Bé)<((B" + B—A)é.¢) -— (90).
Now consider B=D-L. Since B + B— A = D, we have

(B'D"'Bé,é) (D'B'D'BDé,é) (D'B'D'BD'’e,D'"?)

(O0)=« (De.?) = (D“zé,Dl/zé) - ¢ (D”zé,Dl/zé)

--- (0O0)



Therefore, the smooth assumption holds for Gauss-Seidel iteration.

If A is a diagonally dominant M-matrices, we can estimate o as follows:

Since p(D'B"D™'B)< p(1-D7'L")p(1-D'L)<(1+ p(D7'L"))(1+ p(D7'L)),

and p(D—lL) < IIE%{ i ‘aa"’f‘} <1, clearly, we have p(D‘lBlTD‘lB) > i

j=Lj#i i

1
Therefore, Gauss-Seidel iteration satisfies the smoothing property with 05=Z.

If fact, for symmetric M-matrices, smooth assumption holds
for both Gauss-Seidel and Jacobi iterations.

Furthermore, one can also show that the coarse grid matrix

A, =(I}, )T A,I; is also a diagonally dominant M-matrix

when A, is a diagonally dominant M-natrix and the interpolation
weights satisfy (£) and (®).



AMG Coarsening Criteria

First, let's define the following sets:

N> = {j L—a, 2 ymax(—ai’m),o <y < 1}

(N:) ={isi e ]

Here, N; _is the set of nodes that node i strongly connects to.
(Nis) is the set of nodes strongly connects to node i.

+ C-nodes should be chosen from N

* From convergence result, we want 3 close to 1.
This suggests we need a larger set C, ( we need to choose a small ¥ ).

» We don’t want C=g but we want C as small as possible.

Criterion 1. For each nodeiin F, node jin N& should be eitherin C or
strongly connected to at least one node in C..

Criterion 2. C should be a maximal subset of all nodes with the property that
no two C-nodes are strongly connected to each other.



AMG Coarsening (I)

C=oF=0U={1,2- n}h
For(i=1:n).z=|(N°)T:
while (I # @) do
get? € U with maximal z; thenset C' = C U i} and U =T\ {i};
for (j € (N*)' 1 17) do
F=Fu{jhU=U\{j}

For (k € .-"‘f'j‘q), =2+ 1

end for Fine points::': +2-1
>
For (je Ny NU)z=2-1

end while

Algorithm 4.4.1: Preliminary C-point selection



AMG
Coarsening (II)

T =g
while (F'\ T # a){
picke € F\ T:set T =T U {2} and done = 0
C;=NSnC:Df = N7\ C: DIV = N\ N5: C; = o
while (done == 0}
d; = a;; + E;\.ng a; ko dy = a; V5 € C;
for (k € DF){
if (NF(1Ci#0) dj =d; + g2 € G

else |
if () £ ){C =CUi}: F=F) {i}: break: }
else |
Ci = {k}: C; = C; U {k}: Df = D\ {k}:
done = 0; break;
}

1
if(ic F){C=CUC:F=F\Ciw;=—d;/d¥jeCi}
1

Algorithm 4.4.2: Final C-pomt selection and defimition of interpolation weights




AMG Coarsening: Example 1

Laplace operator from Galerkin FEM Discretization:
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A very good MG and AMG tutorial resource (by Van Emden Henson) :

http://www.lInl.gov/CASC/people/henson



AMG Coarsening: Example 2

Convection-Diffusion with Characteristic and downstream layers

—EAu + a—u =0 0
dy
1 if (y=0 () x>0) or x=1,
u |aQ: . 0 T T 1
0 otherwise,
where Q=[-1,1]x[-1,1]. .
0 1

File Edit View Insert Tools Window Help
DS | NA /| 22D

grid grid



SDFEM discretization with 6, =

yields the left matrix stencil:

AMG coarsening with strong
connection parameter
e/h << <<0.25

Fie Edit View Insert Tools Window Help
DEES hA A/ 2RO

1@

08

0B

04

0z

1]

02

04

0B

08

o 08 -0 -04 D2 02 04 06 D8
points=81 elements=64

Coarse grids from GMG coarsening

h
2

£ £
3 3 3
h_e 2h 8 h_ &
6 3 3 3 6 3
h &€ 2h € h
6 3 3 3 6 3|

e Edit View Insert Tools Window Help
DeES MAA/, 2P0

B 1

08

0.6

-
4 08 06 04 02 0 02 04 06 08 1

points=239 elements=256

Coarse grids from AMG coarsening

C-point

C-point



Example 2: GMG v.s. AMG

GMG AMG GMG AMG

logioc [2,3,4] 2 3 4 logg= | 2 3 4 2 3 4

level=4 | 1089 | 1089 | 1089 [ 1089 level=4 [ 797 | 1275 [ 2102 | 797 | 1275 | 2102
level=3 | 289 | 480 | 479 | 479 level=3 [ 410 | 649 | 1047 | 348 | 580 | 996
level=2 | 81 307 | 331 | 231 level=2 [ 215 | 320 | 528 | 159 | 304 | 523
level=1 25 157 | 108 108 level=1 | 122 | 176 | 239 | 88 | 166 | 28]

(a) On the uniform mesh (b) On the adaptive mesh
level GMG | AMG level GMG | AMG level GMG | AMG
On the uniform mesh: 3 13 ] 3 27 8] 3 o1 11
2 13 6 2 26 7 2 35 8
1 12 6 B 1 16 6 B 1 17 6
e=10" e=1073 e=10*
Level | GMG | AMG Level | GMG | AMG Level | GMG | AMG
4 9 6 4 22] 8 4 591 | [14
On the adaptive mesh: 3 8 8 3 24 9 3 57 10
2 7 6 2 18 8 2 47 8
1 7 5 1 17 7 1 34 7

=102 =103 e=10%



Nonlinear Multigrid

Nonlinear problems: L(u)=jf =

discretization

One needs to solve A, (uh) =f, =

(4,
al ul’uz,...

az (ul,uz,...

\an (ul,uz’...

/fl\
B

\J»/

Method 1: Linearize A, using Newton method and solve the linear

system by multigrid.
D

U, —u, —[D—uAh(u)}l(f‘Ah(”j))

Method 2: Nonlinear Multigrid , so called full approximation

storage scheme (FAS)

* Nonlinear relaxation
* Nonlinear defect correction



Nonlinear Relaxation:

.. old old new old old
Jacobi: al.(u1 UG U U U
G S . d 1 new new new old old

Solve local nonlinear problems iteratively.

Example ( Nonlinear Gauss-Seidel ) :
—u”(x) + u(x)et¥) =f
Discretiation:

— 1'|I.- 1 + ._',1'|I.- — 1'|I.- +1 , |
- =+ 1.! e ! :Jr Ir
h= ' '

) for all i=1,2,---
) for all i=1,2,---



Nonlinear defect correction:

In linear case: (") =A (Mh) A (Mﬁ,n))—Ah(”h ”;zn))

In nonlinear case: 1" = A, (uh) - A ( (n)) # A (u u}(zn))

Solving A, e, = I}'r," does not give an approximation to e, = u, - u.".

_ (n) _ (n)
e, =u, -u," where u, satisfies r,"”’ = A (uh)—A (uh )

Now consider . . .
e, =u, - 1;'u"” where u, satisfies 1,/r\"” = A, (u, ) - A, (I (”))

Observe that u\” — u, = u,, — 1/'u, = e, — I, e,. (Here, I, can simply be an injection)
In this point of view, e, 1s a reasonable approximation of e, .

Now, we can write down the FAS algorithm:

1. Nonlinear Relaxation

2. Restrictu; and r;' by r, =1]'r" andv=1,"u,
3. Solve A, (uH)z r, +A, (V)

4. Compute e, =u, —v

FAS:

5. Update u] < u; + I, e,



-Au(x, y) + yu(x, y) e""™={(x, y) in [0,1] X [0,1],
u(x,y) = (X-Xz)sin(37ry)

e Discretization: finite difference

2 1| 1'1 2 1]
* Interpolation and Restriction r=y 2 4 2 r=r 2 4 2
1 2 1 12 1)

e Relaxation: Nonlinear Gauss-Seidel:_

) Uij _
h (4ui,j —U T Uy U T ui,j+1) + u, € f,]

R 4h™ + y(l +u, j)e”"’f
starting from (i,j) = (1,1),(1,2),--,(2,1),(2,2),---,(n,n).



An example taking from Multigrid Tutorial (Briggs)

Outer Inner
Method| iterations | iterations |Megaflops
Newton 3 1660.6
New ton-MG 3 20 56.4
New ton-MG 4 10 38.5
New fon-MG& 5 5 25.1
New fon-MG 10 2 22.3
New ton-MG 19 1 24.6
FAS 11 27.1

Who is better Newton-MG or FAS?

Not so sure ... but FAS 1s popular in CFD.



Multigrid Parallelization

Parallelization: Using multiple computers
to do the job!

What need to be done?

1. Numerical algorithm need to be capable to do it.

2. Program has to distribute works to processors
properly and dynamically. (load balancing)

3. Computers have to communicate each others.

(Messaging passing interface, MPI)
4. Many others (grid topoloogy, scheduling, ....)

Multigrid 1s a scalable algorithm!

communication
< >
P

2 ()

(Jim E. Jones, CASC, Lawrence Livermore National Laboratory)




Domain Decomposition:

 FEM assembling in domains D, Dg, ... can be done
simultaneously.

« Matrix-vector product A - x can be computed indenpendently

in each domain. Pass x; to D, and x; to D,.

e Jacobi and red-black Gauss-Seidel Relaxations can be
done 1n parallel.

e Grid-Coarsening and refinement can be done in parallel
(not quite easy ... need to keep tracking grid topology).

* Interpolations can be parallelized too.



Scalability

T(N,P): Time to solve a problems with N unknowns on P processors
Speedup S(N,P)=T(N,1)/T(N,P). Pertect if S(N,P)=P;
Scaled Efficiency: E(N,P)=T(N,1)/T(NP,P). Perfect if E(N,P)=1.

Assume 2D problem of size (pN)? is distributed to p? processors.
Number of unknowns in each processor N?

5 point stencils

N \ NY
Time for relaxation on grid level k: T, =T (?j +5 (?) f,
: 40 ,
Time for a V-cycle=T, = ZZTk ~8aL+16NB+ 3 N-f,
k
o = startup time,
B = time to transfer a single double

T, (n)=o+ Bn= communication time for transmitting n doubles to one processor.

comm

f = one floating point operation time.



Since MG has O(1) convergence rate, we can analyze the

scaled efficiency as follows:

N,1)= (430)1\, f
40

T,
(pN p):80510g2(pN)+16,3(N)+?N2f

1%

E(N,P) ~ O(l/log2 p) asp —> o
E(N,P) = 0(1) as N — oo

We need to be careful. In IBM SP2,

a=5x10"
B=1x10° < Communication is expensive!
F=8x10~



