An Introduction of Multigrid Methods for Large-Scale Computation

Chin-Tien Wu

National Center for Theoretical Sciences

National Tsing-Hua University
01/24/2005

How Large the Real Simulations Are?

Large-scale Simulation of Polymer Electrolyte Fuel Cells by parallel Computing (Hua Meng and Chao-Yang Wang, 2004)

FEM model with $\mathrm{O}\left(10^{6}\right)$ nodes

Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
(R. Z. Gan, B. Feng and Q. Sun, 2004)

FEM model with $10^{5} \sim 10^{6}$ nodes

Car engine with $\mathrm{O}\left(10^{5}\right)$ nodes Commercial Aircraft: 10^{7} nodes FINFET transistor: 10^{5} nodes

What do we need in order to simulate?

- Deep understanding to physical problems
- Good mathematical models.
- Good computable mathematical models.
- Computation grids (not necessary but ...)
- Discretizations
- Solve linear systems
- Solve linear systems fast!

Our goal is to introduce multigrid methods for solving sparse linear systems.
Why multigrid?

1. Computation cost of multigrid is proportional to problem sizes.
2. Multigrid is "easy" to be parallelized.

Outlines

- Stationary Iterative Methods
- Some finite element error estimates
- Multigrid
- Algebraic Multigrid
- Nonlinear Multigrid (FAS)
- Multigrid Parallelization

Reference:

1. An introduction to multilevel methods (Jinchao Xu)
2. Multigrid Methods (Stephen F. McCormick)
3. A multigrid tutorial (William L. Briggs)
4. Matrix iterative analysis (Richard S. Varga)
5. The mathematical theory of finite element methods (Brenner and Scott)
6. Introduction to Algebraic Multigrid (Christian Wagner)

Solving Linear System Ax=b by Iterative Methods

Methods:

- Stationary Methods: Jacobi, Gauss Seidel (GS), SOR.
- Krylov Subspace Methods: Conjugate gradient, GMRES, by Saad and Schultz 1986, and MINRES, by Paige and Saunders 1975.
- Multigrid Methods: Geometric multigrid (MG), by Fedorenko 1961, and algebraic multigrid (AMG), by Ruge and Stüben 1985.

Basic questions and some definitions

Basic questions are

1. How do we iterate?
2. For what category of matrices A , the iteration converge?
3. What is the convergence rate?

Some definitions:
A is irreducible if there is no permutation P such that $\mathrm{P}^{\mathrm{T}} \mathrm{AP}=\left[\begin{array}{cc}\mathrm{A}_{1,1} & \mathrm{~A}_{1,2} \\ 0 & \mathrm{~A}_{2,2}\end{array}\right]$
A is non-negative (denoted as $\mathrm{A} \geq 0$) if $\mathrm{a}_{\mathrm{i}, \mathrm{j}} \geq 0$, for all $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$
A is an M-matrix if A is nonsingular, $\mathrm{a}_{\mathrm{i}, \mathrm{j}} \leq 0$ for $\mathrm{i} \neq \mathrm{j}$, and $\mathrm{A}^{-1} \geq 0$
A is irreducibly diagonally dominant if A is irreducible,
diagonally dominant with $\left|a_{i, i}\right|>\sum_{\mathrm{j}=1, \mathrm{j} \neq \mathrm{i}}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}, \mathrm{j}}$ for some i.
$A=M-N$ is a regular splitting of A if M is nonsingular and $M^{-1} \geq 0$

Stationary Iterative Methods

1. $\mathrm{r}^{\text {old }}=f-A u^{\text {old }}$
2. Solve $\mathrm{e}=\mathrm{B}^{-1} r^{\text {old }}$
3. update $\mathrm{u}^{\text {new }}=u^{\text {old }}+e$

$$
\Leftrightarrow
$$

$$
\begin{aligned}
e^{\text {new }} & =e^{\text {old }}-B^{-1}\left(f-A u^{o l d}\right) \\
& =e^{o l d}-B^{-1} A\left(u-u^{o l d}\right) \\
& =\left(I-B^{-1} A\right) e^{\text {old }}
\end{aligned}
$$

B is called an iterator or preconditioner of A.
$E_{B}=I-B^{-1} A$ is called the error reduction operator of the iterator B

Perron-Frobenius Theorem

Theorem: Let $\mathrm{A} \geq 0$ be an irreducible matrix. Then

1. A has a positive real eigenvalue equal to its spetral radius
2. There is an eigenvector $\mathrm{x}>0$ corresponds to $\rho(A)$
3. $\rho(A)$ increases when any entry of A increases.
4. $\rho(A)$ is a simple eigenvalue of A .

Some Well Known Iterative Methods

Suppose $A=D-L-U$, where
D is the diagonal, L and U are lower and upper triangular parts, respectively.
Richardson: $\quad B=\frac{1}{\omega}$, where $0<\omega<\frac{2}{\rho(\mathrm{~A})}$.
Jacobi: $\quad B=D$
Damped Jacobi: $B=\frac{1}{\omega} D$, where $0<\omega<\frac{2}{\rho\left(\mathrm{D}^{-1} \mathrm{~A}\right)}$.
Gauss-Seidel: $\quad B=(D-L)$
SOR:

$$
B=\frac{1}{\omega}(D-\omega L), \text { where } 0<\omega<2 .
$$

Jacobi and Gauss-Seidel

Jacobi:

$$
x_{i}^{(m+1)}=-\sum_{\substack{j=1 \\ j \neq i}}^{n}\left(\frac{a_{i, j}}{a_{i, i}}\right) x_{j}^{(m)}+\frac{r_{i}}{a_{i, i}}
$$

Gauss-Seidel: $\quad x_{i}^{(m+1)}=-\sum_{j=1}^{i-1}\left(\frac{a_{i, j}}{a_{i, i}}\right) x_{j}^{(m+1)}-\sum_{j=i+1}^{n}\left(\frac{a_{i, j}}{a_{i, i}}\right) x_{j}^{(m)}+\frac{r_{i}}{a_{i, i}}$

HW1: Write down a formula for SOR
HW2: $\quad\left[\begin{array}{cccc}1 & 0 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & 1 & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=0.5\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ by
Jacobi and Gauss-Seidel, starting with initial ${ }^{(0)}=[0,0,0,0]$.

Let $\mathrm{E}_{\mathrm{J}}=\left(I-D^{-1} A\right)$ and $\mathrm{E}_{\mathrm{GS}}=\left(I-(D-L)^{-1} A\right)$. Since the solution of HW2 is
$\mathrm{x}=[1,1,1,1]$ and $\mathrm{e}^{0}=x-x^{(0)}=[1,1,1,1]$. Clearly, we have $\mathrm{e}_{\mathrm{J}}^{\mathrm{m}}=\left(\mathrm{E}_{\mathrm{J}}\right)^{\mathrm{m}} \mathrm{e}^{0}$ and $\mathrm{e}_{\mathrm{GS}}^{\mathrm{m}}=\left(\mathrm{E}_{G S}\right)^{\mathrm{m}} \mathrm{e}^{0}$,
One can easily check that
$\mathrm{e}_{\mathrm{J}}^{\mathrm{m}}=\frac{-1}{2^{m}}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $\mathrm{e}_{\mathrm{GS}}^{\mathrm{m}}=\frac{-1}{4^{m}}\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right]$. Thus, $\left\|\mathrm{e}_{\mathrm{J}}^{\mathrm{m}}\right\|=\frac{1}{2^{m-1}}>\left\|\mathrm{e}_{\mathrm{GS}}^{\mathrm{m}}\right\|=\frac{\sqrt{10}}{4^{m}}$.
You might get a feeling that Gauss-Seidel method is faster than Jacobi method.

Stein-Rosenberg Theorem

Theorem: Let $\mathrm{B}_{\mathrm{J}}=L+U$ be the Jacobi matrix and $\mathrm{B}_{\mathrm{GS}}=(I-L)^{-1} U$ be the GaussSeidel matrix. Then one and only one of the following relations is vaild:

1) $\rho\left(\mathrm{B}_{\mathrm{J}}\right)=\rho\left(\mathrm{B}_{\mathrm{GS}}\right)=0$.
2) $0<\rho\left(\mathrm{B}_{\mathrm{GS}}\right)<\rho\left(\mathrm{B}_{\mathrm{J}}\right)<1$.
3) $\rho\left(\mathrm{B}_{\mathrm{J}}\right)=\rho\left(\mathrm{B}_{\mathrm{GS}}\right)=1$.
4) $1<\rho\left(\mathrm{B}_{\mathrm{J}}\right)<\rho\left(\mathrm{B}_{\mathrm{GS}}\right)$.

Convergence of Jacobi, Gauss-Seidel and SOR Iterative Methods

Lemma 1. If $\mathrm{A}=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right) \geq 0$ is irreducible then either $\sum_{\mathrm{j}=1}^{n} \mathrm{a}_{\mathrm{i}, \mathrm{j}}=\rho(\mathrm{A})$ or

$$
\begin{equation*}
\min _{1 \leq \mathrm{i} \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right)<\rho(\mathrm{A})<\max _{1 \leq \mathrm{i} \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right) \tag{1}
\end{equation*}
$$

Proof: Case(1): All row sums of A are equal ($=\sigma$): Let $\zeta=[1,1, \cdots, 1]$. Clearly, A $\zeta=\sigma \zeta$ and $\sigma \leq \rho(\mathrm{A})$.
However, the Gerchgorin's Theorem implies $\rho(\mathrm{A}) \leq \sigma$. Hence, $\rho(\mathrm{A})=\sigma$.
Case(2): Not all row sums of A are equal:
Construct $\mathrm{B}=\left(b_{\mathrm{i}, \mathrm{j}}\right) \geq 0$ and $\mathrm{C}=\left(c_{\mathrm{i}, \mathrm{j}}\right) \geq 0$, by decreasing and increasing some entries of A , respectively, such that

$$
\sum_{\mathrm{j}=1}^{\mathrm{n}} b_{\ell, j}=\alpha=\min _{1 \leq \leq \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right) \text { and } \sum_{\mathrm{j}=1}^{\mathrm{n}} c_{\ell, j}=\beta=\max _{1 \leq \leq \mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} a_{i, j}\right) \text {, for all } 1 \leq \ell \leq n \text {. }
$$

By Perron-Frobenius theorem, we have $\rho(\mathrm{B}) \leq \rho(\mathrm{A}) \leq \rho(\mathrm{C})$.
Clearly, from the result of Case(1), the inequality (1) holds.
Lemma 2. Let A and B be two matrices with $0 \leq|\mathrm{B}| \leq A$. Then $\rho(\mathrm{B}) \leq \rho(\mathrm{A})$

Theorem 1. Let $\mathrm{A}=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right)$ be a strictly or irreducibly diagonally dominant matrix then the Jacobi and Gauss-Seidel iterative methods converge.

Proof: Recall that $\mathrm{E}_{\mathrm{J}}=\mathrm{I}-\mathrm{D}^{-1} A=\mathrm{D}^{-1}(L+U)=\left(b_{i, j}\right)$, where $\mathrm{b}_{\mathrm{i}, \mathrm{j}}=\left\{\begin{array}{cl}0 & i=j \\ \frac{-a_{i, j}}{a_{i, i}} & i \neq j\end{array}\right.$. From Lemma 2, it is clear that $\rho(\mathrm{B}) \leq \rho(|B|)$. Since A is strictly diagonally dominant, clearly, we have $\sum_{\mathrm{j}=1}^{\mathrm{n}}\left|b_{i, j}\right|<1$ for all $1 \leq \mathrm{i} \leq \mathrm{n}$. Therefore, Lemma 1 implies $\rho(|B|)<1$. As a result, we have shown the Jacobi iterative method converge from $\rho(\mathrm{B}) \leq \rho(|B|)<1$. Now, since $E_{G S}=I-(D-L)^{-1} A=(D-L)^{-1} U=\left(I-D^{-1} L\right)^{-1} D^{-1} U$. Let $\tilde{L}=D^{-1} L$ and $\tilde{U}=D^{-1} U$. We have $\left|(\mathrm{I}-\tilde{\mathrm{L}})^{-1} \tilde{\mathrm{U}}\right| \leq\left|(\mathrm{I}-\tilde{\mathrm{L}})^{-1}\right||\tilde{\mathrm{U}}| \leq\left(\mathrm{I}+|\tilde{\mathrm{L}}|+|\tilde{\mathrm{L}}|^{2}+\cdots+|\tilde{\mathrm{L}}|^{n-1}\right)|\tilde{\mathrm{U}}|=\left|(\mathrm{I}-|\tilde{\mathrm{L}}|)^{-1}\right||\tilde{\mathrm{U}}|$. Now consider $\tilde{\mathrm{B}}_{\mathrm{J}}=|\tilde{\mathrm{L}}|+|\tilde{\mathrm{U}}|$ and $\tilde{\mathrm{B}}_{\mathrm{GS}}=\left|(\mathrm{I}-|\tilde{\mathrm{L}}|)^{-1}\right||\tilde{\mathrm{U}}|$. Since we have already shown $\rho\left(\tilde{\mathrm{B}}_{\mathrm{J}}\right)<1$, the Stein-Rosenberg theorem implies $\rho\left(\tilde{\mathrm{B}}_{\mathrm{GS}}\right)<1$.
Therefore, we conclude the Gauss-Seidel iterative method converges.

Theorem 2. Let $\mathrm{A}=\mathrm{D}-\mathrm{E}-\mathrm{E}^{*}$ and D be Hermitian matrices, where D is positive

 definite, and $\mathrm{D}-\omega \mathrm{E}$ is non-singular for $0 \leq \omega \leq 2$.Let $\mathrm{E}_{\mathrm{SOR}}=I-\omega(D-\omega E)^{-1} \mathrm{~A}$. Then $\rho\left(E_{\mathrm{SOR}}\right)<1$ if only if A is positive definite and $0<\omega<2$.

Proof: First, assume e_{0} is a nonzero vector, the SOR iteration can be written as

$$
\begin{equation*}
(D-\omega E) \mathrm{e}_{\mathrm{m}+1}=\left(\omega E^{*}+(1-\omega) D\right) \mathrm{e}_{\mathrm{m}}, \mathrm{~m} \geq 0 \tag{2}
\end{equation*}
$$

Let $\delta_{m}=\mathrm{e}_{\mathrm{m}}-\mathrm{e}_{\mathrm{m}+1}$. Substracting $(D-\omega E) \mathrm{e}_{\mathrm{m}}$ and $\left(\omega E^{*}+(1-\omega) D\right) \mathrm{e}_{\mathrm{m}+1}$ from both side of (2), we have $(D-\omega E) \delta_{m}=\omega A \mathrm{e}_{\mathrm{m}}---$ (3) and $\omega A \mathrm{e}_{\mathrm{m}+1}=\left[(1-\omega) D+\omega E^{*}\right] \delta_{m}---$ - (4).
From $\mathrm{e}_{\mathrm{m}}^{*} \times(3)-\mathrm{e}_{\mathrm{m}+1}^{*} \times(4)$ and "simplifying the expression" (HW), one has

$$
(2-\omega) \delta_{\mathrm{m}}^{*} \mathrm{D} \delta_{m}=\omega\left\{\mathrm{e}_{\mathrm{m}}^{*} A \mathrm{e}_{\mathrm{m}}-\mathrm{e}_{\mathrm{m}+1}^{*} A \mathrm{e}_{\mathrm{m}+1}\right\}-----(5)
$$

Assume A is positive definite and $0<\omega<2$ and let e_{0} be any eigenvector of $\mathrm{E}_{\text {SOR }}$. We have $\mathrm{e}_{1}=\lambda \mathrm{e}_{0}$ and $\delta_{0}=(1-\lambda) \mathrm{e}_{0}$ and (5) reduces to

$$
\left.\left(\frac{2-\omega}{\omega}\right)|1-\lambda|^{2} \mathrm{e}_{0}^{*} D \mathrm{e}_{0}=\left(1-|\lambda|^{2}\right) \mathrm{e}_{0}^{*} \mathrm{Ae}_{0}----- \text { (} 6\right) .
$$

Now, $\lambda \neq 1$. Otherwise, $\delta_{0}=0 \Rightarrow A \mathrm{e}_{0}=0$ (by (3)) $\Rightarrow \mathrm{e}_{0}=0 \Rightarrow$ contradiction!
Since A and D are positive definite and $0<\omega<2$, (6) implies $1-|\lambda|^{2}>0$. Therefore, $\rho\left(E_{\text {SOR }}\right)<1$.
Using similar arguments, one can show that the converse is also true.

- For SOR, it is possible to determined the optimal value of ω for special type of matrices (p-cyclic). The optimal value ω_{b} is precisely specified as the unique positive root
($0<\mathrm{p} /(\mathrm{p}-1)$) of the equation

$$
\left(\rho\left(E_{\mathrm{J}}\right) \omega_{b}\right)^{p}=\left[p^{p}(p-1)^{1-p}\right]\left(\omega_{b}-1\right),(\text { Varga 1959 })
$$

- For $\mathrm{p}=2$,

$$
\omega_{b}=1+\left(\frac{\rho\left(E_{J}\right)}{1+\sqrt{1-\rho^{2}\left(E_{J}\right)}}\right) \quad(\text { Young 1950 })
$$

- Semi-Iterative Method: $y_{m}=\sum_{j=0}^{m} v_{j}(m) x_{j}$ where $\sum_{j=0}^{m} v_{j}(m)=1$.

We have $\tilde{\mathrm{e}}_{\mathrm{m}}=\sum_{j=0}^{m} v_{j}(m) \mathbf{e}_{\mathrm{m}}$. In general, $\tilde{\mathrm{e}}_{\mathrm{m}}=P_{m}\left(E_{S}\right) \mathrm{e}_{0}$ where
P_{m} is a polymonial and E_{S} is the error reduction of an iterater S
This is so-called polynomial acceleration method.
The most important one is the Chebyshev polynomials.

Chebyshev Semi-Iterative Method

Algorithm:

$$
\begin{aligned}
& y_{m+1}=\omega_{m+1}\left\{E_{S} y_{m}+f-y_{m-1}\right\}+y_{m-1}, \text { for } \mathrm{m} \geq 1, \text { where } \\
& \omega_{m+1}=1+\frac{C_{m-1}(1 / \rho)}{C_{m+1}(1 / \rho)}, C_{\mathrm{m}-1} \text { and } C_{m+1} \text { are Chebyshev polynomials, } \\
& \rho=\rho\left(E_{S}\right) \text { and } \mathrm{y}_{0}=x_{0} . \quad C_{0}=1, C_{1}=x, C_{m+1}=2 x C_{m}-C_{m-1}
\end{aligned}
$$

Convergence:

$$
\left\|\tilde{\mathrm{e}}_{\mathrm{m}}\right\| \leq\left(\frac{2\left(\omega_{b}-1\right)^{m / 2}}{1+\left(\omega_{b}-1\right)^{m}}\right)\left\|\mathrm{e}_{0}\right\| \text {, here } \omega_{b}=\frac{2}{1+\sqrt{1-\rho^{2}}}
$$

The convergence rate is accelerated as $\rho \rightarrow 0$.
Remark: There are cases that the polynomial acceleration does not improve asymptotic rate of convergence.

Some PDE and Finite Element Analysis

Finite Element Solutions:
Let $\mathfrak{I}_{\mathrm{h}}$ be a given triangulation, $\mathrm{V}_{\mathrm{h}}=\left\{\mathrm{v} \in \mathrm{H}_{0}^{1}: \mathrm{vl}_{\mathrm{T}} \in \mathrm{P}_{1}(T), \mathrm{T} \in \mathfrak{I}_{\mathrm{h}}\right\}$ and
$\pi_{\mathrm{h}}: \mathrm{H}^{1} \rightarrow \mathrm{~V}_{\mathrm{h}}$ be the interpolation defined by $\pi_{\mathrm{h}}(u)\left(N_{i}\right)=u\left(N_{i}\right)$.
Consider the weak solution $u \in H^{1}$ satisfying $a(u, v)=(f, v)$, for all $v \in H_{0}^{1}$,
a finite element solution $\mathrm{u}_{\mathrm{h}} \in \mathrm{V}_{\mathrm{h}}$ satisfies $\mathrm{a}(\mathrm{u}, \mathrm{v})=(\mathrm{f}, \mathrm{v})$, for all $\mathrm{v} \in V_{h}$.
Interpolation Errors:

$$
\left\|\mathrm{v}-\pi_{\mathrm{h}} \mathrm{v}\right\|_{1} \leq C h^{r}|u|_{r+1} \text { and }\left\|\mathrm{v}-\pi_{\mathrm{h}} \nu\right\|_{0} \leq C h^{r+1}|u|_{r+1} .
$$

H^{2}-Regularity: $\mathrm{a}(\cdot, \cdot)$ is said to be H^{2}-Regular if there exists a constant C such that for all $f \in L^{2}$

$$
|\mathrm{u}|_{2} \leq C\|f\|_{0}
$$

Finite Element Solution is Quasi-Optimal

Céa Theorem: $\left\|u-u_{h}\right\|_{\mathrm{H}^{1}} \leq \frac{C}{\alpha} \min _{v \in V_{h}}\|u-v\|_{\mathrm{H}^{1}}$
where, C is the continuity constant and α is the coercivity constant of $\mathrm{a}(\cdot, \cdot)$.
Proof:
Step1: $a\left(u-u_{h}, v\right)=0$, for all $\mathrm{v} \in V_{h}$
Step2: $\alpha\left\|u-u_{h}\right\|_{H^{1}}^{2} \leq a\left(u-u_{h}, u-u_{h}\right)=a\left(u-u_{h}, u-v\right)+a\left(u-u_{h}, v-u_{h}\right)$

$$
=a\left(u-u_{h}, u-v\right) \leq C\left\|u-u_{h}\right\|_{H^{1}}\|u-v\|_{H^{1}}
$$

HW4: If a (\cdot, \cdot) is self-adjoint, show that $\left\|u-u_{h}\right\|_{A}=\min _{v \in V_{h}}\|u-v\|_{A}$, where $\|v\|_{A}=\sqrt{a(v, v)}$ is the energy norm.

Remark: finite element solution is the orthogonal projection of the exact solution with respect to the energy norm.

FEM Error Estimation

Theorem 3: Assume the interpolation error estimations holds for the given $\mathfrak{I}_{\mathrm{h}}$ and $\mathrm{a}(\cdot, \cdot)$ has the H^{2} - Regularity. The following estimates hold. $\left\|u-u_{h}\right\|_{H^{1}} \leq C h^{r}|u|_{r+1}---$ (i) and $\left\|u-u_{h}\right\|_{L^{2}} \leq C h^{r+1}|u|_{r+1}$---- (ii)

Proof: From the interpolation estimation and Céa Theorem, (i) is trivial. To prove (ii), we use the duality argument. Let w be the solution to the adjoint problem, $a(v, w)=\left(u-u_{h}, v\right)$, for all $v \in H^{1}$. Choosing $v=u-u_{h}$, we have

$$
\begin{aligned}
\left(\mathrm{u}-\mathrm{u}_{\mathrm{h}}, \mathrm{u}-\mathrm{u}_{\mathrm{h}}\right) & =\mathrm{a}\left(\mathrm{u}-\mathrm{u}_{\mathrm{h}}, w\right)=\mathrm{a}\left(\mathrm{u}-\mathrm{u}_{\mathrm{h}}, w-w_{h}\right), \text { for any } \mathrm{w}_{\mathrm{h}} \in V_{h} \\
& \leq C\left\|u-u_{h}\right\|_{H^{1}}\left\|w-w_{h}\right\|_{H^{1}} \leq C h\left\|u-u_{h}\right\|_{H^{1}}|w|_{2} \\
& \leq C h\left\|u-u_{h}\right\|_{H^{1}}\left\|u-u_{h}\right\|_{L^{2}} .
\end{aligned}
$$

Therefore, $\left\|u-u_{h}\right\|_{L^{2}} \leq C h^{r+1}|u|_{r+1}$.

Definition: mesh dependent norm $\|\mathrm{v}\|_{k, h}=\sqrt{\left(A_{h}^{k} v, \nu\right)_{h}}$ for $\mathrm{v} \in \mathrm{V}_{\mathrm{h}}, \mathrm{k}=0,1$, where $(v, w)_{h}=\sum h^{2}\left(v\left(N_{i}\right), w\left(N_{i}\right)\right)$. Clearly, $\|v\|_{0, h} \equiv\|v\|_{0}$ and $\|\mathrm{v}\|_{1, h} \equiv\|v\|_{A}$.

Lemma 3: $\Lambda\left(\mathrm{A}_{\mathrm{h}}\right) \leq C h^{-2}$
Proof: Let λ be an eigenvalue of A_{h} with eigenvector ϕ.

$$
\begin{aligned}
& \mathrm{a}(\phi, \phi)=\left(\mathrm{A}_{\mathrm{h}} \phi, \phi\right)_{h}=\lambda(\phi, \phi)_{h}=\lambda\|\phi\|_{0, h}^{2} . \\
& \lambda \leq \frac{C\|\phi\|_{A}^{2}}{\|\phi\|_{0, h}^{2}} \leq \frac{C h^{-2}\|\phi\|_{0}^{2}}{\|\phi\|_{0, h}^{2}} \prec C h^{-2} .
\end{aligned}
$$

Lemma 4: (Generalized Cauchy-Schwarz Inequality)

$$
|\mathrm{a}(v, w)| \leq\|v\|_{1+t, h}\|w\|_{1-t, h} \quad \forall v, w \in V_{h} \text { and } \mathrm{t} \in \mathrm{R} .
$$

Multigrid Methods

Ideas:

- Approximate solutions on fine grid using iterative methods.
- Correct remaining errors from coarse grids.

MG V-cycle

Why Multigrid Works?

1. Relaxation methods converge slowly but smooth the error quickly.

Ex1: consider $L u=-u^{\prime \prime}=\lambda u_{\text {finite difference }}^{\Rightarrow} \frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=\lambda u_{j}$
Eigenvalues $\lambda_{\mathrm{k}}=\frac{4}{\mathrm{~h}^{2}} \sin ^{2}\left(\frac{k \pi}{2(N+1)}\right)$ and eigenvectors $\phi_{j}^{k}=\sin \left(\frac{k j \pi}{N+1}\right)$
here, $\mathrm{k}=1 \cdots \mathrm{~N}$ is the wave number and j is the node number.
Richardson relaxation: $E_{R}=\left(I-\sigma^{-1} A\right)$ where $\mathrm{A}_{\mathrm{h}}=\frac{1}{\mathrm{~h}^{2}} \operatorname{tridiag}\left[\begin{array}{lll}-1 & 2 & -1\end{array}\right]$.
Fourier analysis: Choosing $\sigma=\frac{4}{h^{2}}$ (largest eigenvalue).

$$
\mathrm{e}_{\mathrm{m}}=\sum_{k=1}^{N}\left(1-\frac{\lambda_{k}}{\sigma}\right)^{m} \phi^{k}=\sum_{k=1}^{N}\left(1-\sin ^{2}\left(\frac{k \pi}{2(N+1)}\right)\right)^{m} \phi^{k}=\sum_{k=1}^{N} \alpha_{k}^{m} \phi^{k}
$$

, after m relaxation. $\alpha_{\mathrm{k}}^{\mathrm{m}} \rightarrow 0$ more quickly for k close to N .

2. Smooth error modes are more oscillatory on coarse grids. Smooth errors can be better corrected by relaxation on coarser grids.

Smooth error on fine grid

Smooth error on coarse grid

- Relaxation convergence rate on fine grid is $1-\mathrm{O}\left(\mathrm{h}^{2}\right)$
- Relaxation convergence rate on coarse grid: 1-O(4h²)

Remember: $\alpha_{1} \approx 1-\left(\frac{\pi}{2(N+1)}\right)^{2}=1-O\left(h^{2}\right)$ for $\mathrm{N} \gg 1$
3. The smooth error is corrected by coarse grid correction operator:

$$
E^{c}=\left(I-I_{H}^{h} A_{H}^{-1} I_{h}^{H} A_{h}\right)=\left(A_{h}^{-1}-I_{H}^{h} A_{H}^{-1} I_{h}^{H}\right) A_{h}
$$

here I_{h}^{H} and I_{H}^{h} are called restriction and prolongation operator respectively.

- A_{H} can be obtained from discretization on coarse grid
- $A_{H}=I_{h}^{H} A_{h} I_{H}^{h}$ and $I_{h}^{H}=\mathrm{c}\left(I_{H}^{h}\right)^{\mathrm{T}}$ (Galerkin formulation)

$$
\Rightarrow\left\{\begin{array}{l}
E^{c} \text { is an } A \text {-orthogonal projection }\left\langle A_{h} E^{c} e, I_{H}^{h} e\right\rangle=0 \\
N\left(E^{c}\right)=R\left(I_{H}^{h}\right) \\
R\left(E^{c}\right)=N\left(I_{h}^{H} A_{h}\right) \text { and } E^{c} \text { is identity on } N\left(I_{h}^{H} A_{h}\right)
\end{array}\right.
$$

A Picture That Show How Multigrid Works !

Consider $I_{H}^{h}=\left[\frac{1}{2}, 1, \frac{1}{2}\right]^{T} \quad$ (linear interpolation) and $I_{h}^{H}=\frac{1}{2}\left[\frac{1}{2}, 1, \frac{1}{2}\right]$.
It is easy to check that $A_{H}=I_{h}^{H} A_{h} I_{H}^{h}$ is the discretization of L on \mathfrak{I}_{H}.
Now, for any $\mathrm{v} \in \mathrm{V}_{\mathrm{h}}$, let $f_{v}=A_{h} v$. One can consider v and $v_{\mathrm{H}}=I_{H}^{h} A_{H}^{-1} I_{h}^{H} f_{v}$ as finite element approximations of \hat{v}, the solution of $\mathrm{a}(\hat{v}, w)=\left(f_{v}, w\right)$. Then, from the FEM-error estimation and H^{2}-regularity, we have

$$
\begin{aligned}
\left\|\mathrm{E}^{\mathrm{c}}(v)\right\|_{k} & =\left\|\left(A_{h}^{-1}-I_{H}^{h} A_{H}^{-1} I_{h}^{H}\right)\left(A_{h} v\right)\right\|_{k}=\left\|\hat{v}-v_{H}-(\hat{v}-v)\right\|_{k} \cdots-\cdots(*) \\
& \leq C h^{2-k}|\hat{v}|_{2} \leq C h^{2-k}\left\|f_{v}\right\|_{0}=C h^{2-k}\|A v\|_{0}
\end{aligned}
$$

Consider the eigenfunction $\phi_{\mathrm{j}}^{\mathrm{k}}, \mathrm{k} \ll \frac{\mathrm{N}}{2}$. $\phi_{\mathrm{j}}^{\mathrm{k}}$ is also an eigenfunction of A_{H} We have $\left\|\mathrm{E}^{\mathrm{c}}\left(\phi_{\mathrm{j}}^{\mathrm{k}}\right)\right\|_{1} \leq C h \lambda_{k}=O(h)$. This concludes the coarse-grid correction fixes the low frequency errors. For $\mathrm{k} \approx N,\left\|\mathrm{E}^{\mathrm{c}}\left(\phi_{\mathrm{j}}^{\mathrm{k}}\right)\right\|_{1} \leq 4 \frac{C}{h}$, the high frequency errors can be amplified by coarse-grid correction.

Multigrid Algorithm

Multigrid (MG) Algorithm:

1. $\mathrm{x}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}}$
2. (pre-smoothing) $\mathrm{x}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}}+\mathrm{M}_{\mathrm{k}}^{-1}\left(\mathrm{~g}_{\mathrm{k}}-\mathrm{A}_{\mathrm{k}} \mathrm{X}_{\mathrm{k}}\right)$
3. (restriction) $\tilde{g}_{k}=I_{k}^{k-1}\left(g_{k}-A_{k} x_{k}\right)$
4. (correction) $\mathrm{q}_{\mathrm{i}}=\mathrm{MG}_{\mathrm{k}-1}\left(\mathrm{q}_{\mathrm{i}-1}, \tilde{\mathrm{~g}}_{\mathrm{k}}\right)$ for $1 \leq \mathrm{i} \leq \mathrm{m}, \mathrm{m}=1$ or 2 and $\mathrm{q}_{0}=0$
5. (prolongation) $\tilde{q}_{m}=I_{k-1}^{k} q_{m}$
6. $\operatorname{set} \mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{k}}+\tilde{\mathrm{q}}_{\mathrm{m}}$
7. (post-smoothing) $x_{k}=x_{k}+M_{k}^{-1}\left(g_{k}-A_{k} x_{k}\right)$
8. $\operatorname{set} \mathrm{MG}_{\mathrm{k}}\left(\mathrm{w}_{\mathrm{k}}, \mathrm{g}_{\mathrm{k}}\right)=\mathrm{x}_{\mathrm{k}}$

MG Error reduction operator:

$$
E_{m g}=\left(A_{h}^{-1}-I_{H}^{h} A_{H}^{-1} I_{h}^{H}\right)\left(A_{h} E^{s}\right)=E^{s}\left(I-I_{H}^{h} A_{H}^{-1} I_{h}^{H} A_{h}\right)
$$

Multigrid Cycles

Multigrid V-cycle ($\mathrm{m}=1$)

Multigrid V-cycle ($m=2$)

Full Multigrid cycle (FMG)

Damped Jacobi relaxation and smoothing effect

Multigrid V-cycle convergence for 1-D laplacian
Results provided by 㟒(o)㰆 in NCTU

MG Convergence

Smoothing property: $\left\|A_{l} E^{s}\right\| \leq \eta(m)\left\|A_{l}\right\|$, for all $0 \leq m<\infty$ and $l>0$.
Approximation property: $\left\|A_{l}^{-1}-I_{h}^{H} A_{l-1}^{-1} I_{h}^{H}\right\| \leq C_{A}\left\|A_{l}\right\|^{-1}$, for all $l>0$.
Ideas for proving the approximation property is shown in P. $25\left(^{*}\right)$ Proof of smoothing property:
Consider $\mathrm{E}_{\mathrm{S}}=\mathrm{E}_{\mathrm{R}}=\left(\mathrm{I}-\frac{1}{\Lambda} A_{h}\right)$. Let $\mathrm{v} \in \mathrm{V}_{\mathrm{h}}$ and $\mathrm{v}_{S}^{\mathrm{m}}=E_{S}^{m}(\mathrm{v})$. From Fourier expansion
$\mathrm{v}=\sum \mathrm{v}_{\mathrm{k}} \phi_{k}$, we have $\mathrm{v}_{S}^{\mathrm{m}}=\left(1-\frac{1}{\Lambda} A\right)^{m} v=\sum\left(1-\frac{\lambda_{k}}{\Lambda}\right)^{m} v_{k} \phi_{k}$. Therefore,
$\left\|A_{h} E_{R}(v)\right\|_{0}^{2}=\left\|v_{s}\right\|_{2}^{2} \leq \sum\left(1-\frac{\lambda_{k}}{\Lambda}\right)^{2 m} \lambda_{k}^{2} v_{k}^{2}=\Lambda \sum\left(1-\frac{\lambda_{k}}{\Lambda}\right)^{2 m}\left(\frac{\lambda_{k}}{\Lambda}\right) \lambda_{k} v_{k}^{2}$

$$
\leq \Lambda \sup _{0 \leq x \leq 1}\left\{(1-x)^{m} x\right\}\left(v_{s} \cdot A_{h} v_{s}\right) \leq \mathrm{Ch}^{-2} \frac{1}{m}\left\|v_{s}\right\|_{0}\left\|v_{s}\right\|_{2}
$$

Since $\left\|v_{s}\right\|_{0} \leq\|\mathrm{v}\|_{0}$ for Richarson iteration, clearly,
$\left\|A_{h} E_{R}(v)\right\|_{0} \leq \frac{1}{m}\left\|\mathrm{~A}_{\mathrm{h}}\right\|\|\mathrm{v}\|_{0} \Rightarrow\left\|A_{h} E_{R}\right\| \leq \eta(m)\left\|\mathrm{A}_{\mathrm{h}}\right\|, \eta(\mathrm{m}) \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$.
HW5: Prove MG with Richardson smoother is convergent in $\|\cdot\|_{1}$-norm

Choices of Interpolations and Coarse Grids

- Linear interpolation: $p=\frac{1}{4}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\left[\quad r=\frac{1}{16}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\right] \quad \begin{array}{l}\text { ! ! ! } \\ \vdots!\end{array}\right.\right.$
- Operator-dependent interpolation: De Zeeuw 1990
-The rule in chosing interpolation and restriction:

$$
m_{p}+m_{r}>2 m \text { (Brandt 1977) }
$$

where $2 m$ is the order of the PDE, $m_{p}-1$ is the degree of polynomials exactly interpolated by $\mathrm{I}_{\mathrm{H}}^{\mathrm{h}}$ and $\mathrm{m}_{\mathrm{r}}-1$ is the degree of ploynomials exactly interpolated by $\left(\mathrm{I}_{\mathrm{h}}^{\mathrm{H}}\right)^{\mathrm{T}}$.

- Coarse grid selection: regular coarsening, semi-coarsening, algebraic coarsening

Choices of Smoothers

- Stationary iterative methods : Jacobi, Gauss-Seidel, SOR, ...
- Block-type stationary iterative methods (blocks can be determined by the way we number the nodes)

Vertical line ordering Horizontal line ordering

$$
\mathrm{A}=\left[\begin{array}{cccc}
\mathrm{T} & -\mathrm{I} & & \\
-\mathrm{I} & \mathrm{~T} & -\mathrm{I} & \\
& -\mathrm{I} & \mathrm{~T} & -\mathrm{I} \\
& & -\mathrm{I} & \mathrm{~T}
\end{array}\right], \mathrm{T}=[-1,4,-1]:
$$

Matrix of 2-D Laplacian

Matrix Pattern for line ordering

Red-Black ordering

Matrix Pattern for R-B ordering

$$
\begin{aligned}
& \text { HW6: Write a MG code for solving 1-D }\left\{\begin{array}{l}
-u^{\prime \prime}=f \\
u(0)=u(1)=0
\end{array}\right. \\
& \text { using linear interpolant } \mathrm{I}_{\mathrm{H}}^{\mathrm{h}} \text { and } \mathrm{I}_{\mathrm{h}}^{\mathrm{H}}=0.5\left(\mathrm{I}_{\mathrm{H}}^{\mathrm{h}}\right)^{T} \text { and the } \\
& \text { Red-Black Gauss-Seidel smoother } \\
& \text { Update even (Red) points first: } \mathrm{x}_{2 \mathrm{i}}=0.5\left(f_{2 i}+x_{2 i-1}+x_{2 i+1}\right) \\
& \text { Update odd (Black) points: } \mathrm{x}_{2 \mathrm{i}}=0.5\left(f_{2 i+1}+x_{2 i}+x_{2 i+2}\right)
\end{aligned}
$$

Brandt's Local Mode Analysis

For analyzing the robustness of a smoother. Brandt's local mode analysis is a useful tool. Here, we demonstrate the method by considering the Jacobi and Gauss-Seidel relaxation for the 2-D laplace equation with periodic boundary condition.

Brandt's smoothing factor

Let ε be the error before relaxation. From discrete Fourier transform theory, ε can be written as

$$
\begin{aligned}
& \varepsilon_{i, j}=\sum_{\theta \in \Theta_{\mathrm{n}}} \hat{\varepsilon}_{\theta} \phi_{i, j}(\theta)-----(\mathrm{i}), \text { where } \theta=\left(\theta_{1}, \theta_{2}\right), \phi_{i, j}(\theta)=\mathrm{e}^{\mathrm{i}\left(i \theta_{1}+j \theta_{2}\right)}, \\
& \hat{\varepsilon}_{\theta}=\frac{1}{(n+1)^{2}} \sum_{1 \leq k, l \leq n} \varepsilon_{k, l} \phi_{k, l}(-\theta) \text {, and } \\
& \Theta_{\mathrm{n}}=\left\{\left.\frac{2 \pi}{n+1}(k, l) \right\rvert\,-\frac{n+1}{2} \leq k, l \leq \frac{n+3}{2}, \mathrm{n} \text { is odd }\right\} .
\end{aligned}
$$

Similarly, the error $\tilde{\varepsilon}$ obtained after relaxation can be written
as $\tilde{\varepsilon}=\sum_{\theta \in \Theta_{\mathrm{n}}} \hat{\tilde{\varepsilon}}_{\theta} \phi_{i, j}(\theta)----$ (ii). Let $\lambda(\theta) \equiv \frac{\hat{\tilde{\varepsilon}}_{\theta}}{\widehat{\varepsilon}_{\theta}}$. Brandt's smoothing
factor is defined as $\bar{\rho}=\sup \left\{|\lambda(\theta)|, \frac{\pi}{2} \leq\left|\theta_{k}\right| \leq \pi, k=1,2\right\}$.

Smoothing Factor of Damped Jacobi Iteration

Recall that $\tilde{\varepsilon}_{i, j}=\varepsilon_{i, j}-\frac{\omega}{4}\left(4 \varepsilon_{i, j}-\left(\varepsilon_{i+1, j}+\varepsilon_{i-1, j}+\varepsilon_{i, j+1}+\varepsilon_{i, j-1}\right)\right)$ Plug (i) and (ii) into it, we have

$$
\begin{aligned}
& \sum_{\theta \in \Theta_{\mathrm{n}}} \hat{\tilde{\varepsilon}}_{\theta} \phi_{i, j}(\theta)=\sum_{\theta \in \Theta_{\mathrm{n}}}\left\{\hat{\varepsilon}_{\theta} \phi_{i, j}(\theta)-\frac{\omega}{4}\left[4 \hat{\varepsilon}_{\theta} \phi_{i, j}(\theta)-\left(\hat{\varepsilon}_{\theta} \phi_{i+1, j}(\theta)+\hat{\varepsilon}_{\theta} \phi_{i-1, j}(\theta)+\hat{\varepsilon}_{\theta} \phi_{i, j+1}(\theta)\right.\right.\right. \\
& \left.\left.\left.+\hat{\varepsilon}_{\theta} \phi_{i+1, j}(\theta)\right)\right]\right\}=\sum_{\theta \in \Theta_{\mathrm{n}}} \hat{\varepsilon}_{\theta}\left\{\phi_{i, j}(\theta)-\frac{\omega}{4}\left[4 \phi_{i, j}(\theta)-\phi_{i, j}(\theta) \mathrm{e}^{\mathrm{i} \theta_{1}}-\phi_{i, j}(\theta) \mathrm{e}^{\mathrm{-} \theta_{1}}-\phi_{i, j}(\theta) \mathrm{e}^{\mathrm{i} \theta_{2}}\right.\right. \\
& \left.\left.-\phi_{i, j}(\theta) \mathrm{e}^{-\mathrm{i} \theta_{2}}\right]\right\}=\sum_{\theta \in \Theta_{\mathrm{n}}} \hat{\varepsilon}_{\theta}\left\{1-\omega\left(1-\frac{\cos \left(\theta_{1}\right)+\cos \left(\theta_{2}\right)}{2}\right)\right\} \phi_{i, j}(\theta)
\end{aligned}
$$

Therefore, $\lambda(\theta)=1-\omega\left(1-\frac{\cos \left(\theta_{1}\right)+\cos \left(\theta_{2}\right)}{2}\right)$. It is easy to see that $\bar{\rho}=\max \left\{|1-\omega|,\left|1-\frac{\omega}{2}\right|,\left|1-\frac{3 \omega}{2}\right|\right\}$. The optimal ω that minimize $\bar{\rho}$ is $\frac{4}{5}$ and the smoothing factor $\bar{\rho}=0.6$ for such ω. HW7: Show that the smoothing factor of the Gauss-Seidel iteration is 0.5

How Much Multigrid Costs?

Convergence:

- Stationary method $\approx 1-\mathrm{O}\left(\kappa^{-1}\right) \approx 1-\mathrm{h}^{2}$
- Conjugate gradient $\approx 1-\mathrm{O}\left(\kappa^{-1 / 2}\right) \approx 1$-h
- Multigrid $\approx \mathrm{O}(1)$ independent with h

How much each MG step cost?
Ignore the cost associated with inter-grid transfer (typically within $10-20 \%$). Computation cost of one MG V-cycle is

$$
2 c n^{d}\left(1+2^{-d}+2^{-2 d}+\cdots\right)=\frac{2 c n^{d}}{1-2^{-d}}
$$

n^{d} : total number of points
d: dimension of the problem
c: cost for updating a single unknown cn^{d} : cost per relaxation sweep.

Standard MG can fail!

- The original PDE has poor coercivity or regularity (for example, crack problems, convection-diffusion problems, etc.)
- Relaxation may not smooth the error.
- coarse grid correction can only capture a small portion of the error or even worse!
- The left figure is a sketch to illustrate why MG slow convergence
- Next, let's consider the following example:

$$
\text { Ex2: }\left\{\begin{array}{c}
-\frac{d}{d x}\left(c(x) \frac{d u}{d x}\right)=f(x) \tag{+}\\
u(0)=u(1)=0
\end{array}, \text { here } \mathrm{c}(\mathrm{x})=\left\{\begin{array}{c}
\varepsilon, 0 \leq x \leq i_{0} h \\
1, i_{0} h<x \leq i_{1} h \\
\varepsilon, i_{1} h<x \leq 1
\end{array}\right.\right.
$$

$$
\begin{aligned}
& A_{h}=\left[\begin{array}{cccccccccc}
2 \varepsilon & -\varepsilon & & & & & & & & \\
-\varepsilon & 2 \varepsilon & -\varepsilon & & & & & & & \\
& \ddots & \ddots & \ddots & & & & & & \\
& & -\varepsilon & 1+\varepsilon & -1 & & & & & \\
& & & -1 & 2 & -1 & & & & \\
& & & & \ddots & \ddots & \ddots & & & \\
& & & & & -1 & 1+\varepsilon & -\varepsilon & & \\
& & & & & & -\varepsilon & 2 \varepsilon & -\varepsilon & \\
& & & & & & & \ddots & \ddots & \ddots \\
& & & & & & & & -\varepsilon & 2 \varepsilon
\end{array}\right] \\
& \text { Discrete matrix of }(+) \Rightarrow A_{h}= \\
& \text { Damped Jacobi } \mathrm{E}_{\mathrm{DJ}} \\
& \text { matrix of } \mathrm{A}_{\mathrm{h}} \\
& \Downarrow \\
& I-\omega D^{-1} A_{h}=I-\omega\left[\begin{array}{cccccccccc}
1 & -1 / 2 & & & & & & & & \\
-1 / 2 & 1 & -1 / 2 & & & & & & & \\
& \ddots & \ddots & \ddots & & & & & & \\
& & -\varepsilon /(1+\varepsilon) & 1 & -1 /(1+\varepsilon) & & & & \\
& & & -1 / 2 & 1 & -1 / 2 & & & \\
& & & & \ddots & \ddots & \ddots & & & \\
& & & & & -1 /(1+\varepsilon) & 1 & -\varepsilon /(1+\varepsilon) & & \\
& & & & & & -1 / 2 & 1 & -1 / 2 & \\
& & & & & & \ddots & \ddots & \ddots \\
& & & & & & & -1 / 2 & 1
\end{array}\right]
\end{aligned}
$$

For $\varepsilon \rightarrow 0$, the eigen vector corresponding to the largest eigenvalue $\lambda^{(0)}$ of E_{DJ} converges toward to the vector $\mathrm{e}^{(0)}$ while $\lambda^{(0)} \rightarrow 1$, where

$$
\left(\mathrm{e}^{(0)}\right)_{\mathrm{i}}= \begin{cases}i h, & 0 \leq x \leq i_{0} h \\ \mathrm{i}_{0} h, & i_{0} h<x \leq i_{1} h \\ i_{0} \quad i_{0}(n+1)\end{cases}
$$

Figure of $\mathrm{e}^{(0)}$

Damped Jacobi fails to smooth the high frequency error!
MG convergence is deteriorated as $\varepsilon \rightarrow 0$
A remedy of this is to use operator-dependent interpolation!
Construct such interpolation is not easy.
But, there is a "easier and better" way to do it!

Algebraic Multigrid

MG	AMG		
1.	A priori generated coarse grids are needed. Coarse grids need to be generated based on geometric information of the domain.	1.	A priori generated coarse grids are not needed! Coarse grids are generated by algebraic coarsening from matrix on fine grid.
2. \quadInterpolation operators are defined independent with coarsening process.	2.Interpolation operators are defined dynamically in coarsening process.		
3. \quad Smoother is not always fixed.	3.Smoother is fixed.		

Ideas:

- Fix the smoothing operator.
-Carefully select coarse grids and define interpolation weights

AMG Convergence

Smoothing assumption: $\exists \alpha>0$ э $\left\|E^{s} e\right\|_{1}^{2} \leq\|e\|_{1}^{2}-\alpha\|e\|_{2}^{2}$ for all $e \in V_{h}$
Approximation assumption: $\min _{e_{H}}\left\|e-I_{H}^{h} e_{H}\right\|_{0}^{2} \leq \beta\|e\|_{1}^{2}$ where β is independent with e.

$$
\begin{aligned}
& \left\|E^{c} e\right\|_{1}^{2}=\left(A E^{c} e, E^{c} e-I_{H}^{h} e_{H}\right) \leq\left\|E^{c} e\right\|_{2}\left\|E^{c} e-I_{H}^{h} e_{H}\right\|_{0} \leq \beta\left\|E^{c} e\right\|_{2}\left\|E^{c} e\right\|_{1} \\
& \left\|E^{s} E^{c}\right\|_{1}^{2} \leq\left\|E^{c} e\right\|_{1}^{2}-\alpha\left\|E^{c} e\right\|_{2}^{2} \leq\left(1-\frac{\alpha}{\beta}\right)\left\|E^{c} e\right\|_{1}^{2} \leq\left(1-\frac{\alpha}{\beta}\right)\|e\|_{1}^{2} \\
& \text {,here }\|\mathrm{v}\|_{0}=\langle\mathrm{Dv}, \mathrm{v}\rangle,\|\mathrm{v}\|_{1}=\langle\mathrm{Av}, \mathrm{v}\rangle,\|\mathrm{v}\|_{2}=\left\langle\mathrm{D}^{-1} \mathrm{Av}, \mathrm{Av}\right\rangle, \text { for } \mathrm{v} \in \mathrm{~V}_{\mathrm{h}}
\end{aligned}
$$

AMG works when A is a symmetric positive definite M-matrix.
In the following, we assume that A is also weakly diagonally dominate

What Does the Smooth Assumption Tell?

- Smooth error is characterized by $\left\|E_{s} \mathrm{e}_{\mathrm{s}}\right\|_{1} \approx\left\|\mathrm{e}_{\mathrm{s}}\right\|_{1},\left\|\mathrm{e}_{\mathrm{s}}\right\|_{2}$ is very small

$$
\begin{aligned}
& \|e\|_{1}^{2} \leq\left\|D^{-1 / 2} A e\right\|\left\|D^{1 / 2} e\right\|=\|e\|_{2}\|e\|_{0} \Rightarrow\|e\|_{1} \ll\|e\|_{0} \\
& (A e, e)=\frac{1}{2} \sum_{i, j}-a_{i, j}\left(e_{i}-e_{j}\right)^{2}+\sum_{i}\left(\sum_{j} a_{i, j}\right) e_{i}^{2} \ll \sum_{i} a_{i, i} e_{i}^{2} \\
& \frac{1}{2} \sum_{j}-a_{i, j}\left(e_{i}-e_{j}\right)^{2} \ll a_{i i} e_{i}^{2} \\
& \sum_{j \neq i} \frac{\left|a_{i, j}\right|}{a_{i, i}} \frac{\left.\mid e_{i}-e_{j}\right)^{2}}{e_{i}^{2}} \ll 2
\end{aligned}
$$

- Smoother errors vary slowly in the direction of strong connection, from e_{i} to e_{j}
, where $\left|a_{i, j}\right| / a_{i, i}$ are large.
- AMG coarsening should be done in the direction of the strong connections.
- In the coarsening process, interpolation weights are computed so that the approximation assumption is satisfied. (detail see Ruge and Stüben 1985)

What Does the Approximation Assumption Tell?

Approximation assumption $\equiv \min _{e_{\mu}}\left\|e-I_{H}^{h} e_{H}\right\|_{0}^{2} \leq \beta\|e\|_{1}^{2}$

$$
\begin{aligned}
\sum_{i \in F} a_{i i}\left(e_{i}-\sum_{k \in C} w_{i k} e_{k}\right)^{2} & \leq \beta\left(\frac{1}{2} \sum_{i, j}\left(-a_{i j}\right)\left(e_{i}-e_{j}\right)^{2}+\sum_{i}\left(\sum_{j} a_{i j}\right) e_{i}^{2}\right) \\
\text { Since } \sum_{i \in F} a_{i i}\left(e_{i}-\sum_{k \in C} w_{i k} e_{k}\right)^{2} & =\sum_{i \in F} a_{i i}\left(\sum_{k \in C} w_{i k}\left(e_{i}-e_{k}\right)+\left(1-s_{i}\right) e_{i}\right)^{2} \\
& \leq \sum_{i \in F} a_{i i}\left(\sum_{k \in C} w_{i k}\left(e_{i}-e_{k}\right)^{2}+\left(1-s_{i}\right) e_{i}^{2}\right),
\end{aligned}
$$

here $w_{i k}>0$ is the interpolation weight from node k to node i , and $s_{i}=\sum_{k \in C} w_{i k}<1$,
clearly, if
$(\Theta)\left\{\begin{array}{l}\sum_{i \in F} a_{i i} \sum_{k \in C} w_{i k}\left(e_{i}-e_{k}\right)^{2} \leq \frac{\beta}{2} \sum_{i, j}\left(-a_{i j}\right)\left(e_{i}-e_{j}\right)^{2} \\ \sum_{i \in F} a_{i i}\left(1-s_{i}\right) e_{i}^{2} \leq \beta \sum_{i}\left(\sum_{j} a_{i j}\right) e_{i}^{2},\end{array}\right.$
the approximation assumption holds. For (Θ) to hold, we can simply require

$$
\text { (छ) } 0 \leq a_{i i} w_{i k} \leq \beta\left|a_{i k}\right| \text { and } 0 \leq a_{i i}\left(1-s_{i}\right) \leq \beta \sum_{k} a_{i k} .
$$

Lemma 5: Given a $\beta \geq 1$, suppose the coarse grid C is selected such that

$$
a_{i, i}+\sum_{\substack{j \neq C_{i} \\ j \neq i}} a_{i, j}=\sum_{j \notin C_{i}} a_{i, j} \geq \frac{1}{\beta} a_{i, i}
$$

where $C_{i}=N_{i} \cap C, C$ is the coarse grid and $N_{i}=$ neighbors of i-th node Then, the approximation assumption holds if the interpolation weights are defined as $w_{i, k}=\left|a_{i, k}\right| / \sum_{j \notin C_{i}} a_{i, j}---(\Phi)$.

$$
\begin{aligned}
& a_{i, i} \omega_{i, k}=a_{i, i} \frac{\left|a_{i, k}\right|}{\sum_{j \neq C_{i}} a_{i, j}}=\frac{a_{i, i}}{\sum_{j \notin C_{i}} a_{i, j}}\left|a_{i, k}\right| \leq \beta\left|a_{i, k}\right| \\
& a_{i, i}\left(1-s_{i}\right)=a_{i, i}\left(1-\sum_{k \in C_{i}} \omega_{i, k}\right)=a_{i, i}\left(1-\sum_{k \in C_{i}} \frac{\left|a_{i, k}\right|}{\sum_{j \notin C_{i}} a_{i, j}}\right)=a_{i, i}\left(\frac{\sum_{j} a_{i, j}}{\sum_{j \neq C_{i}} a_{i, j}}\right) \\
& \quad \leq \beta \sum_{j} a_{i, j}
\end{aligned}
$$

Therefore, (Ξ) holds. From the arguments in previous page, We can conclude the approximation holds.

Smoothing property holds for GS

Recall $\mathrm{E}_{\mathrm{S}}=I-B^{-1} A$. We have

$$
\begin{aligned}
\left\|\mathrm{E}_{\mathrm{GS}}\right\|_{1}^{2} & =\left(A\left(I-B^{-1} A\right) e,\left(I-B^{-1} A\right) e\right) \\
& =(A e, e)-\left(A B^{-1} A e, e\right)-\left(A e, B^{-1} A e\right)+\left(A B^{-1} A e, B^{-1} A e\right) \\
& =\|e\|_{1}^{2}-\left(B^{-1} A e, B B^{-1} A e\right)-\left(B B^{-1} A e, B^{-1} A e\right)+\left(A B^{-1} A e, B^{-1} A e\right) \\
& =\|e\|_{1}^{2}-\left(\left(B^{T}+B-A\right) B^{-1} A e, B^{-1} A e\right) .
\end{aligned}
$$

The smooth assumption $\equiv \alpha\|e\|_{2}^{2} \leq\left(\left(B^{T}+B-A\right) B^{-1} A e, B^{-1} A e\right)---(\Theta)$
Let $\tilde{e}=B^{-1} A e$. Since $\|e\|_{2}^{2}=\left(D^{-1} A e, A e\right)=\left(D^{-1} B B^{-1} A e, B B^{-1} A e\right)$,
clearly, $(\Theta) \equiv \alpha\left(D^{-1} B \tilde{e}, B \tilde{e}\right) \leq\left(\left(B^{T}+B-A\right) \tilde{e}, \tilde{e}\right)----(\Theta \Theta)$.
Now consider B=D-L. Since $B^{T}+B-A=D$, we have

$$
\begin{aligned}
(\Theta \Theta) & \equiv \alpha \frac{\left(B^{T} D^{-1} B \tilde{e}, \tilde{e}\right)}{(D \tilde{e}, \tilde{e})}=\alpha \frac{\left(D^{-1} B^{T} D^{-1} B D \tilde{e}, \tilde{e}\right)}{\left(D^{1 / 2} \tilde{e}, D^{1 / 2} \tilde{e}\right)}=\alpha \frac{\left(D^{-1} B^{T} D^{-1} B D^{1 / 2} \tilde{e}, D^{1 / 2} \tilde{e}\right)}{\left(D^{1 / 2} \tilde{e}, D^{1 / 2} \tilde{e}\right)} . \\
& =\alpha \rho\left(D^{-1} B^{T} D^{-1} B\right) \leq 1 . \equiv \alpha \leq \frac{1}{\rho\left(D^{-1} B^{T} D^{-1} B\right)}-\cdots(\Theta \Theta \Theta)
\end{aligned}
$$

Therefore, the smooth assumption holds for Gauss-Seidel iteration.
If A is a diagonally dominant M -matrices, we can estimate α as follows:
Since $\rho\left(D^{-1} B^{T} D^{-1} B\right) \leq \rho\left(I-D^{-1} L^{T}\right) \rho\left(I-D^{-1} L\right) \leq\left(1+\rho\left(D^{-1} L^{T}\right)\right)\left(1+\rho\left(D^{-1} L\right)\right)$,
and $\quad \rho\left(D^{-1} L\right) \leq \max _{1 \leq i \leq n}\left\{\sum_{j=1, j \neq i}^{n} \frac{\left|a_{i, j}\right|}{a_{i, i}}\right\} \leq 1$, clearly, we have $\frac{1}{\rho\left(D^{-1} B^{T} D^{-1} B\right)} \geq \frac{1}{4}$.
Therefore, Gauss-Seidel iteration satisfies the smoothing property with $\alpha=\frac{1}{4}$.

If fact, for symmetric M-matrices, smooth assumption holds for both Gauss-Seidel and Jacobi iterations.

Furthermore, one can also show that the coarse grid matrix $A_{H}=\left(I_{H}^{h}\right)^{T} A_{h} I_{H}^{h}$ is also a diagonally dominant M-matrix when A_{h} is a diagonally dominant M-natrix and the interpolation weights satisfy (Ξ) and (Φ).

AMG Coarsening Criteria

First, let's define the following sets:
$\mathrm{N}_{\mathrm{i}}^{\mathrm{S}}=\left\{\mathrm{j}:-a_{i, j} \geq \gamma \max _{m \neq i}\left(-a_{i, m}\right), 0<\gamma<1\right\}$
$\left(N_{i}^{S}\right)^{T}=\left\{j: i \in N_{j}^{S}\right\}$

Here, N_{i}^{s} is the set of nodes that node i strongly connects to. $\left(\mathrm{N}_{\mathrm{i}}^{\mathrm{s}}\right)^{\mathrm{T}}$ is the set of nodes strongly connects to node i .

- C_{i}-nodes should be chosen from N_{i}^{S}
- From convergence result, we want β close to 1 .

This suggests we need a larger set C_{i} (we need to choose a small γ).

- We don't want $\mathrm{C}=\varnothing$ but we want C as small as possible.

Criterion 1. For each node in F , node j in $\mathrm{N}_{\mathrm{i}} \mathrm{s}$ should be either in C or strongly connected to at least one node in C_{i}.

Criterion 2. C should be a maximal subset of all nodes with the property that no two C-nodes are strongly connected to each other.

AMG Coarsening (I)

$$
\begin{aligned}
& C=\emptyset ; F=\emptyset ; U=\{1,2, \cdots, n\} \text {; } \\
& \text { For }(i=1: n), z_{i}=\left|\left(N_{i}^{S}\right)^{T}\right| \text {; } \\
& \text { while }(U \neq \emptyset) \text { do } \\
& \text { get } i \in U \text { with maximal } z_{i} \text { then set } C=C \cup\{i\} \text { and } U=U \backslash\{i\} \text {; } \\
& \text { for }\left(j \in\left(N_{i}^{S}\right)^{T} \cap U\right) \text { do } \\
& \qquad F=F \cup\{j\} ; U=U \backslash\{j\} \text {; } \\
& \qquad \text { For }\left(k \in N_{j}^{S}\right), z_{k}=z_{k}+1 ; \\
& \text { end for } \\
& \text { For }\left(j \in N_{i}^{S} \cap U\right) z_{j}=z_{j}-1 ; \\
& \text { end while }
\end{aligned}
$$

Algorithm 4.4.1: Preliminary C-point selection

AMG
 Coarsening (II)

```
\(T=\varnothing ;\)
while \((F \backslash T \neq \varnothing)\{\)
    pick \(i \in F \backslash T\); set \(T=T \cup\{i\}\) and done \(=0\);
    \(C_{i}=N_{i}^{S} \cap C ; D_{i}^{S}=N_{i}^{S} \backslash C_{i} ; D_{i}^{W}=N_{i} \backslash N_{i}^{S} ; \tilde{C}_{i}=\emptyset ;\)
    while \((\) done \(==0)\{\)
        \(d_{i}=a_{i, i}+\sum_{k \in D_{i}^{W}} a_{i, k} ; d_{j}=a_{i, j} \forall j \in C_{i}\)
        for \(\left(k \in D_{i}^{S}\right)\{\)
            if \(\left(N_{k}^{S} \cap C_{i} \neq \varnothing\right) \quad d_{j}=d_{j}+\frac{a_{i, k} a_{k, j}}{\sum_{m \in O_{i}} a_{k, m}} \forall j \in C_{i} ;\)
            else \{
                        if \(\left(\tilde{C}_{i} \neq \varnothing\right)\{C=C \cup\{i\} ; F=F \backslash\{i\} ;\) break; \(\}\)
                        else \{
                        \(\tilde{C}_{i}=\{k\} ; C_{i}=C_{i} \cup\{k\} ; D_{i}^{S}=D_{i}^{S} \backslash\{k\} ;\)
                        done \(=0\); break;
                            \}
                \}
        \}
    \}
    if \((i \in F)\left\{C=C \cup \tilde{C}_{i} ; F=F \backslash \tilde{C}_{i} ; w_{i, j}=-d_{j} / d_{i} \forall j \in C_{i}\right\}\)
\}
```

Algorithm 4.4.2: Final C-point selection and definition of interpolation weights

AMG Coarsening: Example 1

Laplace operator from Galerkin FEM Discretization:

A very good MG and AMG tutorial resource (by Van Emden Henson) :
http://www.IInl.gov/CASC/people/henson

AMG Coarsening: Example 2

Convection-Diffusion with Characteristic and downstream layers

$$
\begin{aligned}
& -\varepsilon \Delta u+\frac{\partial u}{\partial y}=0 \\
& \left.u\right|_{\partial \Omega}= \begin{cases}1 & \text { if }(\mathrm{y}=0 \cap \mathrm{x}>0) \text { or } \mathrm{x}=1, \\
0 & \text { otherwise },\end{cases} \\
& \text { where } \Omega=[-1,1] \times[-1,1] .
\end{aligned}
$$

Solution from Galerkin discretization on 32×32 grid

Solution from SDFEM discretization on 32×32 grid

SDFEM discretization with $\delta_{T}=\frac{\mathrm{h}}{2}$ yields the left matrix stencil:

AMG coarsening with strong connection parameter $\boldsymbol{\varepsilon} / \mathrm{h} \ll \boldsymbol{\beta} \ll 0.25$

C-point

C-point

Coarse grids from AMG coarsening

Example 2: GMG v.s. AMG

	GMG	AMG		
$\log _{10} \frac{1}{\epsilon}$	$2,3,4$	2	3	4
level $=4$	1089	1089	1089	1089
level $=3$	289	480	479	479
level=2	81	307	331	231
level=1	25	157	108	108

(a) On the uniform mesh

	GMG			AMG		
$\log _{10} \frac{1}{\epsilon}$	2	3	4	2	3	4
level=4	797	1275	2102	797	1275	2102
level=3	410	649	1047	348	580	996
level=2	215	320	528	159	304	523
level=1	122	176	239	88	166	281

(b) On the adaptive mesh

On the uniform mesh:

level	GMG	AMG
3	13	7
2	13	6
1	12	6

$\varepsilon=10^{-2}$

Level	GMG	AMG
4	$\boxed{y y}$	9
3	8	6
2	7	6
1	7	5

$\varepsilon=10^{-2}$

level	GMG	AMG
3	27	8
2	26	7
1	16	6

level	GMG	AMG
3	51	11
2	35	8
1	17	6

$\varepsilon=10^{-3}$
$\varepsilon=10^{-4}$

Level	GMG	AMG
4	22	$\boxed{7}$
3	24	9
2	18	8
1	17	7

Level	GMG	AMG
4	59	$\boxed{14}$
3	57	
10		
2	47	8
1	34	7

$\varepsilon=10^{-3}$
$\varepsilon=10^{-4}$

Nonlinear Multigrid

Nonlinear problems: $\mathrm{L}(\mathrm{u})=f \underset{\text { discretization }}{\Rightarrow}$

$$
\text { One needs to solve } \mathrm{A}_{\mathrm{h}}\left(u_{h}\right)=f_{h} \equiv\left(\begin{array}{c}
a_{1}\left(u_{1}, u_{2}, \cdots, u_{n}\right) \\
a_{2}\left(u_{1}, u_{2}, \cdots, u_{n}\right) \\
\vdots \\
a_{n}\left(u_{1}, u_{2}, \cdots, u_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right) .
$$

Method 1: Linearize A_{h} using Newton method and solve the linear system by multigrid.

$$
u_{j} \leftarrow u_{j}-\left[\frac{D}{D u} \mathrm{~A}_{\mathrm{h}}(u)\right]^{-1}\left(f-\mathrm{A}_{\mathrm{h}}\left(u_{j}\right)\right)
$$

Method 2: Nonlinear Multigrid, so called full approximation storage scheme (FAS)

- Nonlinear relaxation
- Nonlinear defect correction

Nonlinear Relaxation:
Jacobi:

$$
a_{i}\left(u_{1}^{\text {old }}, \cdots, u_{i-1}^{\text {old }}, u_{i}^{\text {new }}, u_{i+1}^{\text {old }}, \cdots, u_{n}^{\text {old }}\right) \text { for all } \mathrm{i}=1,2, \cdots, \mathrm{n}
$$

Gauss-Seidel: $a_{i}\left(u_{1}^{\text {new }}, \cdots, u_{i-1}^{\text {new }}, u_{i}^{\text {new }}, u_{i+1}^{\text {old }}, \cdots, u_{n}^{\text {old }}\right)$ for all $\mathrm{i}=1,2, \cdots, \mathrm{n}$
Solve local nonlinear problems iteratively.
Example (Nonlinear Gauss-Seidel) :

$$
-u^{\prime \prime}(x)+u(x) e^{u(x)}=f
$$

Discretiation:

$$
\frac{-v_{j-1}+2 v_{j}-v_{j+1}}{h^{2}}+v_{j} e^{v_{j}}=f_{j} \quad 1 \leq j \leq N-1
$$

Newton iteration for each j , starting from $\mathrm{j}=1$

$$
v_{j} \leftarrow v_{j}-\frac{\frac{-v_{j-1}+2 v_{j}-v_{j+1}}{h^{2}}+v_{j} e^{v_{j}}-f_{j}}{\frac{2}{h^{2}}+e^{v_{j}}\left(1+v_{j}\right)}
$$

Nonlinear defect correction:

In linear case: $\quad r_{h}^{(n)}=A_{h}\left(u_{h}\right)-A_{h}\left(u_{h}^{(n)}\right)=A_{h}\left(u_{h}-u_{h}^{(n)}\right)$
In nonlinear case: $\quad r_{h}^{(n)}=A_{h}\left(u_{h}\right)-A_{h}\left(u_{h}^{(n)}\right) \neq A_{h}\left(u-u_{h}^{(n)}\right)$
Solving $A_{H} e_{H}=I_{h}^{H} r_{h}^{(n)}$ does not give an approximation to $e_{h}=u_{h}-u_{h}^{(n)}$.
Now consider $\left\{\begin{array}{c}e_{h}=u_{h}-u_{h}^{(n)} \text { where } u_{h} \text { satisfies } r_{h}^{(n)}=A_{h}\left(u_{h}\right)-A_{h}\left(u_{h}^{(n)}\right) \\ e_{H}=u_{H}-I_{h}^{H} u_{h}^{(n)} \text { where } \mathrm{u}_{\mathrm{H}} \text { satisfies } I_{h}^{H} r_{h}^{(n)}=A_{H}\left(u_{H}\right)-A_{H}\left(I_{h}^{H} u_{h}^{(n)}\right)\end{array}\right.$
Observe that $u_{h}^{(n)} \rightarrow u_{h} \Rightarrow u_{H} \rightarrow I_{h}^{H} u_{h} \Rightarrow e_{H} \rightarrow I_{h}^{H} e_{h}$. (Here, I_{h}^{H} can simply be an injection) In this point of view, e_{H} is a reasonable approximation of e_{h}.
Now, we can write down the FAS algorithm:

1. Nonlinear Relaxation

FAS:
2. Restrict u_{h}^{n} and r_{h}^{n} by $r_{H}=I_{h}^{H} r_{h}^{n}$ and $v=I_{h}^{H} u_{h}^{n}$
3. Solve $A_{H}\left(u_{H}\right)=r_{H}+A_{H}(v)$
4. Compute $e_{H}=u_{H}-v$
5. Update $u_{h}^{n} \leftarrow u_{h}^{n}+I_{H}^{h} e_{H}$

$$
\begin{aligned}
& -\Delta \mathrm{u}(\mathrm{x}, \mathrm{y})+\gamma \mathrm{u}(\mathrm{x}, \mathrm{y}) \mathrm{e}^{\mathrm{u}(\mathrm{x}, \mathrm{y})}=\mathrm{f}(\mathrm{x}, \mathrm{y}) \text { in }[0,1] \times[0,1] \\
& \mathrm{u}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}-\mathrm{x}^{2}\right) \sin (3 \pi y)
\end{aligned}
$$

- Discretization: finite difference
- Interpolation and Restriction $\left.\quad p=\frac{1}{4}\right] \begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\left[\quad r=\frac{1}{16}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\right]\right.$
- Relaxation: Nonlinear Gauss-Seidel:

$$
\begin{aligned}
& u_{i, j}=u_{i, j}-\frac{h^{-2}\left(4 u_{i, j}-u_{i-1, j}-u_{i+1, j}-u_{i, j-1}-u_{i, j+1}\right)+u_{i, j} e^{u_{i, j}}-f_{i, j}}{4 h^{-2}+\gamma\left(1+u_{i, j}\right) e^{i_{i, j}}} \\
& \text { starting from }(\mathrm{i}, \mathrm{j})=(1,1),(1,2), \cdots,(2,1),(2,2), \cdots,(n, n) .
\end{aligned}
$$

An example taking from Multigrid Tutorial (Briggs)

	Outer Method	Inner iterations	
iterations	Megaflops		
Newton	3		1660.6
New ton-MG	3	20	56.4
New ton-MG	4	10	38.5
New ton-MG	5	5	25.1
New ton-MG	10	2	22.3
FAS	19	1	24.6
	11		27.1

Who is better Newton-MG or FAS?
Not so sure ... but FAS is popular in CFD.

Multigrid Parallelization

Parallelization: Using multiple computers to do the job!

What need to be done?

1. Numerical algorithm need to be capable to do it.

2. Program has to distribute works to processors properly and dynamically. (load balancing)
3. Computers have to communicate each others. (Messaging passing interface, MPI)
4. Many others (grid topoloogy, scheduling,)

Multigrid is a scalable algorithm!
(Jim E. Jones, CASC, Lawrence Livermore National Laboratory)

Domain Decomposition:

- FEM assembling in domains $\mathrm{D}_{\mathrm{G}}, \mathrm{D}_{\mathrm{B}}, \ldots$ can be done simultaneously.
- Matrix-vector product $A \cdot x$ can be computed indenpendently in each domain. Pass x_{G} to D_{2} and x_{B} to D_{1}.
- Jacobi and red-black Gauss-Seidel Relaxations can be done in parallel.
- Grid-Coarsening and refinement can be done in parallel (not quite easy ... need to keep tracking grid topology).
- Interpolations can be parallelized too.

Scalability

$T(N, P)$: Time to solve a problems with N unknowns on P processors Speedup $\mathrm{S}(\mathrm{N}, \mathrm{P})=\mathrm{T}(\mathrm{N}, 1) / \mathrm{T}(\mathrm{N}, \mathrm{P})$. Perfect if $\mathrm{S}(\mathrm{N}, \mathrm{P})=\mathrm{P}$;
Scaled Efficiency: $\mathrm{E}(\mathrm{N}, \mathrm{P})=\mathrm{T}(\mathrm{N}, 1) / \mathrm{T}(\mathrm{NP}, \mathrm{P})$. Perfect if $\mathrm{E}(\mathrm{N}, \mathrm{P})=1$.
Assume 2D problem of size $(\mathrm{pN})^{2}$ is distributed to p^{2} processors. Number of unknowns in each processor N^{2}
Time for relaxation on grid level $\mathrm{k}: \mathrm{T}_{\mathrm{k}}=\mathrm{T}_{\text {comm }}\left(\frac{N}{2^{k}}\right)+5\left(\frac{N}{2^{k}}\right)^{2} f$,
Time for a V-cycle $=\mathrm{T}_{\mathrm{v}} \approx \sum_{\mathrm{k}} 2 \mathrm{~T}_{\mathrm{k}} \approx 8 \alpha L+16 N \beta+\left(\frac{40}{3}\right) N^{2} f$,
$\alpha=$ startup time,
$\beta=$ time to transfer a single double
$\mathrm{T}_{\text {comm }}(n)=\alpha+\beta n=$ communication time for transmitting n doubles to one processor.
$f=$ one floating point operation time.

Since MG has $O(1)$ convergence rate, we can analyze the scaled efficiency as follows:

$$
\begin{aligned}
& T_{v}\left(N^{2}, 1\right) \approx\left(\frac{40}{3}\right) N^{2} f \\
& T_{v}\left((p N)^{2}, p\right)=8 \alpha \log _{2}(p N)+16 \beta(N)+\frac{40}{3} N^{2} f \\
& E(N, P) \approx O\left(1 / \log _{2} p\right) \text { as } \mathrm{p} \rightarrow \infty \\
& E(N, P) \approx O(1) \text { as } \mathrm{N} \rightarrow \infty
\end{aligned}
$$

We need to be careful. In IBM SP2,

$$
\begin{aligned}
& \alpha=5 \times 10^{-5} \\
& \beta=1 \times 10^{-6} \\
& f=8 \times 10^{-9}
\end{aligned} \quad \Leftrightarrow \quad \text { Communication is expensive! }
$$

