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Three-Dimensional Finite Element Modeling of
Human Ear for Sound Transmission

(R. Z. Gan, B. Feng and Q. Sun, 2004)

Large-scale Simulation of Polymer Electrolyte
Fuel Cells by parallel Computing

(Hua Meng and Chao-Yang Wang, 2004)

FEM model with O(106) nodes FEM model with 105 ~106 nodes

Commercial Aircraft: 107 nodesCar engine with O(105) nodes FINFET transistor: 105 nodes

How Large the Real Simulations Are?



• Deep understanding to physical problems
• Good mathematical models.
• Good computable mathematical models.
• Computation grids (not necessary but ...)
• Discretizations
• Solve linear systems
• Solve linear systems fast!

What do we need in order to simulate?

Our goal is to introduce multigrid methods for solving sparse linear systems.

Why multigrid?

1.   Computation cost of multigrid is proportional to problem sizes.
2.   Multigrid is “easy” to be parallelized.



Outlines

• Stationary Iterative Methods
• Some finite element error estimates
• Multigrid
• Algebraic Multigrid
• Nonlinear Multigrid (FAS)
• Multigrid Parallelization

Reference:

1. An introduction to multilevel methods (Jinchao Xu)
2. Multigrid Methods (Stephen F. McCormick)
3. A multigrid tutorial (William L. Briggs)
4. Matrix iterative analysis (Richard S. Varga)
5. The mathematical theory of finite element methods (Brenner and Scott)
6. Introduction to Algebraic Multigrid (Christian Wagner)



Methods:

• Stationary Methods: Jacobi, Gauss Seidel (GS), SOR.

• Krylov Subspace Methods: Conjugate gradient, GMRES,
by Saad and Schultz 1986, and MINRES, by Paige and
Saunders 1975.

• Multigrid Methods: Geometric multigrid (MG), by
Fedorenko 1961, and algebraic multigrid (AMG), by
Ruge and Stüben 1985.

Solving Linear System Ax=b
by Iterative Methods



Basic questions and some definitions

1. How do we iterate?
2. For what category of matrices A, the iteration converge?
3. What is the convergence rate?

Basic questions are

Some definitions:
A is irreducible if there is no permutation P such that PTAP=

A1,1 A1,2

0 A2,2

⎡

⎣
⎢

⎤

⎦
⎥

A is non-negative (denoted as A ≥ 0) if ai,j ≥ 0,  for all 1 ≤ i,j ≤ n

A is an M-matrix if A is nonsingular, ai,j ≤ 0 for i ≠ j, and A-1 ≥ 0
A is irreducibly diagonally dominant if A is irreducible, 

   diagonally dominant  with ai,i > ai,j
j=1,j≠ i

n

∑  for some i.

A=M-N is a regular splitting of A if M is nonsingular and M-1 ≥ 0



Theorem: Let A≥0 be an irreducible matrix. Then

1. A has a positive real eigenvalue equal to its spetral radius
2. There is an eigenvector x>0 corresponds to  
3.           increases when any entry of A increases.
4.           is a simple eigenvalue of A.ρ A( )

ρ A( )
ρ A( )

1. rold = f − Auold

2. Solve e=B-1rold

3. update unew = uold + e

enew = eold − B−1 f − Auold( )
      = eold − B−1A u − uold( )
      = I - B-1A( )eold

B is called an iterator or preconditioner of A.
EB = I - B

-1A

⇔

Perron-Frobenius Theorem

is called the error reduction operator of the iterator B

Stationary Iterative Methods



Some Well Known Iterative Methods

Suppose A = D − L −U,

B =
1
ω

,  where 0<ω< 2
ρ A( ) .

B = D

B =
1
ω
D,  where 0<ω< 2

ρ D-1A( ) .

B = D − L( )

B =
1
ω

D −ωL( ),  where 0<ω<2.

Richardson:

Jacobi:

Damped Jacobi:

Gauss-Seidel:

SOR:

D is the diagonal, L and U are lower and upper triangular 
parts, respectively.

where



Jacobi and Gauss-Seidel

xi
(m+1) = −

ai, j
ai,i

⎛

⎝⎜
⎞

⎠⎟
x j
(m ) +

ri
ai,ij=1

j≠ i

n

∑

xi
(m+1) = −

ai, j
ai,i

⎛

⎝⎜
⎞

⎠⎟
x j
(m+1)

j=1

i−1

∑ −
ai, j
ai,i

⎛

⎝⎜
⎞

⎠⎟
x j
(m )

j= i+1

n

∑ +
ri
ai,i

Jacobi:

Gauss-Seidel:

HW1: Write down a formula for SOR

Write a program to solve 
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⎢
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⎥
⎥
⎥
⎥
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⎢
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⎥
⎥
⎥
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⎥

 by 

Jacobi and Gauss-Seidel, starting with initial x(0) = 0,0,0,0[ ].

HW2:



Let EJ = I − D−1A( )  and EGS = I − D − L( )−1 A( ). Since the solution of HW2 is

x= 1,1,1,1[ ]  and e0 = x − x(0) = [1,1,1,1]. Clearly, we have eJ
m = EJ( )m e0  and eGS

m = EGS( )m e0,

One can easily check that

eJ
m =

−1
2m

1
1
1
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 and eGS
m =

−1
4m

2
2
1
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 . Thus, eJ
m =

1
2m−1 > eGS

m =
10

4m . 

You might get a feeling that Gauss-Seidel method is faster than Jacobi method. 

Stein-Rosenberg Theorem
Theorem: Let BJ = L +U  be the Jacobi matrix and BGS = I − L( )−1U  be the Gauss-
                Seidel matrix. Then one and only one of the following relations is vaild:   
                1)   ρ BJ( ) = ρ BGS( ) = 0.
                2)  0 < ρ BGS( ) < ρ BJ( ) < 1.
                3)   ρ BJ( ) = ρ BGS( ) = 1.
                4)  1 < ρ BJ( ) < ρ BGS( ).        



Convergence of Jacobi, Gauss-Seidel and
SOR Iterative Methods

Lemma 1. If A= ai,j( ) ≥ 0 is irreducible then either ai,j
j=1

n

∑ =ρ A( )  or

                         min
1≤ i≤n

ai, j
j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
< ρ A( ) < max

1≤ i≤n
ai, j

j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
  -------- (1).

 

Proof: Case(1): All row sums of A are equal (=σ ): Let ζ= 1,1,,1[ ]. Clearly, Aζ=σζ  and σ ≤ ρ A( ). 
           However, the Gerchgorin's Theorem implies ρ A( ) ≤ σ . Hence, ρ A( ) = σ . 
           Case(2): Not all row sums of A are equal: 

           Construct B= bi,j( ) ≥ 0 and C= ci,j( ) ≥ 0,by decreasing and increasing some entries of A, 
           respectively, such that 

                        b, j = α =
j=1

n

∑ min
1≤ i≤n

ai, j
j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
 and c, j = β =

j=1

n

∑ max
1≤ i≤n

ai, j
j=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
, for all 1 ≤  ≤ n. 

           By Perron-Frobenius theorem, we have ρ B( ) ≤ ρ A( ) ≤ ρ C( ). 
           Clearly, from the result of Case(1), the inequality (1) holds.
      
Lemma 2. Let A and B be two matrices with 0 ≤ B ≤ A. Then ρ B( ) ≤ ρ A( )



Theorem 1. Let A= ai,j( )  be a strictly or irreducibly diagonally dominant matrix 
                   then the Jacobi and Gauss-Seidel iterative methods converge. 

 

Proof: Recall that EJ =  I-D-1A = D-1 L +U( ) = bi, j( ), where bi,j =
0 i = j

−ai, j
ai,i

i ≠ j

⎧

⎨
⎪

⎩
⎪

. From Lemma 2, 

           it is clear that ρ B( ) ≤ ρ B( ). Since A is strictly diagonally dominant, clearly, we have 

          bi, j < 1 for all 1 ≤ i ≤ n.
j=1

n

∑  Therefore, Lemma 1 implies ρ B( ) < 1. As a result, 

          we have shown the Jacobi iterative method converge from ρ B( ) ≤ ρ B( )<1.

          Now, since EGS =I- D-L( )-1 A= D-L( )-1 U= I-D-1L( )-1
D-1U. Let L=D-1L and U=D-1U.

          We have I- L( )−1 U ≤ I- L( )−1 U ≤ I+ L + L
2
++ L

n−1( ) U = I- L( )−1 U .

           Now consider BJ = L + U  and BGS = I- L( )−1 U . Since we have already shown 

           ρ BJ( ) < 1,  the Stein-Rosenberg theorem implies ρ BGS( ) < 1. 
          Therefore, we conclude the Gauss-Seidel iterative method converges.
          



Theorem 2. Let A=D-E-E*  and D be Hermitian matrices, where D is positive 
                   definite, and D-ωE is non-singular for 0 ≤ω ≤ 2. 

                   Let ESOR = I −ω D −ωE( )−1 A. Then ρ ESOR( ) < 1 if only if A is 
                   positive definite and 0<ω<2.

Proof: First, assume e0  is a nonzero vector, the SOR iteration can be written as
                   D −ωE( )em+1 = ωE* + 1−ω( )D( )em,  m ≥ 0  ------- (2)

          Let δm = em − em+1. Substracting D −ωE( )em  and ωE* + 1−ω( )D( )em+1  from both side of (2), 

          we have D −ωE( )δm =ωAem  ---- (3)  and  ωAem+1 = 1−ω( )D +ωE*⎡⎣ ⎤⎦δm  ----- (4). 

          From em
* × (3) − em+1

* × (4) and "simplifying the expression" (HW), one has 
                   2-ω( )δm

* Dδm=ω em
* Aem − em+1

* Aem+1{ }   ------ (5).
         Assume A is positive definite and 0<ω<2 and let e0  be any eigenvector of ESOR . We have 
         e1=λe0  and δ0 = 1-λ( )e0  and (5) reduces to

                   2-ω
ω

⎛
⎝⎜

⎞
⎠⎟

1− λ 2 e0
*De0 = 1− λ 2( )e0

*Ae0  ------- (6).

        Now, λ ≠ 1. Otherwise, δ0 = 0 ⇒ Ae0 = 0 (by (3)) ⇒  e0 = 0 ⇒  contradiction!

        Since A and D are positive definite and 0<ω<2, (6) implies 1− λ 2 > 0. Therefore, ρ ESOR( ) < 1. 
        Using similar arguments, one can show that the converse is also true.



• For SOR, it is possible to determined the optimal value of ω
for special type of matrices (p-cyclic). The optimal value ωb
is precisely specified as the unique positive root

    (0<p/(p-1))  of the equation

• For p=2,

ρ EJ( )ωb( )p = pp p −1( )1− p⎡⎣ ⎤⎦ ωb −1( ),  Varga 1959( ). 

ωb = 1+
ρ EJ( )

1+ 1− ρ2 EJ( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  Young 1950( )

•   Semi-Iterative Method: ym = vj m( )x j
j=0

m

∑   where vj m( )
j=0

m

∑ =1. 

 
We have em = vj m( )em

j=0

m

∑ .  In general, em = Pm ES( )e0  where 
Pm  is a polymonial and ES  is the error reduction of an iterater S

This is so-called polynomial acceleration method. 
The most important one is the Chebyshev polynomials.



Chebyshev Semi-Iterative Method

ym+1 =ωm+1 ESym + f − ym−1{ } + ym−1, for m ≥ 1, where 

ωm+1 = 1+
Cm−1 1 / ρ( )
Cm+1 1 / ρ( ) , Cm-1  and Cm+1  are Chebyshev polynomials, 

ρ = ρ ES( )  and y0 = x0 .

Algorithm:

Convergence:

 

em ≤
2 ωb −1( )m /2

1+ ωb −1( )m
⎛

⎝
⎜

⎞

⎠
⎟ e0 ,  here ωb =

2
1+ 1− ρ2

The convergence rate is accelerated as ρ→0. 

Remark: There are cases that the polynomial acceleration does not 
               improve asymptotic rate of convergence. 

C0 = 1,  C1 = x,  Cm+1 = 2xCm − Cm−1

⇓



Some PDE and Finite Element Analysis

Let ℑh  be a given triangulation, Vh = v∈H0
1 : v|T ∈P1 T( ),  T∈ℑh{ }  and 

π h :H1 → Vh  be the interpolation defined by π h u( ) Ni( ) = u Ni( ).
Consider the weak solution u ∈H1  satisfying a u,v( )= f,v( ), for all v∈H0

1 ,
a finite element solution uh ∈Vh  satisfies a u,v( )= f,v( ), for all v∈Vh .

v-π hv 1 ≤ Ch
r u r+1  and v-π hv 0 ≤ Ch

r+1 u r+1 .

u 2 ≤ C f 0

Interpolation Errors:

Finite Element Solutions:

H2-Regularity:            is said to be H2-Regular if there exists a 
                         constant C such that for all 

a ⋅, ⋅( )
f ∈L2



Finite Element Solution is Quasi-Optimal

Céa Theorem: u − uh H1 ≤
C
α
min
v∈Vh

u − v H1

where, C is the continuity constant and α  is the coercivity constant of a ⋅, ⋅( ).

Proof:
a u − uh ,v( ) = 0,  for all v ∈Vh  

α u − uh H1

2 ≤ a u − uh ,u − uh( ) = a u − uh ,u − v( ) + a u − uh ,v − uh( )
                   =a u − uh ,u − v( ) ≤ C u − uh H1 u − v H1

Step1: 

Step2: 

Remark: finite element solution is the orthogonal projection of 
               the exact solution with respect to the energy norm.

If a ⋅, ⋅( )  is self-adjoint, show that u − uh A = min
v∈Vh

u − v A , 

where v A = a v,v( )  is the energy norm. 

HW4:



FEM Error Estimation

u − uh H1 ≤ Chr u r+1  ---- (i)  and  u − uh L2 ≤ Chr+1 u r+1  ---- (ii)

Theorem 3: Assume the interpolation error estimations holds for the given ℑh

                   and a ⋅, ⋅( )  has the H2 − Regularity. The following estimates hold.

Proof:  From the interpolation estimation and Céa Theorem, (i) is trivial.  
To prove (ii), we use the duality argument. Let w be the solution to the 
adjoint problem, a v,w( )= u-uh,v( ), for all v∈H1. Choosing v=u-uh,  
we have
              u-uh,u-uh( )= a u-uh,w( ) = a u-uh,w − wh( ),  for any wh ∈Vh
                                ≤ C u − uh H1 w − wh H1 ≤ Ch u − uh H1 w 2

                                ≤ Ch u − uh H1 u − uh L2 .

Therefore, u − uh L2 ≤ Chr+1 u r+1 .



Definition: mesh dependent norm v
k ,h

= Ah
kv,v( )h  for v∈Vh, k=0,1, where 

v,w( )h = h2 v Ni( ),w Ni( )( )∑ . Clearly, v
0,h

≡ v 0  and v
1,h

≡ v A .

 

Lemma 3:  Λ Ah( ) ≤ Ch−2

Proof: Let λ  be an eigenvalue of Ah  with eigenvector φ.

           a φ,φ( )= Ahφ,φ( )h = λ φ,φ( )h = λ φ
0,h

2 .

           λ ≤
C φ A

2

φ
0,h

2 ≤
Ch−2 φ 0

2

φ
0,h

2  Ch−2 .

Lemma 4: (Generalized Cauchy-Schwarz Inequality)
                a v,w( ) ≤ v

1+ t ,h
w

1− t ,h
  ∀v,w ∈Vh  and t ∈R.



Multigrid Methods

MG V-cycle

Restriction

Prolongation

k-1kI

kk-1I

M
G

 C
oarsening

Restriction

ProlongationM
es

h 
 R

ef
in

em
en

t

•   Approximate solutions on fine grid using iterative methods.
•   Correct remaining errors from coarse grids.

Ideas:



Why Multigrid Works?

1.   Relaxation methods converge slowly but smooth the error quickly.

  
Lu = −u '' = λu ⇒

finite difference
 
-u

j-1
+ 2u

j
− u

j+1

h2
= λu

j

  
Eigenvalues λ

k
=

4

h2
sin2 kπ

2(N +1)

⎛
⎝⎜

⎞
⎠⎟

 and eigenvectors φ
j
k = sin

kjπ
N +1

⎛
⎝⎜

⎞
⎠⎟

Richardson relaxation:
  
E

R
= (I − σ −1A) where A

h
=

1

h2
tridiag[-1 2 -1].

Fourier analysis: Choosing

  

e
m
= 1−

λ
k

σ
⎛

⎝⎜
⎞

⎠⎟k=1

N

∑
m

φ k = 1− sin2 kπ
2(N +1)

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

m

φ k

k=1

N

∑ = α
k
mφ k

k=1

N

∑

, after m relaxation. 

  
σ =

4

h2
 (largest eigenvalue).

Ex1: consider

 here, k=1N is the wave number and j is the node number.

αk
m → 0 more quickly for k close to N.



2.  Smooth error modes are more oscillatory on coarse grids. Smooth errors can 
     be better corrected by relaxation on coarser grids.

  
e = sin

2 jπ
N +1

⎛
⎝⎜

⎞
⎠⎟
+

1

2
sin

16 jπ
N +1

⎛
⎝⎜

⎞
⎠⎟
+

1

2
sin

32 jπ
N +1

⎛
⎝⎜

⎞
⎠⎟   

em = I −ωD−1A( )m
e

Damped Jacobi

Smooth error on fine grid Smooth error on coarse grid

•  Relaxation convergence rate on fine grid is 1-O(h2)
•  Relaxation convergence rate on coarse grid: 1-O(4h2)

 
α1 ≈ 1− π

2 N +1( )
⎛
⎝⎜

⎞
⎠⎟

2

= 1−O h2( )   for N 1Remember:



3. The smooth error is corrected by coarse grid correction operator:  

  
Ec = I − I

H
h A

H
−1I

h
H A

h( ) = A
h
−1 − I

H
h A

H
−1I

h
H( ) A

h
,  

  here I
h
H  and I

H
h  are called restriction and prolongation operator respectively.

HhI hHI

  AH
 can be obtained from discretization on coarse grid

  
A

H
= I

h
H A

h
I

H
h  and I

h
H =c I

H
h( )T

(Galerkin formulation) 

  

⇒

Ec  is an A-orthogonal projection A
h
Ece, I

H
h e = 0

N Ec( ) = R I
H
h( )                                                      

R Ec( ) = N I
h
H A

h( )  and Ec  is identity on N I
h
H A

h( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

• 

•  0chHcHhhEIIAE⇒==



  
R I

H
h( )  

 
N I

h
H A

h( )

L

H

o

  
R I

H
h( )  

 
N I

h
H A

h( )

L

H o

L

relaxation
correction

  
R I

H
h( )  

 
N I

h
H A

h( )

L

H

o L
relaxation

  
R I

H
h( )  

 
N I

h
H A

h( )

L

H

o

correction

A Picture That Show How Multigrid Works !



It is easy to check that AH =Ih
HAhIH

h  is the discretization of L on ℑH.

Consider IH
h = [1

2
,1, 1

2
]T   linear interpolation( )  and Ih

H =
1
2

[1
2

,1, 1
2

].

 

Consider the eigenfunction φ j
k ,  k  N

2
. φ j

k  is also an eigenfunction of AH

We have Ec φ j
k( )

1
≤ Chλk = O h( ). This concludes the coarse-grid 

correction fixes the low frequency errors. For k ≈ N ,  Ec φ j
k( )

1
≤ 4 C

h
,  

the high frequency errors can be amplified by coarse-grid correction.

Now, for any v∈Vh,  let fv = Ahv. One can consider v and vH = IH
h AH

−1Ih
H fv  as 

finite element approximations of v̂, the solution of a v̂,w( )= fv ,w( ). Then, 
from the FEM-error estimation and H2 -regularity, we have 

Ec v( )
k
= Ah

−1 − IH
h AH

−1Ih
H( ) Ahv( )

k
= v̂ − vH − (v̂ − v) k  ----- ∗( )

               ≤ Ch2− k v̂ 2 ≤ Ch
2− k fv 0 = Ch

2− k Av 0



  

1.   x
k
=w

k

2.  (pre-smoothing) x
k
=w

k
+M

k
-1 g

k
-A

k
x

k( )
3.  (restriction) g k =I

k
k-1 g

k
-A

k
x

k( )
4.  (correction) q

i
=MG

k-1
(q

i-1
,g k ) for 1≤ i ≤ m, m=1 or 2 and q

0
=0

5.  (prolongation) qm =I
k-1
k q

m

6.  set x
k
=x

k
+qm

7.  (post-smoothing) x
k
=x

k
+M

k
-1 g

k
-A

k
x

k( )
8.  set MG

k
(w

k
,g

k
)=x

k

Multigrid (MG) Algorithm:

  
E

mg
= A

h
−1 − I

H
h A

H
−1I

h
H( ) A

h
Es( ) = Es I − I

H
h A

H
−1I

h
H A

h( )
MG Error reduction operator:

Pre-smoothing only Post-smoothing only

Multigrid Algorithm



Multigrid V-cycle (m=1) Multigrid V-cycle (m=2)

Full Multigrid cycle (FMG)

Multigrid Cycles



Damped Jacobi relaxation and smoothing effect

Multigrid V-cycle convergence for 1-D laplacian

Results provided by 曾昱豪 in NCTU



  
A

l
Es ≤ η m( ) A

l
,  for all 0 ≤ m < ∞ and l > 0.Smoothing property:

Approximation property:
  

A
l
−1 − I

h
H A

l−1
−1 I

h
H ≤ C

A
A

l

−1
, for all l > 0.

Ideas for proving the approximation property is shown in P.25 (*)
Proof of smoothing property:

MG Convergence

Consider ES =ER = I- 1
Λ
Ah

⎛
⎝⎜

⎞
⎠⎟

. Let v∈Vh  and vS
m = ES

m v( ). From Fourier expansion 

v= vkφk∑ , we have vS
m = 1− 1

Λ
A⎛

⎝⎜
⎞
⎠⎟
m

v = 1− λk

Λ
⎛
⎝⎜

⎞
⎠⎟
m

vkφk .∑   Therefore,

AhER v( ) 0

2 = vs 2

2
≤ 1− λk

Λ
⎛
⎝⎜

⎞
⎠⎟

2m

λk
2vk

2∑ =Λ 1− λk

Λ
⎛
⎝⎜

⎞
⎠⎟

2m λk

Λ
⎛
⎝⎜

⎞
⎠⎟
λkvk

2∑

                 ≤ Λ sup
0≤x≤1

1− x( )m x{ } vs ⋅ Ahvs( ) ≤ Ch-2 1
m

vs 0
vs 2

Since vs 0
≤ v 0  for Richarson iteration, clearly,

AhER v( ) 0
≤

1
m

Ah v 0 ⇒  AhER ≤ η m( ) Ah ,  η m( )→ 0 as m →∞.

HW5: Prove MG with Richardson smoother is convergent in         -norm⋅ 1



  

r =
1

16

1 2 1

2 4 2

1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

p =
1

4

1 2 1

2 4 2

1 2 1

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

• Linear interpolation:

• Operator-dependent interpolation: De Zeeuw 1990

• The rule in chosing interpolation and restriction: 
                   mp + mr > 2m (Brandt 1977)
where 2m is the order of the PDE, mp -1 is the degree 

of polynomials exactly interpolated by IH
h  and mr -1 is 

the degree of ploynomials exactly interpolated by Ih
H( )T

.   

Choices of Interpolations and Coarse Grids

•  Coarse grid selection: regular coarsening, 
   semi-coarsening, algebraic coarsening



• Stationary iterative methods : Jacobi, Gauss-Seidel, SOR, …
• Block-type stationary iterative methods (blocks can be 
  determined by the way we number the nodes)

Vertical line ordering Horizontal line ordering Red-Black ordering

A=

T -I
-I T -I

-I T -I
-I T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 , T=[-1,4,-1]: 

Matrix of 2-D Laplacian Matrix Pattern for 
line ordering

Matrix Pattern for 
R-B ordering

Choices of Smoothers



Update even (Red) points first: x2i = 0.5 f2i + x2i−1 + x2i+1( )
Update odd (Black) points: x2i = 0.5 f2i+1 + x2i + x2i+2( )

HW6: Write a MG code for solving 1-D
− ′′u = f           

 u 0( ) = u 1( ) = 0
⎧
⎨
⎩

using linear interpolant IH
h  and Ih

H = 0.5 IH
h( )T  and the

Red-Black Gauss-Seidel smoother

Brandt’s Local Mode Analysis

For analyzing the robustness of a smoother. Brandt’s local mode
analysis is a useful tool. Here, we demonstrate the method by 
considering the Jacobi and Gauss-Seidel relaxation for the 2-D 
laplace equation with periodic boundary condition.



Brandt’s smoothing factor
Let ε  be the error before relaxation. From discrete Fourier 
transform theory, ε  can be written as
εi, j= ε̂θφi, j θ( )  ------(i)

θ∈Θn

∑ ,  where θ= θ1,θ2( ),  φi, j θ( ) = ei iθ1 + jθ2( ),  

ε̂θ =
1

n +1( )2 εk ,lφk ,l −θ( )
1≤k ,l≤n
∑ , and 

Θn =
2π
n +1

k,l( ) − n +1
2

≤ k,l ≤ n + 3
2

,  n is odd⎧
⎨
⎩

⎫
⎬
⎭

.

 

Similarly, the error ε  obtained after relaxation can be written 

as ε = ̂εθφi, j θ( )
θ∈Θn

∑  -----(ii). Let λ θ( ) ≡ ̂εθεθ
. Brandt's smoothing 

factor is defined as ρ=sup λ θ( ) ,π
2
≤ θk ≤ π ,k = 1,2⎧

⎨
⎩

⎫
⎬
⎭

.



 
εi, j = εi, j −

ω
4
4εi, j − εi+1, j + εi−1, j + εi, j+1 + εi, j−1( )( )Recall that                                                                                         Plug (i) and (ii)

into it, we have

Therefore, λ θ( ) = 1−ω 1−
cos θ1( ) + cos θ2( )

2
⎛
⎝⎜

⎞
⎠⎟

.  It is easy to see 

that ρ = max 1−ω , 1− ω
2

, 1− 3ω
2

⎧
⎨
⎩

⎫
⎬
⎭

. The optimal ω  that 

minimize ρ  is 4
5

and the smoothing factor ρ = 0.6 for such ω .

 

̂εθφi, j θ( )
θ∈Θn
∑ = ε̂θφi, j θ( ){ −

ω
4
4ε̂θφi, j θ( ) − ε̂θφi+1, j θ( )(⎡⎣

θ∈Θn
∑ + ε̂θφi−1, j θ( ) + ε̂θφi, j+1 θ( )

+ ε̂θφi+1, j θ( ))⎤⎦}= ε̂θ φi, j θ( ) − ω
4
4φi, j θ( ) −φi, j θ( )eiθ1 −φi, j θ( )e-iθ1 −φi, j θ( )eiθ2⎡⎣

⎧
⎨
⎩θ∈Θn

∑

−φi, j θ( )e-iθ2 ⎤⎦}= ε̂θ 1−ω 1−
cos θ1( ) + cos θ2( )

2
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
φi, j θ( )

θ∈Θn
∑

HW7: Show that the smoothing factor of the Gauss-Seidel iteration is 0.5

Smoothing Factor of Damped Jacobi Iteration



How Much Multigrid Costs?

• Stationary method ≈ 1-O(κ-1) ≈ 1-h2

• Conjugate gradient ≈ 1-O(κ-1/2) ≈ 1-h
•Multigrid ≈ O(1) independent with h

Convergence:

How much each MG step cost?

 
2cnd 1+ 2−d + 2−2d +( ) = 2cnd

1− 2−d

 nd : total number of points
 d: dimension of the problem
 c: cost for updating a single unknown
 cnd: cost per relaxation sweep.  

Ignore the cost associated with inter-grid transfer (typically 
within 10-20%). Computation cost of one MG V-cycle is 



Standard MG can fail!

• The original PDE has poor coercivity or regularity (for example, 
  crack problems, convection-diffusion problems, etc.)

  
R I

H
h( )  

 
N I

h
H A

h( )

L

H o
relaxation

o

o
o

- Relaxation may not smooth the error.
- coarse grid correction can only capture a small portion

              of the error or even worse!

• The left figure is a sketch to illustrate 
   why MG slow convergence 

• Next, let’s consider the following example:

−
d
dx

c x( ) du
dx

⎛
⎝⎜

⎞
⎠⎟
= f x( )

u 0( ) = u 1( ) = 0
,  here c x( ) =

ε,  0 ≤ x ≤ i0h
 1,  i0h < x ≤ i1h
ε,  i1h < x ≤ 1

⎧
⎨
⎪

⎩⎪

⎧

⎨
⎪

⎩
⎪

Ex2: ---- (+)

correction



 

Ah =

2ε −ε
−ε 2ε −ε

  
−ε 1+ ε −1

−1 2 −1
  

−1 1+ ε −ε
−ε 2ε −ε

  
−ε 2ε

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

I −ωD−1Ah = I −ω

1 −1 / 2
−1 / 2 1 −1 / 2

  
−ε / (1+ ε) 1 −1 / (1+ ε)

−1 / 2 1 −1 / 2
  

−1 / (1+ ε) 1 −ε / (1+ ε)
−1 / 2 1 −1 / 2

  
−1 / 2 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Discrete matrix of (+)  

Damped Jacobi EDJ 
matrix of Ah  

⇒

⇓



For ε → 0, the eigen vector corresponding to the largest eigenvalue
λ 0( )  of EDJ  converges toward to the vector e 0( )  while λ 0( ) → 1, where

e 0( )( )i
=

ih,                                      0 ≤ x ≤ i0h
 i0h,                                   i0h < x ≤ i1h 

i0
i1 − n −1

ih − i0 n +1( )
i1 − n −1

h,  i1h < x ≤ 1  

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

. +
i0h

+
i1h

Figure of e(0)

Damped Jacobi fails to smooth the high frequency error!
MG convergence is deteriorated as ε → 0  
A remedy of this is to use operator-dependent interpolation! 
Construct such interpolation is not easy. 
But, there is a “easier and better” way to do it!  



Algebraic Multigrid

1. A priori generated coarse grids
are not needed! Coarse grids are
generated by algebraic coarsening
from matrix on fine grid.

2.  Interpolation operators are
defined dynamically in coarsening
process.

3. Smoother is fixed.

1. A priori generated coarse grids are
needed. Coarse grids need to be
generated based on geometric
information of the domain.

2. Interpolation operators are defined
independent with coarsening process.

3. Smoother is not always fixed.

AMGMG

Ideas: 
• Fix the smoothing operator.
•Carefully select coarse grids and define interpolation weights



AMG Convergence

 
,here v

0
= Dv,v , v

1
= Av,v , v

2
= D-1Av,Av ,  for v ∈V

h

  
Es Ec

1

2
≤ Ece

1

2
−α Ece

2

2
≤ 1−

α
β

⎛
⎝⎜

⎞
⎠⎟

Ece
1

2
≤ 1−

α
β

⎛
⎝⎜

⎞
⎠⎟

e
1

2

  
Ece

1

2
= AEce, Ece − I

H
h e

H( ) ≤ Ece
2

Ece − I
H
h e

H 0
≤ β Ece

2
Ece

1

Smoothing assumption:
  
∃ α>0 ∍  Ese

1

2
≤ e

1

2
−α e

2

2
 for all e ∈V

h

Approximation assumption:
  
min

eH

e − I
H
h e

H 0

2
≤ β e

1

2
 where β  is independent with e.

AMG works when A is a symmetric positive definite M-matrix.

In the following, we assume that A is also weakly diagonally 
dominate



  
E

s
e

s 1
≈ e

s 1
,  e

s 2•  Smooth error is characterized by                                             is very small 

  
e

1

2
≤ D−1/ 2 Ae D1/ 2e = e

2
e

0
⇒ e

1
<< e

0

  

Ae,e( ) = 1

2
−a

i, j
(e

i
− e

j
)2

i, j
∑ + a

i, j
j
∑

⎛

⎝⎜
⎞

⎠⎟
e

i
2 <<

i
∑ a

i,i
e

i
2

i
∑

1

2
−a

i, j
e

i
− e

j( )2

<< a
ii
e

i
2

j
∑

a
i, j

a
i,i

e
i
− e

j( )2

e
i
2

j≠ i
∑ << 2

•  Smoother errors vary slowly in the direction of strong connection, from ei to ej

    , where                    are large.
  
a

i, j
a

i,i

• AMG coarsening should be done in the direction of the strong connections.

• In the coarsening process, interpolation weights are computed so that the 
  approximation assumption is satisfied.  (detail see Ruge and Stüben 1985)

What Does the Smooth Assumption Tell?



  

Approximation assumption ≡  

          a
ii

e
i
− w

ik
e

k
k∈C
∑⎛

⎝⎜
⎞
⎠⎟i∈F

∑
2

≤ β 1

2
(−a

ij
)(e

i
− e

j
)2 + a

ij
j
∑

⎛

⎝⎜
⎞

⎠⎟
e

i
2

i
∑

i, j
∑

⎛

⎝
⎜

⎞

⎠
⎟

Since a
ii

e
i
− w

ik
e

k
k∈C
∑⎛

⎝⎜
⎞
⎠⎟i∈F

∑
2

= a
ii

w
ik

(e
i
− e

k
) + (1− s

i
)e

i
k∈C
∑⎛⎝⎜

⎞
⎠⎟

2

i∈F
∑

                                           ≤ a
ii

w
ik

(e
i
− e

k
)2 + (1− s

i
)e

i
2

k∈C
∑⎛⎝⎜

⎞
⎠⎟i∈F

∑ ,

here w
ik
> 0 is the interpolation weight from node k to node i, and s

i
= w

ik
k∈C
∑ < 1,  

clearly, if 

  
min

eH

e − I
H
h e

H 0

2
≤ β e

1

2

What Does the Approximation Assumption Tell?

  

Θ( )   
a

ii
w

ik
(e

i
− e

k
)2

k∈C
∑

i∈F
∑ ≤

β
2

(−a
ij
)(e

i
− e

j
)2

i, j
∑  

a
ii
(1− s

i
)e

i
2

i∈F
∑ ≤ β a

ij
j
∑

⎛

⎝⎜
⎞

⎠⎟
e

i
2 ,

i
∑

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  

the approximation assumption holds. For Θ( )  to hold, we can simply require

         Ξ( )    0 ≤ a
ii
w

ik
≤ β a

ik
 and 0 ≤ a

ii
1− s

i( ) ≤ β a
ik

k
∑ .



Given a β ≥1, suppose the coarse grid C is selected such that

Then, the approximation assumption holds if the interpolation weights 

  

w
i,k

= a
i,k

a
i, j

j∉Ci

∑ − − − Φ( ).

Lemma 5:

  

a
i,i
+ a

i, j
=

j∉Ci
j≠ i

∑ a
i, j

j∉Ci

∑ ≥
1

β
a

i,i
 

  where C
i
=N

i
C, C is the coarse grid and N

i
= neighbors of i-th node

  are defined as

ai,iω i,k = ai,i
ai,k
ai, j

j∉Ci
∑

=
ai,i
ai, j

j∉Ci
∑

ai,k ≤ β ai,k

ai,i 1− si( ) = ai,i 1− ω i,k
k∈Ci
∑

⎛

⎝⎜
⎞

⎠⎟
= ai,i 1−

ai,k
ai, j

j∉Ci
∑k∈Ci

∑
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=ai,i

ai, j
j
∑

ai, j
j∉Ci
∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

               ≤ β ai, j
j
∑

Therefore,         holds. From the arguments in previous page,
We can conclude the approximation holds.

Ξ( )



Smoothing property holds for GS

Recall ES = I − B
−1A. We have

EGSe 1

2 = A I − B−1A( )e, I − B−1A( )e( )
           = Ae,e( ) − AB−1Ae,e( ) − Ae,B−1Ae( ) + AB−1Ae,B−1Ae( )
           = e 1

2 − B−1Ae,BB−1Ae( ) − BB−1Ae,B−1Ae( ) + AB−1Ae,B−1Ae( )
            = e 1

2 − BT + B − A( )B−1Ae,B−1Ae( ).

 

The smooth assumption ≡  α e 2
2 ≤ BT + B − A( )B−1Ae,B−1Ae( )  ---- (Θ)

Let e=B−1Ae. Since e 2
2 = D−1Ae,Ae( ) = D−1BB−1Ae,BB−1Ae( ),

clearly,  (Θ) ≡  α D−1Be,Be( ) ≤ BT + B − A( ) e, e( )  ---- (ΘΘ).

Now consider B=D-L. Since BT + B − A = D,  we have 

 

(ΘΘ) ≡ α
BTD−1Be, e( )
De, e( ) = α

D−1BTD−1BDe, e( )
D1/2 e,D1/2 e( ) = α

D−1BTD−1BD1/2 e,D1/2 e( )
D1/2 e,D1/2 e( ) .

         = αρ D−1BTD−1B( ) ≤ 1. ≡ α ≤
1

ρ D−1BTD−1B( ) ---- (ΘΘΘ)



Therefore, the smooth assumption holds for Gauss-Seidel iteration.
If A is a diagonally dominant M-matrices, we can estimate α  as follows:

Since ρ D−1BTD−1B( ) ≤ ρ I − D−1LT( )ρ I − D−1L( ) ≤ 1+ ρ D−1LT( )( ) 1+ ρ D−1L( )( ),  

ρ D−1L( ) ≤ max
1≤i≤n

ai, j
ai,ij=1, j≠ i

n

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
≤ 1,  clearly, we have 1

ρ D−1BTD−1B( ) ≥
1
4

.and

Therefore, Gauss-Seidel iteration satisfies the smoothing property with α= 1
4

.

If fact, for symmetric M-matrices, smooth assumption holds
for both Gauss-Seidel and Jacobi iterations.

Furthermore, one can also show that the coarse grid matrix
is also a diagonally dominant M-matrix

when is a diagonally dominant M-natrix and the interpolation
weights satisfy

AH = IH
h( )T AhIHh

Ξ( )  and Φ( ).
Ah



• Ci-nodes should be chosen from

• From convergence result, we want β close to 1. 
  This suggests we need a larger set Ci ( we need to choose a small     ).

• We don’t want C=ø but we want C as small as possible. 

 Ni
S

γ

Criterion 1.   For each node i in F, node j in  Ni
s  should be either in C or 

                     strongly connected to at least one node in Ci.

Criterion 2.   C should be a maximal subset of all nodes with the property that 
                     no two C-nodes are strongly connected to each other.

  

N
i
S = j : − a

i, j
≥ γ max

m≠ i
−a

i,m( ),0 < γ < 1{ }
N

i
S( )T

= j : i ∈  N
j
S{ }

First, let’s define the following sets:

Here,         is the set of nodes that node i strongly connects to.
                  is the set of nodes strongly connects to node i.

 Ni
S

 
N

i
S( )T

 Ni
S

 
N

i
S( )T

AMG Coarsening Criteria



 Ni
S

 
N

i
S( )T

+2-1

-1

-1

Fine points

+1

AMG Coarsening (I)



AMG
Coarsening (II)



http://www.llnl.gov/CASC/people/henson

A very good MG and AMG tutorial resource (by Van Emden Henson) :

AMG Coarsening: Example 1

Laplace operator from Galerkin FEM Discretization:



Convection-Diffusion with Characteristic and downstream layers

   

−εΔu +
∂u

∂y
= 0

u |∂Ω=
1 if  (y=0   x>0) or x=1, 

0 otherwise,

⎧
⎨
⎩

where Ω=[-1,1]× [-1,1].
0 1

.
1

0

0

Solution from SDFEM discretization on 32x32
grid

Solution from Galerkin discretization on 32x32
grid

AMG Coarsening: Example 2



AMG coarsening  with strong
connection parameter
ε/h << β << 0.25

C-point

C-point

  

−
ε
3

−
ε
3

−
ε
3

h

6
−
ε
3

2h

3
+

8ε
3

h

6
−
ε
3

−
h

6
−
ε
3

−
2h

3
−
ε
3

−
h

6
−
ε
3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

SDFEM discretization with
  
δ

T
=

h

2

 yields the left matrix stencil: 

Coarse grids from AMG coarseningCoarse grids from GMG coarsening



Example 2: GMG v.s. AMG

On the uniform mesh:

On the adaptive mesh:

571
672
883
694

AMGGMGLevel

7171
8182
9243
8224

AMGGMGLevel

7341
8472
10573
14594

AMGGMGLevel

ε=10-2 ε=10-3 ε=10-4

ε=10-2 ε=10-3 ε=10-4

6121

6132

7133

AMGGMGlevel

6161

7262

8273

AMGGMGlevel

6171

8352

11513

AMGGMGlevel



Nonlinear Multigrid
Nonlinear problems: L u( ) = f ⇒

discretization
  

Method 2: Nonlinear Multigrid , so called full approximation
storage scheme (FAS)

Method 1: Linearize Ah using Newton method and solve the linear
system by multigrid.

uj ← uj −
D
Du

Ah u( )⎡
⎣⎢

⎤
⎦⎥

−1

f − Ah uj( )( )

• Nonlinear relaxation
• Nonlinear defect correction

 

One needs to solve Ah uh( ) = fh  ≡  

a1 u1,u2 ,,un( )
a2 u1,u2 ,,un( )


an u1,u2 ,,un( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

f1
f2

fn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.



 

Jacobi:             ai u1
old ,,ui−1

old ,ui
new ,ui+1

old ,,un
old( )  for all i=1,2,,n

Gauss-Seidel:  ai u1
new ,,ui−1

new ,ui
new ,ui+1

old ,,un
old( )  for all i=1,2,,n

Solve local nonlinear problems iteratively.

Nonlinear Relaxation:

Example ( Nonlinear Gauss-Seidel ) :

Discretiation:

Newton iteration for each j, starting from j=1



Nonlinear defect correction:

In linear case:            rh
(n) = Ah uh( ) − Ah uh(n)( ) = Ah uh - uh

(n)( )
In nonlinear case:      rh

(n) = Ah uh( ) − Ah uh(n)( ) ≠ Ah u - uh
(n)( )

Solving AHeH = Ih
H rh

(n)  does not give an approximation to eh = uh - uh
(n).

Now consider 
eh = uh - uh

(n)  where uh  satisfies  rh
(n) = Ah uh( ) − Ah uh(n)( )            

eH = uH - Ih
Huh

(n)  where uH  satisfies  Ih
H rh

(n) = AH uH( ) − AH Ih
Huh

(n)( )
⎧
⎨
⎪

⎩⎪
Observe that uh

(n) → uh ⇒  uH → Ih
Huh   ⇒  eH → Ih

Heh . (Here, Ih
H  can simply be an injection)

In this point of view, eH  is a reasonable approximation of eh.
Now, we can write down the FAS algorithm:

1.  Nonlinear Relaxation
2.  Restrict uh

n  and rh
n  by rH = Ih

H rh
n  and v = Ih

Huh
n

3.  Solve AH uH( ) = rH + AH v( )
4.  Compute eH = uH − v
5.  Update uh

n ← uh
n + IH

h eH

FAS:



•  Discretization: finite difference

  

r =
1

16

1 2 1

2 4 2

1 2 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

p =
1

4

1 2 1

2 4 2

1 2 1

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

•  Interpolation and Restriction

-∆u(x, y) + γ u(x, y) eu(x,y) = f(x, y) in [0,1]× [0,1], 
u(x, y) = x-x2( )sin 3π y( )

•  Relaxation: Nonlinear Gauss-Seidel:

 

ui, j = ui, j −
h−2 4ui, j − ui−1, j − ui+1, j − ui, j−1 − ui, j+1( ) + ui, jeui , j − fi, j

4h−2 + γ 1+ ui, j( )eui , j
starting from i,j( ) = 1,1( ), 1,2( ),, 2,1( ), 2,2( ),, n,n( ).



An example taking from Multigrid Tutorial (Briggs)

Who is better Newton-MG or FAS?

Not so sure … but FAS is popular in CFD.



Multigrid Parallelization

Parallelization: Using multiple computers
                         to do the job!

P P P P

M M M M

communication

What need to be done?
1. Numerical algorithm need to be capable to do it.
2. Program has to distribute works to processors
properly and dynamically. (load balancing)

3. Computers have to communicate each others.
(Messaging passing interface, MPI)

4. Many others (grid topoloogy, scheduling, ….)

Multigrid is a scalable algorithm!
 (Jim E. Jones, CASC, Lawrence Livermore National Laboratory)



Domain Decomposition:
DG

DB

•  FEM assembling in domains DG, DB, … can be done 
   simultaneously. 

•  Matrix-vector product A ⋅ x can be computed indenpendently 
in each domain. Pass xG  to D2  and xB  to D1.

• Jacobi and red-black Gauss-Seidel Relaxations can be 
  done in parallel.
•  Grid-Coarsening and refinement can be done in parallel
   (not quite easy … need to keep tracking grid topology).

•  Interpolations can be parallelized too.



Scalability
T N,P( ) :  Time to solve a problems with N unknowns on P processors
Speedup S(N,P)=T(N,1)/T(N,P). Perfect if S(N,P)=P;
Scaled Efficiency: E(N,P)=T(N,1)/T(NP,P). Perfect if E(N,P)=1.

Assume 2D problem of size (pN)2 is distributed to p2 processors.
Number of unknowns in each processor N2 

5 point stencils

Time for relaxation on grid level k: Tk = Tcomm
N
2k

⎛
⎝⎜

⎞
⎠⎟
+ 5 N

2k
⎛
⎝⎜

⎞
⎠⎟

2

f ,

Time for a V-cycle = Tv ≈ 2Tk ≈ 8αL +16Nβ +
40
3

⎛
⎝⎜

⎞
⎠⎟
N 2 f ,

k
∑

α =  startup time,  
β =  time to transfer a single double
Tcomm (n) = α + βn =  communication time for transmitting n doubles to one processor.
f = one floating point operation time.



Tv N 2 ,1( ) ≈ 40
3

⎛
⎝⎜

⎞
⎠⎟
N 2 f

Tv pN( )2 , p( ) = 8α log2 pN( ) +16β N( ) + 40
3
N 2 f

E N ,P( ) ≈O 1 log2 p( )  as p →∞

E N ,P( ) ≈O 1( )  as N →∞

Since MG has O(1) convergence rate, we can analyze the 

scaled efficiency as follows:

We need to be careful. In IBM SP2, 

α = 5 ×10−5

β = 1×10−6

f = 8 ×10−9

⇔ Communication is expensive!


