
4. Brownian Motions

The origination of Brownian motions is based on botanist Brown’s observation of pollen
grain pending on the water, of which motion is determined by the net effect of bombardment
of water molecules. In this section, we introduce the mathematical framework in the one-
dimensional case and discuss their properties. Thereafter, (Xt)t≥0 refers to a stochastic process
defined on a probability space (Ω,F ,P), whereXt is non-degenerate for t > 0. For convenience,
we assume that P is complete.

4.1. Definitions. A stochastic process (Xt)t≥0 defined on a probability space (Ω,F ,P) with
values in R is a Brownian motion if X0 = 0 and

(A1) (Independency of increments) Xt0 , Xt1 −Xt0 ,..., Xtn −Xtn−1 are independent for any
t0 < t1 < · · · < tn and n ≥ 1.

(A2) (Stationarity of increments) For any s ≥ 0, the distribution ofXt+s−Xt is independent
of t.

(A3) (Continuity) For any δ > 0, one has

lim
s↓0

P(|Xt+s −Xt| > δ)

s
= 0.

Remark 4.1. By the π − λ lemma, (A1) is equivalent to the independence of F(Xt+s − Xt)
and F(Xr, r ≤ t) for any s, t ≥ 0.

Proposition 4.1. Let (Xt)t≥0 be a Brownian motion. Then, there are µ ∈ R and σ > 0 such
that Xt is normal with mean µt and variance σ2t for t > 0.

To prove this proposition, we recall the following lemma.

Lemma 4.2. For n ≥ 1, let Xn,1, ..., Xn,n be i.i.d. non-degenerate random variables and set
Sn =

∑n
i=1Xn,i and Mn = max{|Xn,i| : 1 ≤ i ≤ n}. Assume that Sn converges in distribution

to X. Then, X is normal if and only if Mn converges to 0 in distribution.

Proof of Proposition 4.1. By the stationarity of increments, (A3) is equivalent to

lim
s↓0

P(|Xs| > δ)

s
= 0, ∀δ > 0.

Fix t > 0. By (A1) and (A2), Xt is infinitely divisible since

Xt =
n∑

k=1

(Xtk/n −Xt(k−1)/n).

Let Mn = max{|Xtk/n −Xt(k−1)/n| : 1 ≤ k ≤ n}. Note that, for δ > 0,

P(Mn > δ) = 1− P(Mn ≤ δ) = 1− P(|Xt/n| ≤ δ)n

= 1− [1− P(|Xt/n| > δ)]n = 1− [1− o(t/n)]n → 0

as n→ ∞. By Lemma 4.2, this implies that Xt is normal. Set ϕ(t) = EXt and φ(t) = Var(Xt).
Clearly, one has

ϕ(t+ s) = EXt+s = E(Xt+s −Xt) + EXt = ϕ(s) + ϕ(t)

and
φ(t+ s) = Var(Xt+s −Xt +Xt) = Var(Xt+s −Xt) + Var(Xt) = φ(s) + φ(t).

Following these computations, we may conclude that ϕ(t) = ϕ(1)t and φ(t) = φ(1)t for
t ∈ Q ∩ [0,∞). As Xt+s converges in distribution to Xt, we have ϕ(t + s) → ϕ(t) and
φ(t+ s) → φ(t). This implies that ϕ and φ are right-continuous and, hence, EXt = tEX1 and
Var(Xt) = tVar(X1) for t > 0. �
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Definition 4.1. A Brownian motion is a process (Xt)t≥0 satisfying X0 = 0 and

(1) For t0 < t1 < · · · < tn, Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.

(2) There are µ ∈ R and σ2 > 0 such that Xt+s −Xt is normally distributed with mean
sµ and variance sσ2 for all t ≥ 0 and s > 0.

If µ = 0 and σ = 1, then (Xt)t≥0 is called a normalized Brownian motion.

Remark 4.2. µ is called the drift of a Brownian motion.

Exercise 4.1. Let (Xt)t≥0 be a Brownian motion and set Yt = (Xt−tEX1)/
√
Var(X1). Show

that (Yt)t≥0 is a normalized Brownian motion.

Exercise 4.2. Suppose X1, ..., Xn are random variables such that X1, X2−X1, ..., Xn−Xn−1

are independent. Prove that if Fk is the distribution function of Xk − Xk−1, then the joint
distribution function F of X1, ..., Xn is given by

F (x1, x2, ..., xn) =

∫
(−∞,x1]

F1(dy1)

∫
(−∞,x2−y1]

F2(dy2)× · · ·

×
∫
(−∞,xn−yn−1−···−y1]

Fn(dyn).

Note that one may build up a probability space for the existence of a process with given
finite-dimensional distributions. Without the regularity of sample pathes, there might be
events of interests but non-measurable, e.g.

A = {Xt = 0 for some t ∈ I} =
⋃
t∈I

{Xt = 0}, B = {|Xt| ≤ c,∀t ∈ I} =
⋂
t∈I

{|Xt| ≤ c}.

However, if the process is continuous almost surely, then the above events turn into measurable
sets. For instance, let I = [0, 1] and (Yt)t∈I be a continuous process. Define, for ϵ > 0 and
n ≥ 1,

Aϵ = {|Yt| < ϵ for some t ∈ I}, An,ϵ = {|Yk/2n | < ϵ for some k ≥ 0}.
Clearly, An,ϵ → Aϵ and Aϵ → A, which implies A is measurable.

This leads us to the construction of continuous Brownian motions.

Definition 4.2. Let I ⊂ [0,∞). A process (Xt)t∈I is said to be continuous in probability if
for all t ∈ I and tn → t, Xtn → Xt in probability.

Theorem 4.3. Let I be an interval in [0,∞). Assume that a process (Xt)t∈I is continuous
in probability and there exists a countable set T dense on I such that

P(ω : t 7→ Xt(ω) is uniformly continuous on T ∩ J) = 1

for any finite subinterval J ⊂ I. Then, there is a process (Yt)t∈I on the same probability space
such that the map t 7→ Yt(ω) is continuous on I for all ω and Xt = Yt a.s. for all t ∈ I.

Remark 4.3. Both processes (Xt)t∈I and (Yt)t∈I have the same distribution.

Proof of Theorem 4.3. Write TJ = T ∩ J and set

C = {ω : t 7→ Xt(ω) is uniformly continuous on TJ}.
For t ≥ 0, define

Yt(ω) := lim
j→∞

Xtj (ω), ∀ω ∈ C, t ∈ J, tj ∈ TJ , tj → t.

and Yt(ω) ≡ 0 for all ω ∈ Cc and t ∈ J . Clearly, Yt is a measurable function (since Xtj → Yt
on C) and is continuous in t ∈ J for all ω. Since Xtj converges in probability to Xt and Xtj

converges to Yt a.s., we have Yt = Xt a.s. for all t ∈ J . The desired construction is then given
by applying the above conclusion to Jn = [0, n] ∩ I. �
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Theorem 4.4. For any Brownian motion (Xt)t≥0, there exists a countable dense subset T of
[0,∞) such that, for almost all ω, the map t 7→ Xt(ω) is uniformly continuous on T ∩ [0, a]
for all a <∞.

To prove this theorem, we need the following lemma.

Lemma 4.5. Let Xt be a Brownian motion. For t0 < t1 < · · · < tn and x > 0,

P
(

max
1≤k≤n

Xtk > x

)
≤ 2P(Xtn > x), P

(
max
1≤k≤n

|Xtk | > x

)
≤ 2P(|Xtn | > x).

Proof. Let N = inf{k ≥ 1 : Xtk > x}, where inf ∅ := ∞. Since the distribution of Xtn −Xtk
is continuous and symmetric about 0, one has

P
(

max
1≤k≤n

Xtk > x

)
=

n∑
k=1

P(N = k) = 2

n∑
k=1

P(N = k)P(Xtn −Xtk > 0).

Note that {N = k} ∈ F(Xt1 , ..., Xtk). By the independency of increments, this implies

P
(

max
1≤k≤n

Xtk > x

)
= 2

n∑
k=1

P(N = k,Xtn −Xtk > 0)

≤ 2
n∑

k=1

P(N = k,Xtn > x) ≤ 2P(Xtn > x).

Since Xt is normalized, −Xt has the same distribution as Xt and thus

P
(

min
1≤k≤n

Xtk < −x
)

≤ 2P(Xtn < −x).

The last inequality is given by the following fact.{
max
1≤k≤n

|Xtk | > x

}
⊂
{

max
1≤k≤n

Xtk > x

}
∪
{

min
1≤k≤n

Xtk < −x
}
.

�

Proof of Theorem 4.4. By Exercise 4.1, it suffices to consider normalized Brownian motions.
Let I = {k/2n : k ≥ 0, n ≥ 0}, a ∈ N and T = {ak/2n : k = 0, 1, ..., 2n, n ≥ 1}. Clearly,
T = I ∩ [0, a]. Define

Un = sup{|Xs −Xt| : s, t ∈ T, |s− t| ≤ a2−n}, U = lim
n→∞

Un.

By Theorem 4.3, it suffices to show that U = 0 a.s.. As Un is non-increasing, it is equivalent
to prove that Un → 0 in probability.

Set In,k = [ak/2n, a(k + 1)/2n] and Yn,k = sup{|Xt − Xak/2n | : t ∈ In,k ∩ T} for k =
0, 1, ..., 2n − 1. By the following inequality

1

3
Un ≤ max

0≤k<2n
Yn,k,

it remains to show that the right hand side converges to 0 in probability. Following assumptions
(A1) and (A2), one has

P
(

max
0≤k<2n

Yn,k > δ

)
≤

2n−1∑
k=0

P(Yn,k > δ) = 2nP(Yn,0 > δ).
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Let Tm = {ak/2m : k = 0, 1, ..., 2m}. Obviously, max{|Xt| : t ∈ In,0 ∩Tm} is non-decreasing in
m and converges to Yn,0, which implies

P(Yn,0 > δ) = lim
m→∞

P
(

max
t∈In,0∩Tm

|Xt| > δ

)
.

By Lemma 4.5, we have

P
(

max
t∈In,0∩Tm

|Xt| > δ

)
≤ 2P(|Xa2−n | > δ), ∀m ≥ n.

Consequently, one may apply (A3) to get

lim
n→∞

P
(

max
0≤k<2n

Yn,k > δ

)
≤ lim

n→∞

P(|Xa2−n | > δ)

2−n−1
= 0.

�
Thereafter, a Brownian motion refers to a stochastic process (Xt)t≥0 with continuous sample

paths and satisfying X0 = 0 and

(1) Xt0 , Xt1 −Xt0 ,...,Xtn−1 −Xtn are independent for t0 < t1 < · · · < tn and n ≥ 1.
(2) For s < t, Xt − Xs has the normal distribution with mean µ(t − s) and variance

σ2(t− s).

When mentioning normalized Brownian motions, we mean µ = 0 and σ = 1 and write (Bt)t≥0

instead. In the following exercises, we use I to denote an interval in [0,∞).

Exercise 4.3. Let (Xt)t∈I be continuous in probability. Show that, for any countable set
{ti : i ≥ 1} dense in I,

F(Xt, t ∈ I) ⊂ F(Xti , i ≥ 1)

where F(Xti , i ≥ 1) is the σ-field containing F(Xti , i ≥ 1) and all subsets of measure zero set
of P.

Exercise 4.4. Let (Xt)t∈I be a stochastic process continuous in probability and Tn be a finite
subset of I satisfying Tn ⊂ Tn+1 and Tn → T , where T is dense in I. Use Exercise 4.3 to show
that, for A ∈ F(Xt, t ∈ I),

P(A|Xt, t ∈ Tn)
a.s.→ P(A|Xt, t ∈ I) as n→ ∞.

Exercise 4.5. Let (Xt)t∈I and (Yt)t∈I be two stochastic processes satisfying P(Xt = Yt) = 1
for all t ∈ I. Show that if (Xt)t∈I and (Yt)t∈I almost surely right-continuous (resp. left-
continuous), then P(Xt = Yt, ∀t ∈ I) = 1.

Exercise 4.6. Let (Xt)t∈I be a stochastic process with right-continuous (resp. left-continuous)
sample paths. Show that the map (t, ω) 7→ Xt(ω) is B(I)×F(Xi, i ∈ I)-measurable.

4.2. Variation and differentiability of Brownian motions.

Theorem 4.6. Let (Xt)t≥0 be a Brownian motion. Then,

P({ω ∈ Ω : t 7→ Bt(ω) is Lipschitz continuous at some t > 0}) = 0.

Corollary 4.7. Almost all Brownian paths are nowhere differentiable.

Proof. This is an immediate result of the fact that if a function is differentiable at some point,
say x, then the function is Lipschitz continuous at x. �
Corollary 4.8. Almost all Brownian paths have infinite variation on any finite interval.

Proof. This comes from the fact that if a function is of bounded variation on I, then it is
differentiable a.s. (in Lebesgue measure) on I. �
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Proof of Theorem 4.6. We prove this theorem by following Breiman’s book. It suffices to
consider the normalized Brownian motion starting from 0. Fix N ∈ N, let M > 0 and set

An = {ω : for some s ∈ [0, N ], |Xt(ω)−Xs(ω)| ≤M |t− s|, ∀|t− s| < 2N/n}
and

yn,k(ω) = max

{∣∣∣∣XN(k+2−i)/n(ω)−XN(k+1−i)/n(ω)

∣∣∣∣i = 0, 1, 2

}
.

For ω ∈ An with Nk/n ≤ s ≤ N(k + 1)/n, yn,k ≤ 3NM/n and this implies An ⊂ Bn, where

Bn = {ω : yn,k(ω) ≤ 3NM
n , for some 1 ≤ k ≤ n− 2.}

By the independency and stationarity of increments, one has, for n > 2,

P(Bn) ≤ nP
(

max
i=0,1,2

∣∣∣∣XN(i+1)/n −XNi/n

∣∣∣∣ ≤ 3NM

n

)
= nP

(
|XN/n| ≤

3NM

n

)3

≤ n

(√
n

2πN

∫ 3MN/n

−3MN/n
e−nx2/(2N)dx

)3

= n

(√
N

2πn

∫ 3M

−3M
e−Ny2/(2n)dy

)3

→ 0,

as n→ ∞. Let A be the limit of An. Clearly, A contains all Brownian paths t ∈ [0, N ] 7→ Xt

which is Lipschitz continuous at some point with Lipschitz constant M . Following the above
computations, we obtain P(A) = 0 for all M > 0, which says that almost all Brownian
paths are nowhere Lipschitz continuous on [0, N ]. As N is arbitrary, this proves the desired
property. �

Let Bt be a normalized Brownian motion. Let Pn = {tn,0 < · · · < tn,mn} be a partition of
[0, t] and set ‖Pn‖ = max{tn,k+1 − tn,k : 0 ≤ k < mn}. Consider the following summation.

Sn =

mn−1∑
k=0

|Btn,k+1
−Btn,k

|2.

Clearly, one has

Sn − t =

mn−1∑
k=0

[(Btn,k+1
−Btn,k

)2 − E|Btn,k+1
−Btn,k

|2].

By the independency of increments, this implies

E(Sn − t)2 =

mn−1∑
k=0

E[(Btn,k+1
−Btn,k

)2 − (tn,k+1 − tn,k)]
2

= E(B2
1 − 1)2

mn−1∑
k=0

(tn,k+1 − tn,k)
2 ≤ E(B2

1 − 1)2t‖Pn‖

and then
∞∑
n=1

P(|Sn − t| > ϵ) ≤ E(B2
1 − 1)2t

ϵ

∞∑
n=1

‖Pn‖, ∀ϵ > 0.

Theorem 4.9. Let Pn = {tn,0, ..., tn,mn} be a partition of [0, t] and set ‖Pn‖ = max
0≤k<mn

|tn,k+1−

tn,k|. If ‖Pn‖ → 0, then

Sn =

mn−1∑
k=0

|Btn,k+1
−Btn,k

|2 → t in L2(P).

Moreover, if
∑∞

n=1 ‖Pn‖ <∞, then Sn → t a.s.
61



4.3. Behavior of Brownian Motions at time 0 and ∞.

Theorem 4.10 (Law of the iterated logarithm). Let Bt be a normalized Brownian motion.
Then,

lim sup
t↓0

Bt√
2t log log 1/t

= 1 a.s.

Proof. We start by proving the following two claims. Let q ∈ (0, 1), tn = qn and φ(t) =√
2t log log 1/t.

Claim 1: For δ ∈ (0, 1) and q = 1− δ/2, there are constants C > 0 and λ > 1 such that

P(Btn > (1 + δ)φ(tn+1)) ≤ Cn−λ ∀n.
Claim 2: Let Zn = Btn − Btn+1 . For ϵ ∈ (0, 1) and q = ϵ, there are constants C ′ > 0 and
β ∈ (0, 1) (depending on ϵ) such that

P(Zn > (1− ϵ)φ(tn)) ≥ C ′ 1

nβ log n
∀n large enough.

For the first claim, note that

P(Btn > x
√
tn) =

1√
2π

∫ ∞

x
e−s2/2ds ∼ e−x2/2

√
2πx

as x→ ∞,

and
(1 + δ)φ(tn+1)/

√
tn =

√
2λ log(c(n+ 1))

where λ = q(1 + δ)2 and c = log 1/q. By choosing q = (1− δ/2), we get λ > 1 and

P(Btn > (1 + δ)φ(tn+1)) ∼
1

2cλ
√
πλnλ

√
log n

as n→ ∞.

For the second claim, note that

P(Zn > z
√
tn − tn+1) ∼

e−z2/2

√
2πz

as z → ∞

and
(1− ϵ)φ(tn)/

√
tn − tn+1 =

√
2β log(cn)

where β = (1− ϵ)2/(1− q). Setting q = ϵ implies β ∈ (0, 1) and

P(Zn > (1− ϵ)φ(tn)) ∼
1

2cβ
√
πβnβ

√
log n

as n→ ∞.

Back to the proof of the theorem. By Lemma 4.5, Borel-Cantelli lemma and the above
claims, we have

(4.1) P
(

max
t∈[tn+1,tn]

Bt > (1 + δ)φ(tn+1) i.o.

)
= 0, ∀δ ∈ (0, 1)

and

(4.2) P(Zn > (1− ϵ)φ(tn) i.o.) = 1, ∀ϵ ∈ (0, 1).

Note that φ′(t) > 0 for t ≤ e−e. By (4.1), this implies that, for all δ ∈ (0, 1),

P

(
lim sup

t↓0
Bt/φ(t) > 1 + δ

)
≤ P

(
max

t∈[tn+1,tn]
Bt > (1 + δ)φ(tn+1) i.o.

)
= 0,

which implies

lim sup
t↓0

Bt

φ(t)
≤ 1 a.s..
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For the lower bound, note that both (Bt)t≥0 and (−Bt)t≥0 have the same distribution. This
implies

P
(
lim inf

t↓0

Bt

φ(t)
≥ −1

)
= 1.

Equivalently, for ϵ > and q ∈ (0, 1),

P(Btn+1 ≥ −(1 + ϵ)φ(tn+1) for n large enough) = 1.

Recall that (4.2) says, for ϵ ∈ (0, 1) and q = ϵ,

P(Btn −Btn+1 > (1− ϵ)φ(tn) i.o.) = 1.

As a result, for ϵ ∈ (0, 1) and q = 1 − ϵ, the following event holds for infinitely many n with
probability 1.

Btn > (1− ϵ)φ(tn)− (1 + ϵ)φ(tn + 1) = φ(tn)

[
1− ϵ− (1 + ϵ)

φ(tn+1)

φ(tn)

]
∼ φ(tn)

[
1− ϵ− (1 + ϵ)

√
ϵ
]

Letting ϵ→ 0 gives the desired lower bound. �
To see the behavior of Brownian motions as t→ ∞, we introduce the following notations.

Definition 4.3. Let Y1, ..., Yn be random variables. Y = (Y1, ..., Yn) has a joint (multivari-
ate) normal distribution with mean 0 if there exist i.i.d. standard normal random variables

X1, ..., Xk and a k × n matrix A such that Y
d
= XA, where X = (X1, ..., Xk).

Proposition 4.11. Let Y1, ..., Yn be random variables with finite second moments and Γ be the
covariance matrix, i.e. Γi,j = Cov(Yi, Yj). Then, Γ is symmetric and non-negative definite.
Furthermore, if Y1, ..., Yn are jointly normally distributed with mean 0, then Γ = AtA, where

(Y1, ..., Yn)
d
= (X1, ..., Xk)A, X1, ..., Xk are standard normal and A is an k × n matrix.

Let Y1, ..., Yn be jointly normal distributed with mean 0 and Y = (Y1, ..., Yn)
d
= XA. For

u = (u1, ..., un)

EeiY ut
= EeiX(Aut) = E

 k∏
j=1

eiXj
∑

k Ajkuk

 =
k∏

j=1

exp

−1

2

(
n∑

k=1

Ajkuk

)2


= exp{−1
2uA

tAut} = exp{−1
2uΓu

t}
This implies that the characteristic function of Y is specified by its covariance matrix. Con-

versely, if Y is a random vector (n-vector) whose characteristic function is given by e−
1
2
uΓut

where Γ is a symmetric and non-negative n × n matrix, then there exists A (by choosing A
such that Γ = AtA) and independent standard normal random variables X1, ..., Xn such that

Y
d
= XA.

Exercise 4.7. Assume that Y1, ..., Yn have a joint normal distribution with mean 0. Show
that Y1, ..., Yn are independent if and only if their covariance matrix is a diagonal matrix.
Hint: Use the fact that if X1, .., Xn are random variables with characteristic function f1, ..., fn,
then X1, ..., Xn are independent if and only if

Eei(u1X1+···+unXn) = f1(u1)× · · · × fn(un) ∀(u1, ..., un) ∈ Rn.

Definition 4.4. Y1, ..., Yn have a joint normal distribution N (m,Γ) if m = (EY1, ...,EYn) and
(Y1, ..., Yn)−m is jointly normal distributed with mean 0 and covariance matrix Γ.

Definition 4.5. Let Y1, ..., Yn be random variable and Y = (Y1, ..., Yn).
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(1) Y is linearly independent if c1Y1+ · · ·+cnYn = 0 a.s. implies that ci = 0 for 1 ≤ i ≤ n.
(2) Suppose Y has distribution N (0,Γ). Y is non-degenerate if Y is linearly independent.

Exercise 4.8. Let Y = (Y1, ..., Yn) has a joint normal distribution N (0,Γ). Show that

(1) Y is non-degenerate if and only if det Γ 6= 0.
(2) If Y is non-degenerate, then the joint density satisfies

f(y) =
1

(2π)n/2
√
det Γ

exp{−1
2yΓ

−1yt}.

Exercise 4.9. Suppose Y = (Y1, ..., Yn) has a joint normal distribution N (0,Γ). Let K be the
smallest integer k such that Y = XA, where X = (X1, ..., Xk), X1, ..., Xk are i.i.d. standard
normal random variables and A is a k × n matrix. Set

L = max{ℓ : Yi1 , ..., Yiℓ are linearly independent for i1 < · · · < iℓ}.
Show that K = L = Rank(Γ).

Theorem 4.12. A stochastic process (Xt)t≥0 is a normalized Brownian motion if and only
if, for any 0 < t1 < t2 < · · · < tn, Xt1 , ..., Xtn have joint normal distribution with mean 0 and
covariance matrix Γ given by Γi,j = min{ti, tj}.

Theorem 4.13. Let Bt be a normalized Brownian motion and set

Xt =

{
tX1/t if t ∈ (0,∞)

0 if t = 0

Then, Xt is a Brownian motion of which paths are continuous on [0,∞) with probability 1.

The following is an immediate corollary of the above theorem concerning the behavior of a
Brownian motion as time tends to infinity.

Corollary 4.14. For any normalized Brownian motion Bt, one has

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.

To prove this theorem, we need the following proposition.

Proposition 4.15. Let Bt be a normalized Brownian motion. Then,

lim
t→∞

Bt

t
= 0 a.s.

Proof of Theorem 4.13. It is clear that for 0 < t1 < · · · < tn, Xt1 , ..., Xtn have a joint normal
distribution. Note that, for s > 0 and t > 0,

E(XtXs) = stE(B1/tB1/s) = stmin{1/t, 1/s} = min{t, s}.
This implies that (Xt)t≥0 and (Bt)t≥0 have the same distribution. Note that Xt is continuous
on (0,∞). By Proposition 4.15, one has

lim
t↓0

Xt = lim
t↓0

tB1/t = lim
s↑∞

Bs

s
= 0 a.s.

�
Proof of Proposition 4.15. Let Yk = Bk − Bk−1. By the independency and stationarity of
increments, Y1, Y2, ... are i.i.d. and, by the law of large numbers,

Bk

k
=
Y1 + · · ·+ Yk

k

a.s.→ EY1 = 0.
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For t ≥ 0, let k be an integer such that t ∈ [k, k + 1) and set

Zk = max
0≤t≤1

|Bk+t −Bk|.

Observe that ∣∣∣∣Bt

t
− Bk

k

∣∣∣∣ ≤ |Bt −Bk|
t

+

(
1

k
− 1

t

)
|Bk| ≤

Zk

k
+

|Bk|
k2

.

The second term has been shown to converge to 0 a.s. For the first term, we recall a fact
generalized from Lemma 4.5 using the continuity of Brownian paths.
Fact 1: Let Bt be a normalized Brownian motion. For t > 0,

P
(
max
0≤s≤t

Bs > x

)
≤ 2P(Bt > x), P

(
max
0≤s≤t

|Bs| > x

)
≤ 2P(|Bt| > x).

Using this fact, one can show that EZk <∞. Recall another fact in the following.
Fact 2: Let X1, X2, ... be i.i.d. random variables. Then, E|X1| < ∞ if and only if P(|Xn| >
n i.o.) = 0.

Note that, for any L > 0, LZ1, LZ2, ... are i.i.d. with E(LZ1) <∞. By Fact 2, one has

P
(
lim sup
k→∞

Zk

k
≤ 1

L

)
≥ P(LZk ≤ k for k large enough) = 1.

This implies Zk/k → 0 a.s. �

4.4. Strong Markov property.

Definition 4.6. For any process (Xt)t≥0, set Ft := F(Xs, s ≤ t).

(1) A nonnegative random variable T is called a stopping time for Ft if {T ≤ t} ∈ Ft for
all t ≥ 0.

(2) For any non-negative random variable T , define

FT := {B ∈ F : B ∩ {T ≤ t} ∈ Ft, ∀t ≥ 0}.

Remark 4.4. For any stopping times S ≤ T , FS ⊂ FT .

Proposition 4.16. Let Xt be a continuous process and T be a stopping time for Ft =
F(Xs; 0 ≤ s ≤ t). If T is real-valued, then XT is FT -measurable.

Proof. For n ≥ 1, set

An,k =

{
k

n
≤ T <

k + 1

n

}
, Xn,T =

∞∑
k=0

Xk/n1An,k
.

Then, Xn,T is F-measurable and, on {T ≤ N},

|XT −Xn,T | ≤ max
0≤t≤N
0≤h≤1/n

|Xt+h −Xt|.

By the continuity of Xt, the right hand side converges to 0. This implies Xn,T → XT and,
hence, XT is FT -measurable. �

Theorem 4.17 (The strong Markov property). Let Bt be a normalized Brownian motion
and T be a stopping time for Ft = F(Bs; 0 ≤ s ≤ t). Assume P(T < ∞) = 1 and set
Yt = BT+t − BT for t ≥ 0. Then, Yt is a normalized Brownian motion and independent of
FT .
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Proof. First, consider the case that T takes values on a countable set, say {τ1, τ2, ...}. Let
0 < t1 < t2 < · · · < tk, A1, ..., Ak ∈ B(R) and B ∈ FT . Note that {T = τj} ∈ Fτj and

{T = τj} ∩B = {T = τj} ∩ ({T ≤ τj} ∩B) ∈ Fτj .

This implies

P(Yt1 ∈ A1, ..., Ytk ∈ Ak, B)

=
∞∑
j=1

P(Yt1 ∈ A1, ..., Ytk ∈ Ak, T = τj , B)

=
∞∑
j=1

P(Bτj+t1 −Bτj ∈ A1, ..., Bτj+tk −Bτj ∈ Ak, T = τj , B)

=

∞∑
j=1

P(Bτj+t1 −Bτj ∈ A1, ..., Bτj+tk −Bτj ∈ Ak)P(T = τj , B)

=P(Bt1 −B0 ∈ A1, ..., Btk −B0 ∈ Ak)P(B).

This case is then proved by the π − λ lemma.
Next, let T be a stopping time satisfying P(T <∞) = 1 and set, for n ≥ 1,

Tn =
1

n
1{0≤T≤1/n} +

∞∑
k=1

k + 1

n
1{k/n<T≤(k+1)/n}.

Note that, for t ∈ [k/n, (k + 1)/n),

{Tn ≤ t} = {T ≤ k/n} ∈ Fk/n ⊂ Ft

and, for B ∈ FT ,

B ∩ {Tn ≤ t} = B ∩ {Tn ≤ k/n} = B ∩ {T ≤ k/n} ∈ Fk/n ⊂ Ft.

The implies that Tn is a stopping time and FT ⊂ FTn . For n ≥ 1 and t ≥ 0, define Zn,t =
BTn+t − BTn . Since Tn takes values on a countable set, one has, for 0 < t1 < · · · < tk and
x1, ..., xk ∈ R,

P(Zn,t1 ≤ x1, ..., Zn,tk ≤ xk, B) = P(Bt1 −B0 ≤ x1, ..., Btk −B0 ≤ xk)P(B).

By the continuity of Brownian paths, Zn,t → Yt since Tn → T . As a result, if (x1, ..., xk) is a

continuous point of the joint distribution of Yt1 , ..., Ytk , which is dense on Rk, then

P(Yt1 ≤ x1, ..., Ytk ≤ xk, B) = P(Bt1 −B0 ≤ x1, ..., Btk −B0 ≤ xk)P(B).

The desired conclusion is then given by the π − λ lemma. �
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