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1. Conditional probability and expectation

1.1. Definitions and properties. Recall that if E is an event with P(E) > 0, then the
conditional probability of A given E is defined by

P(A|E) =
P(A ∩ E)

P(E)
,

or equivalently

(1.1) P(A ∩ E) = P(A|E)P(E).

Formally, when P(E) = 0, (1.1) becomes

0 = P(A ∩ E) = P(A|E)P(E) = 0× P(A|E).

From the above identity, it seems that the value of P(A|E) can be any real number (or ±∞
if 0 × ∞ := 0) when P(E) = 0. Such a concept actually applies for discrete probabilities
but not for general cases. Note that if E is a mutually disjoint union of events with positive
probabilities, say (En)

∞
n=1, then

(1.2) P(A ∩ E) =

∞∑
n=1

P(A|En)P(En).

This gives an idea of defining the conditional probability in a more general setting.
For convenience, let’s consider the case that E is given by a random variable. Let X be a

random variable and E = {a < X ≤ b}. For n ∈ N and 1 ≤ i ≤ n, set xi = a+ i(b− a)/n and
Ei = {xi−1 < X ≤ xi}. Assuming P(xi−1 < X ≤ xi) > 0 gives

P(A ∩ E) =

n∑
i=1

P(A|Ei)P(Ei).

In a formal computation, if the following limit exists (in any proper sense)

P(A|X = x) := lim
h→0

P(A ∩ {x− h ≤ X ≤ x+ h})
P(x− h ≤ X ≤ x+ h)

,

then

P(A ∩ {a < X ≤ b}) =
∫
(a,b]

P(A|X = x)FX(dx).

The last equality was given by the Radon-Nikodym theorem.

Theorem 1.1. Let (Ω,F) be a measurable space and µ, ν be measures on (Ω,F), where ν is
non-negative and σ-finite and µ is a signed measure. If µ is absolutely continuous w.r.t. ν,
that is, ν(B) = 0 implies |µ|(B) = 0, then there exists a F-measurable function f such that

µ(B) =

∫
B
f(x)ν(dx), ∀|µ|(B) <∞.
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Back to the conditional probability, let A ∈ F and set, for B ∈ B(R),

ν(B) = P(X ∈ B), µ(B) = P(A ∩ {X ∈ B}).

Since µ is absolutely continuous w.r.t. ν, we may define the conditional probability by the
Radon-Nykodym theorem.

Definition 1.1. Let (Ω,F ,P) be a probability space and X : (Ω,F) → (R,B) be a random
element. For A ∈ F , the conditional probability of A given X = x is denoted by P(A|X = x)
and defined to be a B-measurable function such that

P(A ∩ {X ∈ B}) =
∫
B
P(A|X = x)PX(dx), ∀B ∈ B.

In a similar way, one may consider the case that ν(E) = P(E) and µ(E) = P(A∩E) for all
E ∈ F(X).

Definition 1.2. For any random element X and any event A ∈ F , the conditional probability
of A given X(ω) is denoted by P(A|X(ω)) or briefly P(A|X) and defined to be a F(X)-
measurable function such that

P(A ∩ E) =

∫
E
P(A|X(ω))P(dω), ∀E ∈ F(X).

Remark 1.1. Note that P(A|X = x) (resp. P(A|X)) is almost surely non-negative. Further-
more, if φ and φ′ are versions of P(A|X = x) (resp. P(A|X)), then φ = φ′ PX -a.s. (resp.
P-a.s.)

Proposition 1.2. Let A ∈ F and X : (Ω,F) → (R,B) and Y : (Ω,F) → (R′,B′) be random
elements.

(1) If φ(x) = P(A|X = x) PX-a.s., then φ(X) = P(A|X) P-a.s.
(2) If P(A|X) = ψ(X) P-a.s. for some B-measurable function ψ, then ψ(x) = P(A|X = x)

PX-a.s..
(3) If F(X) = F(Y ), then P(A|X) = P(A|Y ) P-a.s..
(4) If σ({A}) and F(X) are independent, then

P(A|X = x) = P(A) PX-a.s., P(A|X) = P(A) P-a.s.

Proof. For (1), let E ∈ F(X) and choose B ∈ B such that E = {X ∈ B}. Then,∫
E
φ(X)dP =

∫
Ω
φ(X)1B(X)dP =

∫
R
φ(x)1B(x)PX(dx) = P(A ∩ {X ∈ B}) = P(A ∩ E).

This implies φ(X) = P(A|X) P-a.s.
To see (2), note that, for any version of P(A|X), there is always a B-measure function ψ

such that P(A|X) = ψ(X). For B ∈ B and E = {X ∈ B}, one has

P(A ∩ {X ∈ B}) = P(A ∩ E) =

∫
E
ψ(X)dP =

∫
B
ψ(x)PX(dx).

This implies, ψ(x) = P(A|X = x) PX -a.s. (3) and (4) are immediate from the definition of
P(A|X) and P(A|X = x). �

Next, we introduce the conditional expectation. Recall that if P(E) > 0 and E|Y | < ∞,
then E(Y |E) :=

∫
Ω Y (ω)P(dω|E), where P(A|E) = P(A ∩ E)/P(E) for all A ∈ F . Note that∫

Ω
Y (ω)P(dω|E) =

∫
E
Y (ω)P(dω)× 1

P(E)
.
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This implies
∫
E Y dP = E(Y |E)P(E). As before, if E is a mutually disjoint union of (En)

∞
n=1

and P(En) > 0, then ∫
E
Y (ω)P(dω) =

∞∑
n=1

E(Y |En)P(En),

which is another identity similar to (1.2). We may then extend the definition of conditional
probabilities to that of conditional expectations. Let X : (Ω,F) → (R,B) be a random
element and let Y be a random variable satisfying E|Y | <∞. For B ∈ B, set

ν(B) = P(X ∈ B), µ(B) =

∫
{X∈B}

Y dP,

and, for E ∈ F(X), set

ν ′(E) = P(E), µ′(E) =

∫
E
Y dP.

Obviously, µ and µ′ are absolutely continuous w.r.t. ν and ν ′. Again, one may apply the
Radon-Nykodym theorem to achieve the following definitions.

Definition 1.3. Let Y be a random variable satisfying E|Y | < ∞. For any random element
X : (Ω,F) → (R,B), the conditional expectation of Y given X = x (resp. X(ω)) is denoted
by E(Y |X = x) (resp. E(Y |X)) and is defined to be a B-measurable (resp. F(X)-measurable)
function satisfying ∫

{X∈B}
Y dP =

∫
B
E(Y |X = x)PX(dx), ∀B ∈ B.

(
resp.

∫
E
Y dP =

∫
E
E(Y |X)dP, ∀E ∈ F(X).

)
In the above definition, it is clear that, for A ∈ F ,

P(A|X = x) = E(1A|X = x) PX -a.s., P(A|X) = E(1A|X) P-a.s.

Proposition 1.3. Let X : (Ω,F) → (R,B) be a random element and Y : (Ω,F) → (R,B(R))
be a random variables satisfying E|Y | <∞.
(1) If φ(x) = E(Y |X = x) PX-a.s., then φ(X) = E(Y |X) P-a.s.
(2) If E(Y |X) = ψ(X) P-a.s. for some B-measurable function ψ, then ψ(x) = E(Y |X = x)
PX-a.s.
(3) If X1, X2 are random elements satisfying F(X1) = F(X2), then E(Y |X1) = E(Y |X2) P-
a.s..
(4) If X,Y are independent, then

E(Y |X = x) = EY PX-a.s., E(Y |X) = EY P-a.s.

(5) If F(Y ) ⊂ F(X) and ψ is a B-measurable random variable satisfying Y = ψ(X) P-a.s.,
then

E(Y |X = x) = ψ(x) PX-a.s., E(Y |X) = Y P-a.s..

Proof. The proof for (1)-(4) is similar to the proof of Proposition 1.2. For (5), note that, for
E ∈ F(X), ∫

E
E(Y |X)dP =

∫
E
Y dP.

This implies E(Y |X) = Y P-a.s., which proves the second identity. The first one is obvious
from (2) since E(Y |X) = Y = ψ(X) P-a.s. and ψ is B-measurable. �
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Exercise 1.1. Prove by following the definition that if X : (Ω,F) → (R,B) is a random
element taking values on {xi : i = 1, 2, ...} and A ∈ F , then

P(A|X) =

∞∑
i=1

δxi(X)P(A|X = xi), P-a.s.,

where P(A|X = x) := P(A ∩ {X = x})/P(X = x) if P(X = x) > 0 and P(A|X = x) := 0
otherwise.

Exercise 1.2. Let Ω = [−1, 1], F = B(Ω) and P(dω) = 1
2µ(dω), where µ is the Lebesgue

measure on [−1, 1].

(1) Let X be a random variable defined by X(ω) = |ω|. Find a version of P(A|X) and
P(A|X = x) and do the same problem for the case X(ω) = ω2.

(2) Assume that E|Y | <∞. Find a version for E(Y |X) and E(Y |X = x) for respective X
in (1).

Exercise 1.3. Let X and Y be random variables with joint density f and set fX(x) =∫
R f(x, y)dy.

(1) Prove that, for B ∈ B(R),

P(Y ∈ B|X = x) =

∫
B

f(x, y)

fX(x)
dy, PX -a.s.

(2) Assume that E|Y | <∞. Prove that

E(Y |X = x) =

∫ ∞

−∞
y
f(x, y)

fX(x)
dy, PX -a.s.

1.2. A general definition.

Definition 1.4. Let (Ω,F ,P) be a probability and C ⊂ F be a sub-σ-field of F . Let A ∈ F
and Y be a random variable satisfying E|Y | <∞.

(1) The conditional probability of A given C is a C-measurable function satisfying∫
C
P(A|C)dP = P(A ∩ C), ∀C ∈ C.

(2) The conditional expectation of Y given C is a C-measurable function satisfying∫
C
E(Y |C)dP =

∫
C
Y dP ∀C ∈ C.

In particular, if C = F(X1, X2, ...), we also write P(A|X1, X2, ...) and E(Y |X1, X2, ...)
instead.

Remark 1.2. Note that P(A|C) = E(1A|C) P-a.s..

Remark 1.3. For E|Y | <∞, E(Y |X) = E(Y |F(X)).

Proposition 1.4. Let (Ω,F ,P) be a probability and C ⊂ F . Assume that Y, Y1, Y2 are random
variables with finite mean.

(1) For any constants a, b,

E(aY1 + bY2|C) = aE(Y1|C) + bE(Y2|C), P-a.s.
(2) If Y ≥ 0 P-a.s., then E(Y |C) ≥ 0 P-a.s.
(3) If F(Y ) ⊂ C, then E(Y |C) = Y P-a.s.
(4) If C ⊂ E ⊂ F , then

E(E(Y |C)|E) = E(E(Y |E)|C) = E(Y |C) P-a.s.
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(5) If F(Y ) and C are independent, then E(Y |C) = EY P-a.s.
(6) E(E(Y |C)) = EY .

Proof. (1)-(3) and (6) are obvious from the definition. For (4), note that −|Y | ≤ Y ≤ |Y |. By
(2), this implies −E(|Y ||C) ≤ E(Y |C) ≤ E(|Y ||C) or equivalently |E(Y |C)| ≤ E(|Y ||C) P-a.s..
As a result of (6), this implies E|E(Y |C)| ≤ E|Y | <∞. Observe that, for C ∈ C ⊂ E ,∫

C
E(E(Y |E)|C)dP =

∫
C
E(Y |E)dP =

∫
C
Y dP.

This proves the desired identity. For (5), assume that F(Y ) and C are independent. For
C ∈ C, ∫

C
E(Y |C)dP = E[Y 1C ] = EY P(C).

�
Theorem 1.5 (Monotone convergence theorem). Let Y1, Y2, ... be a sequence of non-negative
random variables on (Ω,F ,P). Suppose Yn ≤ Yn+1, Yn converge to Y a.s. and EY < ∞.
Then, for any sub-σ-field C ⊂ F ,

E(Yn|C) → E(Y |C) almost surely.

Proof. Set Zn = Y − Yn. Then, Zn ≥ 0 and Zn ≥ Zn+1. By Proposition 1.4, this implies, for
n ≥ 1, E(Zn|C) ≥ E(Zn+1|C) a.s. and, thus, E(Zn|C) converges a.s. to a non-negative random
variable, say Z. Furthermore, using the fact of Zn ≤ Y , one may conclude E(Zn|C) ≤ E(Y |C)
a.s. and E|E(Y |C)| = EY <∞. By the Lebesgue bounded convergence theorem, we obtain

EZ = lim
n→∞

E(E(Zn|C)) = lim
n→∞

EZn = 0,

which proves Z = 0 a.s.. �
Theorem 1.6 (Fatou’s lemma). Let Y1, Y2, ... be non-negative random variables defined on
(Ω,F ,P) with finite mean and let C ⊂ F be a sub-σ-field. If lim infn Yn is integrable, then,

E
(
lim inf
n→∞

Yn
∣∣C) ≤ lim inf

n→∞
E(Yn|C) almost surely.

Proof. Applying Theorem 1.5 to the sequence infk≥n Yk yields

E
(
lim inf
n→∞

Yn

∣∣∣∣C) = lim
n→∞

E
(
inf
k≥n

Yk

∣∣∣∣C) ≤ lim inf
n→∞

E(Yn|C) almost surely.

�
Theorem 1.7 (Lebesgue’s bounded convergence theorem). Let Z, Y1, Y2, ... be random vari-
ables satisfying |Yn| ≤ Z and EZ < ∞. If Yn converges to Y a.s., then, for any σ-field
C ⊂ F ,

E(Yn|C) → E(Y |C) a.s.

Proof. Consider the two sequences (Z + infk≥n Yk)
∞
n=1 and (Z − supk≥n Yk)

∞
n=1. By Theorem

1.5, one has

E(Z + Y |C) a.s.
= lim

n→∞
E
(
Z + inf

k≥n
Yk

∣∣∣∣C) a.s.
≤ E(Z|C) + lim inf

n→∞
E(Yn|C)

and

E(Z − Y |C) a.s.
= lim

n→∞
E

(
Z − sup

k≥n
Yk

∣∣∣∣C
)

a.s.
≤ E(Z|C)− lim sup

n→∞
E(Yn|C).

Combining both inequalities gives the desired identity. �
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Exercise 1.4. Let X : (Ω,F) → (R,B) be a random variable and C be a sub-σ-field such that
F(X) ⊂ C. Show that, for any random variable Y satisfying E|Y | <∞ and E|XY | <∞,

E(XY |C) = XE(Y |C) a.s.

By Exercise 1.4, one has

Proposition 1.8. Let X be a random element from (Ω,F) to (R,B), φ be a random variable
on (R,B) and Y be a random variable on (Ω,F). Suppose E|Y | < ∞ and E|φ(X)Y | < ∞.
Then,

(1) E(φ(X)Y |X) = φ(X)E(Y |X) a.s.
(2) E(φ(X)Y |X = x) = φ(x)E(Y |X = x) PX-a.s.

Proof. The first identity is immediate from Exercise 1.4. For (2), set f(x) = E(Y |X = x).
By Proposition 1.3, E(Y |X) = f(X) a.s. and E(φ(X)Y |X) = φ(X)f(X) a.s.. Since φf is
B-measurable, φ(x)f(x) = E(φ(X)Y |X = x) PX -a.s. �
Remark 1.4. Note that the notation of E(φ(x)Y |X = x) makes no sense.

Exercise 1.5. Let (Ω,F ,P) be a probability. For any two random variables X,Y , define the
L2-distance between them by

d(X,Y ) =
√

E[(X − Y )2].

Suppose EY 2 <∞. Prove that, for any σ-field C ⊂ F ,

inf {d(X,Y ) : X is C-measurable} = d(E(Y |C), Y ).

Exercise 1.6. Let Y be a random variable defined on (Ω,F ,P) with E|Y | < ∞. Assume
that X1, X2 are random variables such that F(Y,X1) and F(X2) are independent. Prove that
E(Y |X1, X2) = E(Y |X1) a.s..

Exercise 1.7. Let X1, X2, ... be i.i.d. random variables with E|X1| < ∞ and set Sn =
X1 + · · ·+Xn. Prove that

E(X1|Sn, Sn+1, ...) =
Sn
n

a.s.

1.3. Regular conditional probabilities.

Definition 1.5. Let (Ω,F ,P) be a probability and F1, C be sub-σ-fields of F . P(A|C) is called
a regular conditional probability on F1 given C if

(1) For A ∈ F1, P(A|C) is a conditional probability of A given C.
(2) For ω ∈ Ω, P(·|C) is a probability on (Ω,F1).

Proposition 1.9. Let P(A|C) be a regular conditional probability on F1 given C and Y be a
random variable on (Ω,F1) satisfying E|Y | <∞. Then,

E(Y |C) =
∫
Ω
Y (ω)P(dω|C) a.s.

Proof. By the linearity of conditional expectation and Theorem 1.7, we only need to consider
the case Y = 1A where A ∈ F1, but this is obvious since

E(1A|C)
a.s.
= P(A|C) =

∫
Ω
1A(ω)P(dω|C).

�
There are examples for which a regular conditional probability does not exist and this leads

to the following definition.
6



Definition 1.6. Let Y : (Ω,F) → (R,B) be a random element and C be a sub-σ-field of F .
P∗(B|C) with B ∈ B is called a regular conditional distribution for Y given C if

(1) For B ∈ B, P∗(B|C) is a conditional probability of {Y ∈ B} given C, that is, P∗(B|C) =
P(Y ∈ B|C) a.s.

(2) For ω ∈ Ω, P∗(·|C) is a probability on (R,B).

Proposition 1.10. Let Y be a random element taking values on (R,B) and P∗(·|C) be a
regular conditional distribution for Y given C. For any random variable φ on (R,B) satisfying
E|φ(Y )| <∞, one has

E(φ(Y )|C) =
∫
R
φ(y)P∗(dy|C) almost surely.

Proof. The proof is similar to that of Proposition 1.9. Due to the linearity of conditional
expectation and Theorem 1.7, one only needs to consider the case φ = 1B with B ∈ B.
This is in fact the case P(Y ∈ B|C) = P∗(B|C) a.s., which is exactly the definition of regular
conditional distribution. �

As in the case of regular conditional probability, the regular conditional distribution might
not exist.

Theorem 1.11. For any random variable Y , there is a regular conditional distribution for Y
given C.

Proof. Step 1: There exists a conditional distribution function F (x|C), that is,
(1) For y ∈ R, F (y|C) is a conditional probability of {Y ≤ y} given C.
(2) For ω ∈ Ω, F (y|C) is a distribution function.

To see this, let Q = {qi : i = 1, 2, ...} be the set of all rational numbers and fix a version of
P(Y ≤ qi|C) for all i ≥ 1. Define

M =
∪

qi<qj

Mi,j , Mi,j = {ω : P(Y ≤ qi|C) > P(Y ≤ qj |C)}

and

N =
∞∪
i=1

Ni, Ni =

{
ω ∈M c : lim

q∈Q, q↓qi
P(Y ≤ q|C) ̸= P(Y ≤ qi|C)

}
and

L =

{
ω ∈M c : lim

q∈Q, q↑∞
P(Y ≤ q|C) ̸= 1, lim

q∈Q, q↓−∞
P(Y ≤ q|C) ̸= 0

}
.

Then, P(M ∪N ∪ L) = 0.
Let G(y) be any distribution function and, for ω ∈ Ω \ (M ∪N ∪ L), define

F (y|C) =

{
G(y) if ω ∈M ∪N ∪ L
limrj↓y P(Y ≤ rj |C) otherwise

Then, F (y|C) is the desired distribution function.
Step 2: Let F (y|C) be the conditional distribution chosen in Step 1. For ω ∈ Ω, let P∗(·|C)

be the unique probability on (R,B(R)) satisfying
P∗((−∞, y]|C) = F (y|C) ∀y ∈ R.

Set
D = {B ∈ B(R) : P∗(B|C) a.s.

= P(Y ∈ B|C)}.
Clearly, D is a λ-system containing (−∞, y] with y ∈ R. By the π − λ lemma, D = B(R). �
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Definition 1.7. A measurable space (R,B) is called a Borel space if there exist E ∈ B(R) and
a one-to-one correspondence f : R → E such that f and f−1 are respectively B-measurable
and B(R)-measurable.

Theorem 1.12. If (R,B) is a Borel space and Y is a random element with values in R, then
there exists a regular conditional distribution for Y given C.

Proof. Let E and φ : R→ E be the Borel set and one-to-one correspondence in Definition 1.7
and Z = φ(Y ). Then, Z is a random variable and, hence, has a regular conditional distribution
for Z given C, say P∗(B|C) with B ∈ B(R). By defining

(1.3) P̂(D|C) := P∗(φ(D)|C) a.s.
= P(Z ∈ φ(D)|C) a.s.

= P(Y ∈ D|C), ∀D ∈ B,

P̂(D|C) is a regular conditional distribution for Y given C. �
Corollary 1.13. If (Ω,F) is a Borel space, then, for any sub-σ-fields F1, C of F , there exists
a regular conditional probability on F1 given C.

Proof. The proof is obtained by applying Theorem 1.12 with Y (ω) = ω for ω ∈ Ω. �
In a similar way, we may define a regular conditional probability (resp. distribution) given

X = x.

Definition 1.8. Let X be a random element from (Ω,F) to (S, E) and F1 ⊂ F . P(A|X = x)
is a regular conditional probability on F1 given X = x if

(1) For A ∈ F1, P(A|X = x) is a conditional probability of A given X = x;
(2) For x ∈ S, P(·|X = x) is a probability on (Ω,F1).

Let Y be a random element from (Ω,F) to (R,B). P∗(B|X = x) is a regular conditional
distribution for Y given X = x if

(1)’ For B ∈ B, P∗(B|X = x) = P(Y ∈ B|X = x) PX -a.s.;
(2)’ For x ∈ S, P∗(·|X = x) is a probability on (R,B).

Using a similar argument, Proposition 1.9, 1.10 and Theorem 1.12 hold in the above setting.

Proposition 1.14. Consider a measurable space (Ω,F) and let X be a random element taking
values on (S, E).

(1) If P(A|X = x) is a regular conditional probability on F1 ⊂ F given X = x and Y is a
random variable on (Ω,F1) with E|Y | <∞, then

E(Y |X = x) =

∫
Ω
Y (ω)P(dω|X = x) PX-a.s.

(2) If Y is a random element from (Ω,F) to (R,B), φ is a random variable on (R,B)
with E|φ(Y )| < ∞ and P∗(B|X = x) is a regular conditional distribution for Y given
X = x, then

E(φ(Y )|X = x) =

∫
R
φ(y)P∗(dy|X = x) PX-a.s.

Theorem 1.15. Let X,Y be random elements on (Ω,F) taking values respectively on (S, E)
and (R,R). If (R,B) is a Borel space, then there exists a regular conditional distribution for
Y given X = x. In particular, if (Ω,F) is a Borel space, then, for any sub-σ-field F1 of F ,
there exists a regular conditional probability on F1 given X = x.

Exercise 1.8. Let X,Y be independent random elements taking values on (R,B) and (S, E)
and φ be a random variable defined on (R× S,B ⊗ E). Prove that

(1) P(φ(x, Y ) ∈ B) is a regular conditional distribution for φ(X,Y ) given X = x.
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(2) If E|φ(X,Y )| <∞, then E(φ(X,Y )|X = x) = Eφ(x, Y ) a.s..

Exercise 1.9. Let I be an interval, φ : I → R be convex and Y is a random variable taking
values on I. Suppose E|Y | <∞ and E|φ(Y )| <∞. Show that

(1) φ(EY ) ≤ Eφ(Y ).
(2) φ(E(Y |C)) ≤ E(φ(Y )|C) a.s..
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