GUAN-YU CHEN

1. CONDITIONAL PROBABILITY AND EXPECTATION

1.1. Definitions and properties. Recall that if E is an event with $\mathbb{P}(E) > 0$, then the conditional probability of A given E is defined by

$$\mathbb{P}(A|E) = \frac{\mathbb{P}(A \cap E)}{\mathbb{P}(E)},$$

or equivalently

(1.1)

$$\mathbb{P}(A \cap E) = \mathbb{P}(A|E)\mathbb{P}(E).$$

Formally, when $\mathbb{P}(E) = 0$, (1.1) becomes

$$0 = \mathbb{P}(A \cap E) = \mathbb{P}(A|E)\mathbb{P}(E) = 0 \times \mathbb{P}(A|E).$$

From the above identity, it seems that the value of $\mathbb{P}(A|E)$ can be any real number (or $\pm \infty$ if $0 \times \infty := 0$) when $\mathbb{P}(E) = 0$. Such a concept actually applies for discrete probabilities but not for general cases. Note that if E is a mutually disjoint union of events with positive probabilities, say $(E_n)_{n=1}^{\infty}$, then

(1.2)
$$\mathbb{P}(A \cap E) = \sum_{n=1}^{\infty} \mathbb{P}(A|E_n)\mathbb{P}(E_n).$$

This gives an idea of defining the conditional probability in a more general setting.

For convenience, let's consider the case that E is given by a random variable. Let X be a random variable and $E = \{a < X \le b\}$. For $n \in \mathbb{N}$ and $1 \le i \le n$, set $x_i = a + i(b-a)/n$ and $E_i = \{x_{i-1} < X \le x_i\}$. Assuming $\mathbb{P}(x_{i-1} < X \le x_i) > 0$ gives

$$\mathbb{P}(A \cap E) = \sum_{i=1}^{n} \mathbb{P}(A|E_i)\mathbb{P}(E_i).$$

In a formal computation, if the following limit exists (in any proper sense)

$$\mathbb{P}(A|X=x) := \lim_{h \to 0} \frac{\mathbb{P}(A \cap \{x-h \le X \le x+h\})}{\mathbb{P}(x-h \le X \le x+h)},$$

then

$$\mathbb{P}(A \cap \{a < X \le b\}) = \int_{(a,b]} \mathbb{P}(A|X=x)F_X(dx).$$

The last equality was given by the Radon-Nikodym theorem.

Theorem 1.1. Let (Ω, \mathcal{F}) be a measurable space and μ, ν be measures on (Ω, \mathcal{F}) , where ν is non-negative and σ -finite and μ is a signed measure. If μ is absolutely continuous w.r.t. ν , that is, $\nu(B) = 0$ implies $|\mu|(B) = 0$, then there exists a \mathcal{F} -measurable function f such that

$$\mu(B) = \int_B f(x)\nu(dx), \quad \forall |\mu|(B) < \infty.$$

Back to the conditional probability, let $A \in \mathcal{F}$ and set, for $B \in \mathcal{B}(\mathbb{R})$,

$$\nu(B) = \mathbb{P}(X \in B), \quad \mu(B) = \mathbb{P}(A \cap \{X \in B\}).$$

Since μ is absolutely continuous w.r.t. ν , we may define the conditional probability by the Radon-Nykodym theorem.

Definition 1.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random element. For $A \in \mathcal{F}$, the conditional probability of A given X = x is denoted by $\mathbb{P}(A|X = x)$ and defined to be a \mathcal{B} -measurable function such that

$$\mathbb{P}(A \cap \{X \in B\}) = \int_B \mathbb{P}(A|X=x)\mathbb{P}_X(dx), \quad \forall B \in \mathcal{B}.$$

In a similar way, one may consider the case that $\nu(E) = \mathbb{P}(E)$ and $\mu(E) = \mathbb{P}(A \cap E)$ for all $E \in \mathcal{F}(X)$.

Definition 1.2. For any random element X and any event $A \in \mathcal{F}$, the conditional probability of A given $X(\omega)$ is denoted by $\mathbb{P}(A|X(\omega))$ or briefly $\mathbb{P}(A|X)$ and defined to be a $\mathcal{F}(X)$ measurable function such that

$$\mathbb{P}(A \cap E) = \int_E \mathbb{P}(A|X(\omega))\mathbb{P}(d\omega), \quad \forall E \in \mathcal{F}(X).$$

Remark 1.1. Note that $\mathbb{P}(A|X = x)$ (resp. $\mathbb{P}(A|X)$) is almost surely non-negative. Furthermore, if φ and φ' are versions of $\mathbb{P}(A|X = x)$ (resp. $\mathbb{P}(A|X)$), then $\varphi = \varphi' \mathbb{P}_X$ -a.s. (resp. \mathbb{P} -a.s.)

Proposition 1.2. Let $A \in \mathcal{F}$ and $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ and $Y : (\Omega, \mathcal{F}) \to (R', \mathcal{B}')$ be random elements.

- (1) If $\varphi(x) = \mathbb{P}(A|X = x) \mathbb{P}_X$ -a.s., then $\varphi(X) = \mathbb{P}(A|X) \mathbb{P}$ -a.s.
- (2) If $\mathbb{P}(A|X) = \psi(X) \mathbb{P}$ -a.s. for some \mathcal{B} -measurable function ψ , then $\psi(x) = \mathbb{P}(A|X=x) \mathbb{P}_X$ -a.s..
- (3) If $\mathcal{F}(X) = \mathcal{F}(Y)$, then $\mathbb{P}(A|X) = \mathbb{P}(A|Y) \mathbb{P}$ -a.s..
- (4) If $\sigma(\{A\})$ and $\mathcal{F}(X)$ are independent, then

$$\mathbb{P}(A|X=x) = \mathbb{P}(A) \mathbb{P}_X \text{-} a.s., \quad \mathbb{P}(A|X) = \mathbb{P}(A) \mathbb{P} \text{-} a.s.$$

Proof. For (1), let $E \in \mathcal{F}(X)$ and choose $B \in \mathcal{B}$ such that $E = \{X \in B\}$. Then,

$$\int_{E} \varphi(X) d\mathbb{P} = \int_{\Omega} \varphi(X) \mathbf{1}_{B}(X) d\mathbb{P} = \int_{R} \varphi(X) \mathbf{1}_{B}(X) \mathbb{P}_{X}(dX) = \mathbb{P}(A \cap \{X \in B\}) = \mathbb{P}(A \cap E).$$

This implies $\varphi(X) = \mathbb{P}(A|X)$ P-a.s.

To see (2), note that, for any version of $\mathbb{P}(A|X)$, there is always a \mathcal{B} -measure function ψ such that $\mathbb{P}(A|X) = \psi(X)$. For $B \in \mathcal{B}$ and $E = \{X \in B\}$, one has

$$\mathbb{P}(A \cap \{X \in B\}) = \mathbb{P}(A \cap E) = \int_E \psi(X) d\mathbb{P} = \int_B \psi(x) \mathbb{P}_X(dx).$$

This implies, $\psi(x) = \mathbb{P}(A|X = x) \mathbb{P}_X$ -a.s. (3) and (4) are immediate from the definition of $\mathbb{P}(A|X)$ and $\mathbb{P}(A|X = x)$.

Next, we introduce the conditional expectation. Recall that if $\mathbb{P}(E) > 0$ and $\mathbb{E}|Y| < \infty$, then $\mathbb{E}(Y|E) := \int_{\Omega} Y(\omega) \mathbb{P}(d\omega|E)$, where $\mathbb{P}(A|E) = \mathbb{P}(A \cap E) / \mathbb{P}(E)$ for all $A \in \mathcal{F}$. Note that

$$\int_{\Omega} Y(\omega) \mathbb{P}(d\omega | E) = \int_{E} Y(\omega) \mathbb{P}(d\omega) \times \frac{1}{\mathbb{P}(E)}$$

This implies $\int_E Y d\mathbb{P} = \mathbb{E}(Y|E)\mathbb{P}(E)$. As before, if E is a mutually disjoint union of $(E_n)_{n=1}^{\infty}$ and $\mathbb{P}(E_n) > 0$, then

$$\int_E Y(\omega) \mathbb{P}(d\omega) = \sum_{n=1}^{\infty} \mathbb{E}(Y|E_n) \mathbb{P}(E_n),$$

which is another identity similar to (1.2). We may then extend the definition of conditional probabilities to that of conditional expectations. Let $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random element and let Y be a random variable satisfying $\mathbb{E}|Y| < \infty$. For $B \in \mathcal{B}$, set

$$\nu(B) = \mathbb{P}(X \in B), \quad \mu(B) = \int_{\{X \in B\}} Y d\mathbb{P},$$

and, for $E \in \mathcal{F}(X)$, set

$$\nu'(E) = \mathbb{P}(E), \quad \mu'(E) = \int_E Y d\mathbb{P}.$$

Obviously, μ and μ' are absolutely continuous w.r.t. ν and ν' . Again, one may apply the Radon-Nykodym theorem to achieve the following definitions.

Definition 1.3. Let Y be a random variable satisfying $\mathbb{E}|Y| < \infty$. For any random element $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$, the conditional expectation of Y given X = x (resp. $X(\omega)$) is denoted by $\mathbb{E}(Y|X = x)$ (resp. $\mathbb{E}(Y|X)$) and is defined to be a \mathcal{B} -measurable (resp. $\mathcal{F}(X)$ -measurable) function satisfying

$$\int_{\{X \in B\}} Y d\mathbb{P} = \int_B \mathbb{E}(Y|X = x) \mathbb{P}_X(dx), \quad \forall B \in \mathcal{B}.$$

(resp. $\int_E Y d\mathbb{P} = \int_E \mathbb{E}(Y|X) d\mathbb{P}, \quad \forall E \in \mathcal{F}(X).$)

In the above definition, it is clear that, for $A \in \mathcal{F}$,

$$\mathbb{P}(A|X=x) = \mathbb{E}(\mathbf{1}_A|X=x) \ \mathbb{P}_X\text{-a.s.}, \quad \mathbb{P}(A|X) = \mathbb{E}(\mathbf{1}_A|X) \ \mathbb{P}\text{-a.s.}$$

Proposition 1.3. Let $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random element and $Y : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variables satisfying $\mathbb{E}|Y| < \infty$.

(1) If $\varphi(x) = \mathbb{E}(Y|X = x) \mathbb{P}_X$ -a.s., then $\varphi(X) = \mathbb{E}(Y|X) \mathbb{P}$ -a.s.

(2) If $\mathbb{E}(Y|X) = \psi(X)$ \mathbb{P} -a.s. for some \mathcal{B} -measurable function ψ , then $\psi(x) = \mathbb{E}(Y|X = x)$ \mathbb{P}_X -a.s.

(3) If X_1, X_2 are random elements satisfying $\mathcal{F}(X_1) = \mathcal{F}(X_2)$, then $\mathbb{E}(Y|X_1) = \mathbb{E}(Y|X_2) \mathbb{P}$ a.s..

(4) If X, Y are independent, then

$$\mathbb{E}(Y|X=x) = \mathbb{E}Y \mathbb{P}_X \text{-}a.s., \quad \mathbb{E}(Y|X) = \mathbb{E}Y \mathbb{P} \text{-}a.s.$$

(5) If $\mathcal{F}(Y) \subset \mathcal{F}(X)$ and ψ is a \mathcal{B} -measurable random variable satisfying $Y = \psi(X) \mathbb{P}$ -a.s., then

$$\mathbb{E}(Y|X=x) = \psi(x) \mathbb{P}_X \text{-} a.s., \quad \mathbb{E}(Y|X) = Y \mathbb{P} \text{-} a.s.$$

Proof. The proof for (1)-(4) is similar to the proof of Proposition 1.2. For (5), note that, for $E \in \mathcal{F}(X)$,

$$\int_E \mathbb{E}(Y|X)d\mathbb{P} = \int_E Yd\mathbb{P}.$$

This implies $\mathbb{E}(Y|X) = Y$ P-a.s., which proves the second identity. The first one is obvious from (2) since $\mathbb{E}(Y|X) = Y = \psi(X)$ P-a.s. and ψ is \mathcal{B} -measurable.

Exercise 1.1. Prove by following the definition that if $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ is a random element taking values on $\{x_i : i = 1, 2, ...\}$ and $A \in \mathcal{F}$, then

$$\mathbb{P}(A|X) = \sum_{i=1}^{\infty} \delta_{x_i}(X) \mathbb{P}(A|X = x_i), \quad \mathbb{P}\text{-a.s.},$$

where $\mathbb{P}(A|X = x) := \mathbb{P}(A \cap \{X = x\})/\mathbb{P}(X = x)$ if $\mathbb{P}(X = x) > 0$ and $\mathbb{P}(A|X = x) := 0$ otherwise.

Exercise 1.2. Let $\Omega = [-1,1]$, $\mathcal{F} = \mathcal{B}(\Omega)$ and $\mathbb{P}(d\omega) = \frac{1}{2}\mu(d\omega)$, where μ is the Lebesgue measure on [-1,1].

- (1) Let X be a random variable defined by $X(\omega) = |\omega|$. Find a version of $\mathbb{P}(A|X)$ and $\mathbb{P}(A|X = x)$ and do the same problem for the case $X(\omega) = \omega^2$.
- (2) Assume that $\mathbb{E}|Y| < \infty$. Find a version for $\mathbb{E}(Y|X)$ and $\mathbb{E}(Y|X = x)$ for respective X in (1).

Exercise 1.3. Let X and Y be random variables with joint density f and set $f_X(x) = \int_{\mathbb{R}} f(x, y) dy$.

(1) Prove that, for $B \in \mathcal{B}(\mathbb{R})$,

$$\mathbb{P}(Y \in B | X = x) = \int_B \frac{f(x, y)}{f_X(x)} dy, \quad \mathbb{P}_X\text{-a.s}$$

(2) Assume that $\mathbb{E}|Y| < \infty$. Prove that

$$\mathbb{E}(Y|X=x) = \int_{-\infty}^{\infty} y \frac{f(x,y)}{f_X(x)} dy, \quad \mathbb{P}_X\text{-a.s.}$$

1.2. A general definition.

Definition 1.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability and $\mathcal{C} \subset \mathcal{F}$ be a sub- σ -field of \mathcal{F} . Let $A \in \mathcal{F}$ and Y be a random variable satisfying $\mathbb{E}|Y| < \infty$.

(1) The conditional probability of A given C is a C-measurable function satisfying

$$\int_{C} \mathbb{P}(A|\mathcal{C}) d\mathbb{P} = \mathbb{P}(A \cap C), \quad \forall C \in \mathcal{C}.$$

(2) The conditional expectation of Y given C is a C-measurable function satisfying

$$\int_C \mathbb{E}(Y|\mathcal{C})d\mathbb{P} = \int_C Yd\mathbb{P} \quad \forall C \in \mathcal{C}.$$

In particular, if $C = \mathcal{F}(X_1, X_2, ...)$, we also write $\mathbb{P}(A|X_1, X_2, ...)$ and $\mathbb{E}(Y|X_1, X_2, ...)$ instead.

Remark 1.2. Note that $\mathbb{P}(A|\mathcal{C}) = \mathbb{E}(\mathbf{1}_A|\mathcal{C})$ \mathbb{P} -a.s..

Remark 1.3. For $\mathbb{E}|Y| < \infty$, $\mathbb{E}(Y|X) = \mathbb{E}(Y|\mathcal{F}(X))$.

Proposition 1.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability and $\mathcal{C} \subset \mathcal{F}$. Assume that Y, Y_1, Y_2 are random variables with finite mean.

(1) For any constants a, b,

$$\mathbb{E}(aY_1 + bY_2|\mathcal{C}) = a\mathbb{E}(Y_1|\mathcal{C}) + b\mathbb{E}(Y_2|\mathcal{C}), \quad \mathbb{P}\text{-}a.s.$$

- (2) If $Y \ge 0$ \mathbb{P} -a.s., then $\mathbb{E}(Y|\mathcal{C}) \ge 0$ \mathbb{P} -a.s.
- (3) If $\mathcal{F}(Y) \subset \mathcal{C}$, then $\mathbb{E}(Y|\mathcal{C}) = Y \mathbb{P}$ -a.s.
- (4) If $\mathcal{C} \subset \mathcal{E} \subset \mathcal{F}$, then

$$\mathbb{E}(\mathbb{E}(Y|\mathcal{C})|\mathcal{E}) = \mathbb{E}(\mathbb{E}(Y|\mathcal{E})|\mathcal{C}) = \mathbb{E}(Y|\mathcal{C}) \quad \mathbb{P}\text{-}a.s$$

- (5) If $\mathcal{F}(Y)$ and \mathcal{C} are independent, then $\mathbb{E}(Y|\mathcal{C}) = \mathbb{E}Y \mathbb{P}$ -a.s.
- (6) $\mathbb{E}(\mathbb{E}(Y|\mathcal{C})) = \mathbb{E}Y.$

Proof. (1)-(3) and (6) are obvious from the definition. For (4), note that $-|Y| \leq Y \leq |Y|$. By (2), this implies $-\mathbb{E}(|Y||\mathcal{C}) \leq \mathbb{E}(Y|\mathcal{C}) \leq \mathbb{E}(|Y||\mathcal{C})$ or equivalently $|\mathbb{E}(Y|\mathcal{C})| \leq \mathbb{E}(|Y||\mathcal{C}) \mathbb{P}$ -a.s.. As a result of (6), this implies $\mathbb{E}|\mathbb{E}(Y|\mathcal{C})| \leq \mathbb{E}|Y| < \infty$. Observe that, for $C \in \mathcal{C} \subset \mathcal{E}$,

$$\int_C \mathbb{E}(\mathbb{E}(Y|\mathcal{E})|\mathcal{C})d\mathbb{P} = \int_C \mathbb{E}(Y|\mathcal{E})d\mathbb{P} = \int_C Yd\mathbb{P}.$$

This proves the desired identity. For (5), assume that $\mathcal{F}(Y)$ and \mathcal{C} are independent. For $C \in \mathcal{C}$,

$$\int_C \mathbb{E}(Y|\mathcal{C})d\mathbb{P} = \mathbb{E}[Y\mathbf{1}_C] = \mathbb{E}Y\mathbb{P}(C).$$

Theorem 1.5 (Monotone convergence theorem). Let $Y_1, Y_2, ...$ be a sequence of non-negative random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose $Y_n \leq Y_{n+1}$, Y_n converge to Y a.s. and $\mathbb{E}Y < \infty$. Then, for any sub- σ -field $\mathcal{C} \subset \mathcal{F}$,

$$\mathbb{E}(Y_n|\mathcal{C}) \to \mathbb{E}(Y|\mathcal{C})$$
 almost surely

Proof. Set $Z_n = Y - Y_n$. Then, $Z_n \ge 0$ and $Z_n \ge Z_{n+1}$. By Proposition 1.4, this implies, for $n \ge 1$, $\mathbb{E}(Z_n|\mathcal{C}) \ge \mathbb{E}(Z_{n+1}|\mathcal{C})$ a.s. and, thus, $\mathbb{E}(Z_n|\mathcal{C})$ converges a.s. to a non-negative random variable, say Z. Furthermore, using the fact of $Z_n \le Y$, one may conclude $\mathbb{E}(Z_n|\mathcal{C}) \le \mathbb{E}(Y|\mathcal{C})$ a.s. and $\mathbb{E}|\mathbb{E}(Y|\mathcal{C})| = \mathbb{E}Y < \infty$. By the Lebesgue bounded convergence theorem, we obtain

$$\mathbb{E} Z = \lim_{n \to \infty} \mathbb{E}(\mathbb{E}(Z_n | \mathcal{C})) = \lim_{n \to \infty} \mathbb{E} Z_n = 0,$$

which proves Z = 0 a.s..

Theorem 1.6 (Fatou's lemma). Let $Y_1, Y_2, ...$ be non-negative random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with finite mean and let $\mathcal{C} \subset \mathcal{F}$ be a sub- σ -field. If $\liminf_n Y_n$ is integrable, then,

$$\mathbb{E}\left(\liminf_{n\to\infty} Y_n | \mathcal{C}\right) \le \liminf_{n\to\infty} \mathbb{E}(Y_n | \mathcal{C}) \quad almost \ surely.$$

Proof. Applying Theorem 1.5 to the sequence $\inf_{k\geq n} Y_k$ yields

$$\mathbb{E}\left(\liminf_{n\to\infty} Y_n \middle| \mathcal{C}\right) = \lim_{n\to\infty} \mathbb{E}\left(\inf_{k\geq n} Y_k \middle| \mathcal{C}\right) \leq \liminf_{n\to\infty} \mathbb{E}(Y_n \middle| \mathcal{C}) \quad \text{almost surely.}$$

Theorem 1.7 (Lebesgue's bounded convergence theorem). Let $Z, Y_1, Y_2, ...$ be random variables satisfying $|Y_n| \leq Z$ and $\mathbb{E}Z < \infty$. If Y_n converges to Y a.s., then, for any σ -field $\mathcal{C} \subset \mathcal{F}$,

$$\mathbb{E}(Y_n|\mathcal{C}) \to \mathbb{E}(Y|\mathcal{C}) \quad a.s.$$

Proof. Consider the two sequences $(Z + \inf_{k \ge n} Y_k)_{n=1}^{\infty}$ and $(Z - \sup_{k \ge n} Y_k)_{n=1}^{\infty}$. By Theorem 1.5, one has

$$\mathbb{E}(Z+Y|\mathcal{C}) \stackrel{a.s.}{=} \lim_{n \to \infty} \mathbb{E}\left(Z + \inf_{k \ge n} Y_k \middle| \mathcal{C}\right) \stackrel{a.s.}{\leq} \mathbb{E}(Z|\mathcal{C}) + \liminf_{n \to \infty} \mathbb{E}(Y_n|\mathcal{C})$$

and

$$\mathbb{E}(Z - Y|\mathcal{C}) \stackrel{a.s.}{=} \lim_{n \to \infty} \mathbb{E}\left(Z - \sup_{k \ge n} Y_k \middle| \mathcal{C}\right) \stackrel{a.s.}{\leq} \mathbb{E}(Z|\mathcal{C}) - \limsup_{n \to \infty} \mathbb{E}(Y_n|\mathcal{C}).$$

Combining both inequalities gives the desired identity.

Exercise 1.4. Let $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random variable and \mathcal{C} be a sub- σ -field such that $\mathcal{F}(X) \subset \mathcal{C}$. Show that, for any random variable Y satisfying $\mathbb{E}|Y| < \infty$ and $\mathbb{E}|XY| < \infty$,

$$\mathbb{E}(XY|\mathcal{C}) = X\mathbb{E}(Y|\mathcal{C}) \quad a.s.$$

By Exercise 1.4, one has

Proposition 1.8. Let X be a random element from (Ω, \mathcal{F}) to (R, \mathcal{B}) , φ be a random variable on (R, \mathcal{B}) and Y be a random variable on (Ω, \mathcal{F}) . Suppose $\mathbb{E}|Y| < \infty$ and $\mathbb{E}|\varphi(X)Y| < \infty$. Then,

- (1) $\mathbb{E}(\varphi(X)Y|X) = \varphi(X)\mathbb{E}(Y|X)$ a.s.
- (2) $\mathbb{E}(\varphi(X)Y|X=x) = \varphi(x)\mathbb{E}(Y|X=x) \mathbb{P}_X$ -a.s.

Proof. The first identity is immediate from Exercise 1.4. For (2), set $f(x) = \mathbb{E}(Y|X = x)$. By Proposition 1.3, $\mathbb{E}(Y|X) = f(X)$ a.s. and $\mathbb{E}(\varphi(X)Y|X) = \varphi(X)f(X)$ a.s.. Since φf is \mathcal{B} -measurable, $\varphi(x)f(x) = \mathbb{E}(\varphi(X)Y|X = x) \mathbb{P}_X$ -a.s.

Remark 1.4. Note that the notation of $\mathbb{E}(\varphi(x)Y|X=x)$ makes no sense.

Exercise 1.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability. For any two random variables X, Y, define the L^2 -distance between them by

$$d(X,Y) = \sqrt{\mathbb{E}[(X-Y)^2]}.$$

Suppose $\mathbb{E}Y^2 < \infty$. Prove that, for any σ -field $\mathcal{C} \subset \mathcal{F}$,

 $\inf \{d(X,Y): X \text{ is } \mathcal{C}\text{-measurable}\} = d(\mathbb{E}(Y|\mathcal{C}), Y).$

Exercise 1.6. Let Y be a random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}|Y| < \infty$. Assume that X_1, X_2 are random variables such that $\mathcal{F}(Y, X_1)$ and $\mathcal{F}(X_2)$ are independent. Prove that $\mathbb{E}(Y|X_1, X_2) = \mathbb{E}(Y|X_1)$ a.s..

Exercise 1.7. Let $X_1, X_2, ...$ be i.i.d. random variables with $\mathbb{E}|X_1| < \infty$ and set $S_n = X_1 + \cdots + X_n$. Prove that

$$\mathbb{E}(X_1|S_n, S_{n+1}, \dots) = \frac{S_n}{n} \quad \text{a.s.}$$

1.3. Regular conditional probabilities.

Definition 1.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability and $\mathcal{F}_1, \mathcal{C}$ be sub- σ -fields of \mathcal{F} . $\mathbb{P}(A|\mathcal{C})$ is called a regular conditional probability on \mathcal{F}_1 given \mathcal{C} if

- (1) For $A \in \mathcal{F}_1$, $\mathbb{P}(A|\mathcal{C})$ is a conditional probability of A given \mathcal{C} .
- (2) For $\omega \in \Omega$, $\mathbb{P}(\cdot | \mathcal{C})$ is a probability on (Ω, \mathcal{F}_1) .

Proposition 1.9. Let $\mathbb{P}(A|\mathcal{C})$ be a regular conditional probability on \mathcal{F}_1 given \mathcal{C} and Y be a random variable on (Ω, \mathcal{F}_1) satisfying $\mathbb{E}|Y| < \infty$. Then,

$$\mathbb{E}(Y|\mathcal{C}) = \int_{\Omega} Y(\omega) \mathbb{P}(d\omega|\mathcal{C}) \quad a.s.$$

Proof. By the linearity of conditional expectation and Theorem 1.7, we only need to consider the case $Y = \mathbf{1}_A$ where $A \in \mathcal{F}_1$, but this is obvious since

$$\mathbb{E}(\mathbf{1}_A|\mathcal{C}) \stackrel{a.s.}{=} \mathbb{P}(A|\mathcal{C}) = \int_{\Omega} \mathbf{1}_A(\omega) \mathbb{P}(d\omega|\mathcal{C}).$$

There are examples for which a regular conditional probability does not exist and this leads to the following definition. **Definition 1.6.** Let $Y : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random element and \mathcal{C} be a sub- σ -field of \mathcal{F} . $\mathbb{P}^*(B|\mathcal{C})$ with $B \in \mathcal{B}$ is called a regular conditional distribution for Y given \mathcal{C} if

- (1) For $B \in \mathcal{B}$, $\mathbb{P}^*(B|\mathcal{C})$ is a conditional probability of $\{Y \in B\}$ given \mathcal{C} , that is, $\mathbb{P}^*(B|\mathcal{C}) = \mathbb{P}(Y \in B|\mathcal{C})$ a.s.
- (2) For $\omega \in \Omega$, $\mathbb{P}^*(\cdot | \mathcal{C})$ is a probability on (R, \mathcal{B}) .

Proposition 1.10. Let Y be a random element taking values on (R, \mathcal{B}) and $\mathbb{P}^*(\cdot|\mathcal{C})$ be a regular conditional distribution for Y given C. For any random variable φ on (R, \mathcal{B}) satisfying $\mathbb{E}|\varphi(Y)| < \infty$, one has

$$\mathbb{E}(\varphi(Y)|\mathcal{C}) = \int_{R} \varphi(y) \mathbb{P}^{*}(dy|\mathcal{C}) \quad almost \ surely.$$

Proof. The proof is similar to that of Proposition 1.9. Due to the linearity of conditional expectation and Theorem 1.7, one only needs to consider the case $\varphi = \mathbf{1}_B$ with $B \in \mathcal{B}$. This is in fact the case $\mathbb{P}(Y \in B|\mathcal{C}) = \mathbb{P}^*(B|\mathcal{C})$ a.s., which is exactly the definition of regular conditional distribution.

As in the case of regular conditional probability, the regular conditional distribution might not exist.

Theorem 1.11. For any random variable Y, there is a regular conditional distribution for Y given C.

Proof. Step 1: There exists a conditional distribution function $F(x|\mathcal{C})$, that is,

- (1) For $y \in \mathbb{R}$, $F(y|\mathcal{C})$ is a conditional probability of $\{Y \leq y\}$ given \mathcal{C} .
- (2) For $\omega \in \Omega$, $F(y|\mathcal{C})$ is a distribution function.

To see this, let $\mathbb{Q} = \{q_i : i = 1, 2, ...\}$ be the set of all rational numbers and fix a version of $\mathbb{P}(Y \leq q_i | \mathcal{C})$ for all $i \geq 1$. Define

$$M = \bigcup_{q_i < q_j} M_{i,j}, \quad M_{i,j} = \{ \omega : \mathbb{P}(Y \le q_i | \mathcal{C}) > \mathbb{P}(Y \le q_j | \mathcal{C}) \}$$

and

$$N = \bigcup_{i=1}^{\infty} N_i, \quad N_i = \left\{ \omega \in M^c : \lim_{q \in \mathbb{Q}, q \downarrow q_i} \mathbb{P}(Y \le q | \mathcal{C}) \neq \mathbb{P}(Y \le q_i | \mathcal{C}) \right\}$$

and

$$L = \left\{ \omega \in M^c : \lim_{q \in \mathbb{Q}, q \uparrow \infty} \mathbb{P}(Y \le q | \mathcal{C}) \neq 1, \lim_{q \in \mathbb{Q}, q \downarrow -\infty} \mathbb{P}(Y \le q | \mathcal{C}) \neq 0 \right\}.$$

Then, $\mathbb{P}(M \cup N \cup L) = 0.$

Let G(y) be any distribution function and, for $\omega \in \Omega \setminus (M \cup N \cup L)$, define

$$F(y|\mathcal{C}) = \begin{cases} G(y) & \text{if } \omega \in M \cup N \cup I \\ \lim_{r_j \downarrow y} \mathbb{P}(Y \le r_j|\mathcal{C}) & \text{otherwise} \end{cases}$$

Then, $F(y|\mathcal{C})$ is the desired distribution function.

Step 2: Let $F(y|\mathcal{C})$ be the conditional distribution chosen in Step 1. For $\omega \in \Omega$, let $\mathbb{P}^*(\cdot|\mathcal{C})$ be the unique probability on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ satisfying

$$\mathbb{P}^*((-\infty, y]|\mathcal{C}) = F(y|\mathcal{C}) \quad \forall y \in \mathbb{R}.$$

Set

$$\mathcal{D} = \{ B \in \mathcal{B}(\mathbb{R}) : \mathbb{P}^*(B|\mathcal{C}) \stackrel{a.s.}{=} \mathbb{P}(Y \in B|\mathcal{C}) \}$$

Clearly, \mathcal{D} is a λ -system containing $(-\infty, y]$ with $y \in \mathbb{R}$. By the $\pi - \lambda$ lemma, $\mathcal{D} = \mathcal{B}(\mathbb{R})$. \Box

Definition 1.7. A measurable space (R, \mathcal{B}) is called a *Borel space* if there exist $E \in \mathcal{B}(\mathbb{R})$ and a one-to-one correspondence $f : R \to E$ such that f and f^{-1} are respectively \mathcal{B} -measurable and $\mathcal{B}(\mathbb{R})$ -measurable.

Theorem 1.12. If (R, \mathcal{B}) is a Borel space and Y is a random element with values in R, then there exists a regular conditional distribution for Y given C.

Proof. Let E and $\varphi : R \to E$ be the Borel set and one-to-one correspondence in Definition 1.7 and $Z = \varphi(Y)$. Then, Z is a random variable and, hence, has a regular conditional distribution for Z given \mathcal{C} , say $\mathbb{P}^*(B|\mathcal{C})$ with $B \in \mathcal{B}(\mathbb{R})$. By defining

(1.3)
$$\widehat{\mathbb{P}}(D|\mathcal{C}) := \mathbb{P}^*(\varphi(D)|\mathcal{C}) \stackrel{a.s.}{=} \mathbb{P}(Z \in \varphi(D)|\mathcal{C}) \stackrel{a.s.}{=} \mathbb{P}(Y \in D|\mathcal{C}), \quad \forall D \in \mathcal{B},$$

 $\widehat{\mathbb{P}}(D|\mathcal{C})$ is a regular conditional distribution for Y given \mathcal{C} .

Corollary 1.13. If (Ω, \mathcal{F}) is a Borel space, then, for any sub- σ -fields $\mathcal{F}_1, \mathcal{C}$ of \mathcal{F} , there exists a regular conditional probability on \mathcal{F}_1 given \mathcal{C} .

Proof. The proof is obtained by applying Theorem 1.12 with $Y(\omega) = \omega$ for $\omega \in \Omega$.

In a similar way, we may define a regular conditional probability (resp. distribution) given X = x.

Definition 1.8. Let X be a random element from (Ω, \mathcal{F}) to (S, \mathcal{E}) and $\mathcal{F}_1 \subset \mathcal{F}$. $\mathbb{P}(A|X=x)$ is a regular conditional probability on \mathcal{F}_1 given X = x if

- (1) For $A \in \mathcal{F}_1$, $\mathbb{P}(A|X=x)$ is a conditional probability of A given X=x;
- (2) For $x \in S$, $\mathbb{P}(\cdot | X = x)$ is a probability on (Ω, \mathcal{F}_1) .

Let Y be a random element from (Ω, \mathcal{F}) to (R, \mathcal{B}) . $\mathbb{P}^*(B|X = x)$ is a regular conditional distribution for Y given X = x if

- (1)' For $B \in \mathcal{B}$, $\mathbb{P}^*(B|X = x) = \mathbb{P}(Y \in B|X = x) \mathbb{P}_X$ -a.s.;
- (2)' For $x \in S$, $\mathbb{P}^*(\cdot | X = x)$ is a probability on (R, \mathcal{B}) .

Using a similar argument, Proposition 1.9, 1.10 and Theorem 1.12 hold in the above setting.

Proposition 1.14. Consider a measurable space (Ω, \mathcal{F}) and let X be a random element taking values on (S, \mathcal{E}) .

(1) If $\mathbb{P}(A|X = x)$ is a regular conditional probability on $\mathcal{F}_1 \subset \mathcal{F}$ given X = x and Y is a random variable on (Ω, \mathcal{F}_1) with $\mathbb{E}|Y| < \infty$, then

$$\mathbb{E}(Y|X=x) = \int_{\Omega} Y(\omega) \mathbb{P}(d\omega|X=x) \quad \mathbb{P}_X \text{-}a.s.$$

(2) If Y is a random element from (Ω, \mathcal{F}) to (R, \mathcal{B}) , φ is a random variable on (R, \mathcal{B}) with $\mathbb{E}|\varphi(Y)| < \infty$ and $\mathbb{P}^*(B|X = x)$ is a regular conditional distribution for Y given X = x, then

$$\mathbb{E}(\varphi(Y)|X=x) = \int_{R} \varphi(y) \mathbb{P}^{*}(dy|X=x) \quad \mathbb{P}_{X}\text{-}a.s.$$

Theorem 1.15. Let X, Y be random elements on (Ω, \mathcal{F}) taking values respectively on (S, \mathcal{E}) and (R, \mathcal{R}) . If (R, \mathcal{B}) is a Borel space, then there exists a regular conditional distribution for Y given X = x. In particular, if (Ω, \mathcal{F}) is a Borel space, then, for any sub- σ -field \mathcal{F}_1 of \mathcal{F} , there exists a regular conditional probability on \mathcal{F}_1 given X = x.

Exercise 1.8. Let X, Y be independent random elements taking values on (R, \mathcal{B}) and (S, \mathcal{E}) and φ be a random variable defined on $(R \times S, \mathcal{B} \otimes \mathcal{E})$. Prove that

(1) $\mathbb{P}(\varphi(x, Y) \in B)$ is a regular conditional distribution for $\varphi(X, Y)$ given X = x.

(2) If $\mathbb{E}|\varphi(X,Y)| < \infty$, then $\mathbb{E}(\varphi(X,Y)|X=x) = \mathbb{E}\varphi(x,Y)$ a.s..

Exercise 1.9. Let I be an interval, $\varphi: I \to \mathbb{R}$ be convex and Y is a random variable taking values on I. Suppose $\mathbb{E}|Y| < \infty$ and $\mathbb{E}|\varphi(Y)| < \infty$. Show that

(1)
$$\varphi(\mathbb{E}Y) \leq \mathbb{E}\varphi(Y).$$

(2) $\varphi(\mathbb{E}(Y|\mathcal{C})) \leq \mathbb{E}(\varphi(Y)|\mathcal{C})$ a.s..