LECTURE NOTES IN STOCHASTIC PROCESSES

GUAN-YU CHEN

1. CONDITIONAL PROBABILITY AND EXPECTATION

1.1. Definitions and properties. Recall that if E is an event with P(E) > 0, then the
conditional probability of A given F is defined by

P(ANE)

P(A|E) = ———
(AIB) = =

or equivalently
(1.1) P(ANE)=P(AlE)P(E).
Formally, when P(E) = 0, (1.1) becomes

=P(ANE)=PA|E)P(E) =0 x P(A|E).

From the above identity, it seems that the value of P(A|E) can be any real number (or foo
if 0 x oo := 0) when P(E) = 0. Such a concept actually applies for discrete probabilities
but not for general cases. Note that if E is a mutually disjoint union of events with positive
probabilities, say (Ey)22, then

(1.2) P(ANE) = ZIP A|E,)P(E,).

This gives an idea of defining the condltlonal probablhty in a more general setting.

For convenience, let’s consider the case that E is given by a random variable. Let X be a
random variable and £ = {a < X <b}. Forn e Nand 1 <i <n, set z; =a+i(b—a)/n and
E; ={z;—1 < X <z;}. Assuming P(z;—; < X < x;) > 0 gives

P(ANE) Z]P’ A|E;)P

In a formal computation, if the following limit exists (in any proper sense)
P(AN{z—h <X <z+h})
Pla—h<X<axz+h)

P(A|X =x) := }llir%
%

then
P(AN{a< X <b}) = / P(A|X = x)Fx(dz).
(a,b]
The last equality was given by the Radon-Nikodym theorem.

Theorem 1.1. Let (2, F) be a measurable space and p,v be measures on (£, F), where v is
non-negative and o-finite and p is a signed measure. If u is absolutely continuous w.r.t. v,
that is, v(B) = 0 implies |u|(B) = 0, then there exists a F-measurable function f such that

/ f(z)v(dx), V|p|(B) < co.



Back to the conditional probability, let A € F and set, for B € B(R),
v(B)=P(X € B), wu(B)=P(AN{X € B}).

Since p is absolutely continuous w.r.t. v, we may define the conditional probability by the
Radon-Nykodym theorem.

Definition 1.1. Let (2, F,P) be a probability space and X : (2, F) — (R, B) be a random
element. For A € F, the conditional probability of A given X = z is denoted by P(A|X = x)
and defined to be a B-measurable function such that

P(AN{X € B}) = / P(A|X = z)Px(dz), VB € B.
B

In a similar way, one may consider the case that v(E) = P(F) and u(E) = P(ANE) for all
E e F(X).
Definition 1.2. For any random element X and any event A € F, the conditional probability

of A given X (w) is denoted by P(A|X(w)) or briefly P(A|X) and defined to be a F(X)-
measurable function such that

P(ANE) = / P(A|X (w))P(dw), VE € F(X).
E

Remark 1.1. Note that P(A|X = z) (resp. P(A|X)) is almost surely non-negative. Further-
more, if ¢ and ¢’ are versions of P(A|X = xz) (resp. P(A|X)), then ¢ = ¢’ Px-a.s. (resp.
P-a.s.)
Proposition 1.2. Let A € F and X : (O, F) — (R,B) and Y : (R, F) — (R, B') be random
elements.

(1) If p(x) =P(A|X = x) Px-a.s., then ¢(X) = P(A|X) P-a.s.

(2) If P(A|X) = ¢(X) P-a.s. for some B-measurable function ¢, then ¥ (x) = P(A|X = x)

Px-a.s..
(3) If F(X) = F(Y), then P(A|X) = P(A]Y) P-a.s..
(4) If o({A}) and F(X) are independent, then

P(A|X =z) =P(A) Px-a.s., P(A|X)=P(A) P-a.s.
Proof. For (1), let E € F(X) and choose B € B such that E = {X € B}. Then,
/ o(X)dP = / V(X)1p(X)dP = / e(x)1p(z)Px(dx) =P(AN{X € B}) =P(ANE).
E Q R
This implies p(X) = P(A|X) P-a.s.

To see (2), note that, for any version of P(A|X), there is always a B-measure function 1
such that P(A|X) = ¢(X). For B € B and E = {X € B}, one has

P(AN{X € B}) = P(ANE) = /Ew(X)d]P’ - /Bw(gc)PX(dx).

This implies, ¢(z) = P(A|X = z) Px-a.s. (3) and (4) are immediate from the definition of
P(A|X) and P(A|X = z). O

Next, we introduce the conditional expectation. Recall that if P(E) > 0 and E|Y| < oo,
then E( Y|E = [ Y (w)P(dw|E), where P(A|E) = P(AN E)/P(E) for all A € F. Note that

/Y P(dw|E) = /Y P(IE).



This implies [, YdP = E(Y|E)P(E). As before, if E is a mutually disjoint union of (E,)52;
and P(E,) > 0, then

/E Y (w)P(dw) = Y E(Y|E,)P(Ey),
n=1

which is another identity similar to (1.2). We may then extend the definition of conditional
probabilities to that of conditional expectations. Let X : (2, F) — (R,B) be a random
element and let Y be a random variable satisfying E|Y| < co. For B € B, set

v(B)=P(X € B), u(B)= / YdP,
{XeB}
and, for F € F(X), set
V(E) = B(E), W(E)= /E Y dp.

Obviously, x4 and ' are absolutely continuous w.r.t. v and v/. Again, one may apply the
Radon-Nykodym theorem to achieve the following definitions.

Definition 1.3. Let Y be a random variable satisfying E|Y| < co. For any random element
X : (Q,F) — (R,B), the conditional expectation of ¥ given X = x (resp. X (w)) is denoted
by E(Y|X = z) (resp. E(Y|X)) and is defined to be a B-measurable (resp. F (X )-measurable)
function satisfying

/ YdP = / E(Y|X = 2)Px(dz), VB € B.
{XeB} B

(resp. /EYd]P’:/EE(Y\X)dIP’, VEe]-'(X))

In the above definition, it is clear that, for A € F,
P(A|X =2) =E(14]X =z) Px-as., P(A|X)=E(14|X) P-as.

Proposition 1.3. Let X : (Q,F) — (R, B) be a random element and Y : (2, F) — (R, B(R))
be a random variables satisfying E|Y| < oo.
(1) If p(z) = E(Y|X = z) Px-a.s., then p(X) = E(Y|X) P-a.s.
(2) IfE(Y|X) = ¥(X) P-a.s. for some B-measurable function v, then ¢(x) = E(Y|X = x)
IP)X—G,.S.
(3) If X1, X2 are random elements satisfying F(X1) = F(X2), then E(Y|X;) = E(Y|X2) P-
a.s..

(4) If X,Y are independent, then
E(Y|X =z) =EY Px-a.s., E(Y|X)=EY P-a.s.

(5) If F(Y') C F(X) and ¢ is a B-measurable random variable satisfying Y = (X) P-a.s.,
then
EY|X =z) =¢(z) Px-a.s., E(Y|X)=Y P-a.s.

Proof. The proof for (1)-(4) is similar to the proof of Proposition 1.2. For (5), note that, for

E € F(X),
/IE(YX)d]P’:/ Y dP.
E E

This implies E(Y|X) = Y P-a.s., which proves the second identity. The first one is obvious
from (2) since E(Y|X) =Y = ¢(X) P-a.s. and ¢ is B-measurable. O
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Exercise 1.1. Prove by following the definition that if X : (2, F) — (R, B) is a random
element taking values on {z; : i =1,2,...} and A € F, then

P(A|X) = Zémz P(A|X =), P-as.,

where P(A|X = z) == P(AN{X = :13})/]?( =z)if P(X =2) >0and P(AX =2z):=0
otherwise.
Exercise 1.2. Let Q@ = [-1,1], F = B(Q) and P(dw) = %,u(dw), where p is the Lebesgue
measure on [—1,1].
(1) Let X be a random variable defined by X (w) = |w|. Find a version of P(A|X) and
P(A|X = x) and do the same problem for the case X (w) = w?.
(2) Assume that E|Y| < co. Find a version for E(Y|X) and E(Y'|X = x) for respective X
in (1).
Exercise 1.3. Let X and Y be random variables with joint density f and set fx(x) =
Jz £ (@, 9)dy.
(1) Prove that, for B € B(R),
f(z,y)
B fx(z)

P(Y e B X =x) = dy, Px-a.s.

(2) Assume that E|Y| < co. Prove that

E(Y|X =z) :/ y‘ic(;(’j))dy, Px-a.s.

1.2. A general definition.

Definition 1.4. Let (Q, F,P) be a probability and C C F be a sub-o-field of F. Let A € F
and Y be a random variable satisfying E|Y| < oco.

(1) The conditional probability of A given C is a C-measurable function satisfying
/ P(A[C)dP = P(ANC), VC €C.
(&
(2) The conditional expectation of Y given C is a C-measurable function satisfying

/E(Y!C)dIP’:/YdIP’ vC ecC.
C C

In particular, if C = F(X3, X2, ...), we also write P(A| X1, X»,...) and E(Y|X, X5, ...)
instead.

Remark 1.2. Note that P(A|C) = E(14]|C) P-a.s..
Remark 1.3. For E|Y| < oo, E(Y|X) = E(Y|F(X)).

Proposition 1.4. Let (2, F,P) be a probability and C C F. Assume thatY,Y1,Ys are random
variables with finite mean.

(1) For any constants a,b,
E(aY: + bY32|C) = aE(Y1|C) + bE(Y2|C), P-a.s.
(2) If Y > 0 P-a.s., then E(Y|C) > 0 P-a.s.
(3) If F(Y) CC, then E(Y|C) =Y P-a.s.
(4) IfC C £ C F, then
E(E(Y[C)|E) = EE(Y]E)[C) = E(Y|C) P-a.s.
4



(5) If F(Y) and C are independent, then E(Y|C) =EY P-a.s.
(6) E(E(Y|C)) =EY.

Proof. (1)-(3) and (6) are obvious from the definition. For (4), note that —|Y| <Y < |Y|. By
(2), this implies —E(]Y]|C) < E(Y|C) < E(]Y]|C) or equivalently |E(Y|C)| < E(|[Y]|C) P-a.s..
As a result of (6), this implies E|E(Y|C)| < E|Y| < co. Observe that, for C € C C &,

/E(E(Y|5)\C)dIP’:/E(Y|5)d]P’:/YdIP’.
C C C
This proves the desired identity. For (5), assume that F(Y) and C are independent. For
CcecC,
/ E(Y|C)dP = E[Y1¢] = EYE(C).
C
(]

Theorem 1.5 (Monotone convergence theorem). Let Y1,Ys, ... be a sequence of non-negative
random variables on (Q, F,P). Suppose Y, < Yn11, Y, converge to Y a.s. and EY < oc.
Then, for any sub-c-field C C F,

E(Y,|C) = E(Y|C) almost surely.

Proof. Set Z, =Y —Y,. Then, Z, >0 and Z, > Z,11. By Proposition 1.4, this implies, for
n > 1, E(Z,|C) > E(Z,+1|C) a.s. and, thus, E(Z,|C) converges a.s. to a non-negative random
variable, say Z. Furthermore, using the fact of Z,, <Y, one may conclude E(Z,|C) < E(Y|C)
a.s. and E[E(Y|C)| = EY < co. By the Lebesgue bounded convergence theorem, we obtain

EZ = lim E(E(Z,|C)) = lim EZ, =0,
n—oo n—o0
which proves Z =0 a.s.. O

Theorem 1.6 (Fatou’s lemma). Let Y1,Ys,... be non-negative random variables defined on
(Q, F,P) with finite mean and let C C F be a sub-o-field. If liminf, Y, is integrable, then,

E (lim inf Yn|C) < liminf E(Y,|C) almost surely.
n—oo n—oo
Proof. Applying Theorem 1.5 to the sequence infy>, Y} yields

n—0o0

E <lim infY,,

C> = lim E (inf Y}

n—00 k>n

C) <liminf E(Y,|C) almost surely.
n—o0
(]

Theorem 1.7 (Lebesgue’s bounded convergence theorem). Let Z,Y1,Ys, ... be random vari-
ables satisfying |Y,| < Z and EZ < oo. If Y, converges to Y a.s., then, for any o-field
CCF,

E(Y,|IC) = E(Y|C) a.s.
Proof. Consider the two sequences (Z + infg>y, Y3)p2, and (Z — supgs, Yz)p21. By Theorem

1.5, one has

n—oo

E(Z+Y|C) % lim E <Z + inf Y5,
k>n

c> < E(Z[C) + lim inf E(Y,[C)

and

n—o0 k>n n—o0

E(Z - Y|C) % lim E (Z —supYy c) CE(Z|C) - limsup E(Y,[C).

Combining both inequalities gives the desired identity. U
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Exercise 1.4. Let X : (2, F) — (R, B) be a random variable and C be a sub-o-field such that
F(X) C C. Show that, for any random variable Y satisfying E|Y| < co and E|XY| < oo,

E(XY|C) = XE(Y|C) a.s.
By Exercise 1.4, one has

Proposition 1.8. Let X be a random element from (2, F) to (R, B), ¢ be a random variable
n (R,B) and Y be a random variable on (2, F). Suppose E|Y| < oo and E|p(X)Y] < oo.
Then,
(1) E(p(X)Y]X) = p(X)E(Y|X) a.s.
(2) E(p(X)Y|X = 2) = p@E(Y|X = 2) Px-a.5

Proof. The first identity is immediate from Exercise 1.4. For (2), se (:1:) = IE(Y|X = x).
By Proposition 1.3, E(Y|X) = f(X) a.s. and E(¢(X)Y|X) = (X ) (X) a.s.. Since ¢f is
B-measurable, ¢(x) f(z) = E(o(X)Y|X = z) Px-a.s. O

Remark 1.4. Note that the notation of E(p(z)Y|X = x) makes no sense.

Exercise 1.5. Let (2, F,P) be a probability. For any two random variables X,Y", define the
L?-distance between them by
d(X,Y)=+vVE[(X -Y)?].
Suppose EY? < co. Prove that, for any o-field C C F,
inf {d(X,Y) : X is C-measurable} = d(E(Y|C),Y).

Exercise 1.6. Let Y be a random variable defined on (92, F,P) with E|Y| < co. Assume
that X, Xy are random variables such that F(Y, X1) and F(X3) are independent. Prove that
E(Y‘Xl, XQ) = E(Y|X1) a.s..

Exercise 1.7. Let X1, Xo,... be i.i.d. random variables with E|X;| < oo and set S, =

X1+ -+ X,,. Prove that

S
E(X1|Sn75n+1, ) = ? a.s.

1.3. Regular conditional probabilities.

Definition 1.5. Let (2, F,P) be a probability and Fi,C be sub-o-fields of F. P(A|C) is called
a regular conditional probability on F; given C if

(1) For A € Fi, P(A|C) is a conditional probability of A given C.
(2) For w € Q, P(-|C) is a probability on (€, F1).

Proposition 1.9. Let P(A|C) be a regular conditional probability on Fi given C and 'Y be a
random variable on (2, F1) satisfying E|Y| < co. Then,

E(Y|C) = / Y (w)P(dw|C) a.s.

Proof. By the linearity of conditional expectation and Theorem 1.7, we only need to consider
the case Y = 14 where A € JF1, but this is obvious since

E(14|C) 2 P(A|C) = /Q 14(w)P(dw|C).
O

There are examples for which a regular conditional probability does not exist and this leads
to the following definition.
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Definition 1.6. Let Y : (2, F) — (R, B) be a random element and C be a sub-o-field of F.
P*(B|C) with B € B is called a regular conditional distribution for Y given C if
(1) For B € B, P*(B|C) is a conditional probability of {Y € B} given C, that is, P*(B|C) =
P(Y € B|C) aus.
(2) For w € Q, P*(-|C) is a probability on (R, B).

Proposition 1.10. Let Y be a random element taking values on (R,B) and P*(-|C) be a
reqular conditional distribution for'Y given C. For any random variable ¢ on (R, B) satisfying
Ele(Y)| < oo, one has

IE(¢(Y)|C):/Rgo(y)IP’*(dy|C) almost surely.

Proof. The proof is similar to that of Proposition 1.9. Due to the linearity of conditional
expectation and Theorem 1.7, one only needs to consider the case ¢ = 1p with B € B.
This is in fact the case P(Y € B|C) = P*(B|C) a.s., which is exactly the definition of regular
conditional distribution. O

As in the case of regular conditional probability, the regular conditional distribution might
not exist.

Theorem 1.11. For any random variable Y, there is a reqular conditional distribution for'Y
given C.
Proof. Step 1: There exists a conditional distribution function F(z|C), that is,

(1) For y € R, F(y|C) is a conditional probability of {Y < y} given C.

(2) For w € 2, F(y|C) is a distribution function.

To see this, let Q = {g; : i = 1,2,...} be the set of all rational numbers and fix a version of
P(Y < ¢|C) for all i > 1. Define

M= ] My, M;={w:PY <qlC)>P(Y <qlC)}
qi<g;
and
(o]
N = N;, N;,=<[weM: lim P <¢|C P(Y < ¢lC
Une { Jim POV < 4l0) BV < ai0)}
and

L=<weM: lim PY <¢[C 1, lim P <gq|C 0.
foear: Jm r<do£1 gin ROr<c) 20}
Then, P(M UNUL) = 0.

Let G(y) be any distribution function and, for w € Q\ (M U N U L), define

F(y|c):{G(y) ifwe MUNUL

lim,., |, P(Y <7;|C) otherwise
Then, F(y|C) is the desired distribution function.
Step 2: Let F(y|C) be the conditional distribution chosen in Step 1. For w € Q, let P*(-|C)
be the unique probability on (R, B(R)) satisfying
P*((=o0,9]IC) = F(ylC) vy e R.
Set
D = {B < B(R) : P*(B|C) © P(Y € B|C)}.
Clearly, D is a A-system containing (—oo, y] with y € R. By the 7 — A lemma, D = B(R). O
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Definition 1.7. A measurable space (R, B) is called a Borel space if there exist £ € B(R) and
a one-to-one correspondence f : R — E such that f and f~! are respectively B-measurable
and B(R)-measurable.

Theorem 1.12. If (R, B) is a Borel space and Y is a random element with values in R, then
there exists a regqular conditional distribution for'Y given C.

Proof. Let E and ¢ : R — E be the Borel set and one-to-one correspondence in Definition 1.7
and Z = ¢(Y). Then, Z is a random variable and, hence, has a regular conditional distribution
for Z given C, say P*(B|C) with B € B(R). By defining

(1.3) B(D|C) := P*(¢(D)|C) = P(Z € p(D)|C) = P(Y € D|C), VD € B,
I/P\>(D|C) is a regular conditional distribution for Y given C. O

Corollary 1.13. If (2, F) is a Borel space, then, for any sub-o-fields F1,C of F, there exists
a reqular conditional probability on Fy given C.

Proof. The proof is obtained by applying Theorem 1.12 with Y (w) = w for w € Q. O

In a similar way, we may define a regular conditional probability (resp. distribution) given
X ==z
Definition 1.8. Let X be a random element from (€2, F) to (S,€) and F; C F. P(A|X = z)
is a regular conditional probability on Fi given X = x if
(1) For A € Fi, P(A|X = z) is a conditional probability of A given X = x;
(2) For z € S, P(-|X = z) is a probability on (£, F1).
Let Y be a random element from (2, F) to (R,B). P*(B|X = z) is a regular conditional
distribution for Y given X = zx if
(1) For Be€ B, P*(B|X =z2) =P(Y € B|X =z) Px-a.s;
(2)’ For z € S, P*(-|X = z) is a probability on (R, B).
Using a similar argument, Proposition 1.9, 1.10 and Theorem 1.12 hold in the above setting.

Proposition 1.14. Consider a measurable space (2, F) and let X be a random element taking
values on (S,E).

(1) If P(A|X = x) is a regular conditional probability on F1 C F given X =x and Y is a
random variable on (2, F1) with E|Y| < oo, then

EY|X =x2) = /QY(w)P(de =z) Px-a.s.

(2) If Y is a random element from (2, F) to (R,B), ¢ is a random variable on (R,B)
with E|o(Y)| < oo and P*(B|X = z) is a regular conditional distribution for' Y given
X =z, then

Be(V)IX =) = [ ou)P"(@iX =2) Px-as

Theorem 1.15. Let X,Y be random elements on (0, F) taking values respectively on (S, E)
and (R,R). If (R, B) is a Borel space, then there exists a reqular conditional distribution for
Y given X = x. In particular, if (0, F) is a Borel space, then, for any sub-o-field Fy of F,
there exists a regular conditional probability on F1 given X = x.

Exercise 1.8. Let X,Y be independent random elements taking values on (R, B) and (S, €)
and ¢ be a random variable defined on (R x S, B ® £). Prove that

(1) P(e(z,Y) € B) is a regular conditional distribution for p(X,Y) given X = x.
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(2) If Ele(X,Y)| < 0o, then E(p(X,Y)|X =z) = Ep(z,Y) as..

Exercise 1.9. Let I be an interval, ¢ : I — R be convex and Y is a random variable taking
values on I. Suppose E|Y| < oo and E|¢(Y)| < co. Show that

(1) p(EY) < Ep(Y).

(2) e(E(Y]C)) < E(p(Y)C) as..



