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1. Introduction

1.1. Probabilities on finite sets. Let’s consider an experiment with finite number of pos-
sible outcomes, say ω1, ..., ωn. The set Ω = {ω1, ..., ωn} is called the sample space and ωi is
named as a sample point. An event is a subset of Ω. A probability on Ω is a function P defined
on Ω satisfying

(1) 0 ≤ P(ωi) ≤ 1 for all 1 ≤ i ≤ n.
(2)

∑n
i=1 P(ωi) = 1.

The probability of event E ⊂ Ω is defined by

P(E) =
∑
ωi∈E

P(ωi).

Let F be the collection of all subsets of Ω. The triple (Ω,F ,P) is named a probability space.

Remark 1.1. It is clear that if E and F are mutually disjoint events, then P(E ∪F ) = P(E)+
P(F ). Moreover, it is clear that P(Ω) = 1, P(∅) = 0, and P(E ∪F ) = P(E)+P(F )−P(E ∩F ),
where ∅ is the empty set.

Let E,F be events and assume that P(E) > 0. The conditional probability of F given E is
defined by

P(F |E) =
P(E ∩ F )
P(E)

.

Two events are said to be independent if P(E ∩ F ) = P(E)P(F ).

Remark 1.2. Any event E is independent of Ω and ∅. Furthermore, if E and F are independent,
then a set in {E,Ec,Ω, ∅} and a set in {F, F c,Ω, ∅} are independent, where Ec denotes the
complement of E in Ω.

Remark 1.3. Let E1, ..., Em be mutually disjoint events such that
⋃m
i=1Ei = Ω and P(Ei) > 0

for 1 ≤ i ≤ m. Bayes’s formula says that, for any event F satisfying P(F ) > 0,

P(Ei|F ) =
P(Ei)P(F |Ei)∑m
j=1 P(Ej)P(F |Ej)

, ∀1 ≤ i ≤ m.

A random variable is a real-valued function defined on Ω. For any random variable X and
any subset B ⊂ R, we write {X ∈ B} for the set {ω ∈ Ω|X(ω) ∈ B}. If B = [a, b], we also
write {a ≤ X ≤ b} for {X ∈ [a, b]}. For random variables X1, X2, ... and subsets B1, B2, ...,
both {X1 ∈ B1, X2 ∈ B2, ...} and {Xi ∈ Bi,∀i} denote the set

⋂
i{Xi ∈ Bi}.

Two random variables X,Y are said to be independent if {X ≤ x} and {Y ≤ y} are
independent for all x, y ∈ R. For any random variable X, the distribution of X is defined by
FX(x) = P(X ≤ x) and the expectation and variance are defined by

E(X) :=
n∑
i=1

X(ωi)P(ωi), Var(X) = E(X − EX)2.
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Remark 1.4. Let X be a random variable and FX be the distribution of X.

(1) FX is a right-continuous non-decreasing function.
(2) FX(x) → 0 as x→ −∞ and FX(x) → 1 as x→ ∞.

Furthermore, E(X) =
∫∞
−∞ xdFX(x), where the right side is known as the Riemann-Stieljes

integral.

A sequence of random variables X1, X2, ... is said to be identically distributed if they have
the same distribution. A sequence of random variables X1, X2, ... is said to be independent if,
for any n and x1, ..., xn ∈ R, P(Xi ≤ xi, ∀1 ≤ i ≤ n) =

∏n
i=1 P(Xi ≤ xi).

Law of large numbers: Consider a sequence of i.i.d. (independent and identically distributed)
random variables, X1, X2, .... Set Sn = X1+ · · ·+Xn. Suppose −∞ < µ = E(X1) <∞. Then,

(1) (weak version) P(|Sn/n− µ| > ϵ) → 0 as n→ ∞ for all ϵ > 0.
(2) (strong version) P(Sn/n→ µ) = 1.

Central limit theorem: Let X1, X2, ... be i.i.d. random variables and set Sn =
∑n

i=1Xi.
Suppose µ = EX1 exists and 0 < σ2 = Var(X1) <∞. Then,

lim
n→∞

P
(
a ≤ Sn − nµ√

nσ2
≤ b

)
=

1√
2π

∫ b

a
e−x

2/2dx, ∀a < b.

Remark 1.5. In the law of large numbers, the weak version says that Sn/n converges to µ
in probability and the strong version says that Sn/n converges to µ almost surely or with
probability 1. The central limit theorem says that (Sn−nµ)/(

√
nσ) converges in distribution

to the standard normal random variable.

1.2. Independent tosses of a fair coin. Let n be a positive integer. Consider an experiment
of tossing a fair coin independently for n times, that is,

(a) There are 2n outcomes, which are all {H,T}-valued n-vectors, where “H” and “T”
represent for “Head” and “Tail”.

(b) Each of the 2n outcomes are equally likely to occur, namely, every n-vector has prob-
ability 2−n.

Let (Ωn,Fn,Pn) be the corresponding probability space. It is easy to see that Ωn consists of
all {H,T}-valued n-vectors, Fn is the collection of all subsets of Ωn and Pn is the probability
on Fn, which is uniform over all sample points in Ωn.

Concerning the experiment of flipping a fair coin for infinitely many times, we set Ω = {ω =
(ω1, ω2, ...)|ωi ∈ {H,T}, ∀i} and define

E(x) = {ω ∈ Ω|(ω1, ..., ωn) = x}, ∀x ∈ Ωn, n ≥ 1,

and
E(A) =

⋃
x∈A

E(x), ∀A ∈ Fn, n ≥ 1.

Clearly, E(A) = A × Ω for all A ∈
⋃
n≥1Fn. By defining E(Fn) := {E(A)|A ∈ Fn}, one has

E(Fn) ⊂ E(Fn+1). To discuss the law of large numbers and the central limit theorem, we
address the following assumption.

Suppose there is a probability space (Ω,F ,P), where F is some structured collection of
subsets of Ω (say, a σ-field) containing

⋃
n≥1 E(Fn) and P(E(A)) = Pn(A) for all A ∈ Fn and

n ≥ 1.
To quantify the model of flipping coins, we set Xi(ω) = 1H(ωi). It is easy to check that

X1, X2, ... are i.i.d. with P(X1 = 1) = P(X1 = 0) = 1/2. The law of large number says

lim
n→∞

P(|Sn/n− 1/2| > ϵ) = 0, ∀ϵ > 0, P
(

lim
n→∞

Sn
n

=
1

2

)
= 1,
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where Sn =
∑n

i=1Xi, while the central limit theorem refers to the limit of

lim
n→∞

P

(
a ≤ Sn − n/2√

n/4
≤ b

)
=

1√
2π

∫ b

a
e−x

2/2dx, ∀a < b.

In the next three subsections, we will give rigorous proofs of the above theorems.

1.3. The weak law of large numbers for i.i.d. Bernoulli sequences.

Theorem 1.1 (Weak law of large numbers). Let Sn be the number of heads in the first n
independent tosses of a fair coin. Then, for ϵ > 0,

lim
n→∞

P(|Sn/n− 1/2| ≥ ϵ) = 0.

To prove the above theorem, we need the Chebyshev inequality.

Proposition 1.2 (Chebyshev inequality). Let (Ω,F ,P) be a probability space with |Ω| < ∞
and X be a random variable on Ω. Then, for any ϵ > 0,

P(|X| ≥ ϵ) ≤ EX2

ϵ2
.

Exercise 1.1. Prove the above proposition.

Proof of Theorem 1.1. For n ≥ 1 and 1 ≤ i ≤ n, let Xn,i be the random variable defined by

Xn,i(ω) = 1H(ωi) =

{
1 if the i-th entry of ω is H,

0 if the i-th entry of ω is T ,
∀ω = (ω1, ..., ωn) ∈ Ωn.

Set S′
n = Xn,1 +Xn,2 + · · ·+Xn,n. Obviously, one has

{|Sn/n− 1/2| ≥ ϵ} = E({|S′
n/n− 1/2| ≥ ϵ}).

This implies

P(|Sn/n− 1/2| ≥ ϵ) = Pn(|S′
n/n− 1/2| ≥ ϵ).

Observe that

EX2
n,i = EXn,i = Pn({(ω1, ..., ωn)|ωi = H}) = 1/2

and, for i 6= j,

E(Xn,iXn,j) = Pn({(ω1, ..., ωn)|ωi = ωj = H}) = 1/4.

Using the linearity of the expectation, we have

∀1 ≤ i ≤ n, E(Xn,i − 1/2)2 = EX2
n,i − EXn,i + 1/4 = 1/4

and

∀i 6= j, E[(Xn,i − 1/2)(Xn,j − 1/2)] = 0.

Write
S′
n

n
− 1

2
=

1

n

n∑
i=1

(Xn,i − 1/2).

As a result of the above computations, we obtain

E
(
S′
n

n
− 1

2

)2

=
1

n2

n∑
i,j=1

E[(Xn,i − 1/2)(Xn,j − 1/2)]

=
1

n2

n∑
i=1

E(Xn,i − 1/2)2 =
1

4n
.
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Consequently, the Chebyshev inequality implies

Pn(|S′
n/n− 1/2| ≥ ϵ) ≤ 1/(4nϵ2) → 0,

as n→ ∞. �

Remark 1.6. In the above proof, the last inequality says that the probability P(|Sn/n−1/2| ≥
ϵ) converges to 0 at least polynomially. We refer the readers to the topic of large deviation
for a precise estimation of this convergence.

Note that the law of large numbers does not mean Sn/n = 1/2 (in any suitable sense). In
fact, one has

(1.1) max
0≤k≤n

P(Sn = k) = P(Sn = bn/2c), lim
n→∞

P(Sn/n = 1/2) = 0.

where btc := max{n ∈ Z|n ≤ t}. To see a proof, we need the following facts.

Lemma 1.3. For the n independent tosses of a fair coin, there are
(
n
k

)
= n!

k!(n−k)! n-vectors

with exactly k heads appear.

Stirling’s formula

(1.2) n! =
√
2πe−nnn+1/2(1 + ϵn),

where ϵn converges to 0 as n tends to infinity. More precisely, it holds true that

(1.3)
√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n)

and this implies that ϵn = 1
12n +O

(
1
n2

)
.

The first equality in (1.1) is obvious from Lemma 1.3. To see the limit, we let S′
n be the

random variable in the proof of Theorem 1.1. Note that

P(Sn/n = 1/2) = Pn(S′
n/n = 1/2) =

{
0 if n is odd

2−n
(
n
n/2

)
if n is even

.

In the case that n = 2m, one has

2−2m

(
2m

m

)
= 2−2m (2m)!

m!m!
= 2−2m

√
2πe−2m(2m)2m+1/2(1 + ϵ2m)

2πe−2mm2m+1(1 + ϵm)2
=

1√
πm

(1 + δm).

Clearly, δm → 0 as m→ ∞.
In fact, there is a more general estimation. For 0 ≤ k ≤ n, we write

(1.4) P(Sn = k) =

√
2

πn
(1 + δn,k).

Exercise 1.2. Let Kn > 0 be a sequence satisfying Kn = o(
√
n) and δn,k be the constant in

(1.4). Show that

max
k:|k−n/2|<Kn

|δn,k| → 0, as n→ ∞.

Hint: Use Stirling’s formula to derive

δn,k =
nn+1(1 + ϵn)

(2k)k+1/2(2n− 2k)n−k+1/2(1 + ϵk)(1 + ϵn−k)
− 1.

One may conclude from the above exercise that, for Kn → ∞ and Kn = o(
√
n),

P(|Sn − n/2| ≤ Kn) =
2
√
2Kn√
πn

(1 + o(1)).
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1.4. The central limit theorem for i.i.d. Bernoulli sequences.

Theorem 1.4 (The central limit theorem). Let Sn denote the number of heads in the first n
independent tosses of a fair coin and Φ be a function defined by

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

For x ≥ 0, one has

(1.5) lim
n→∞

P
(∣∣∣∣Snn − 1

2

∣∣∣∣ < x

2
√
n

)
= Φ(x)− Φ(−x).

In particular, for x ∈ R,

lim
n→∞

P
(
Sn
n

− 1

2
<

x

2
√
n

)
= Φ(x).

Proof. Let S′
n be the random variable defined in the proof of the weak law of large numbers.

As before, we have

P
(∣∣∣∣Snn − 1

2

∣∣∣∣ < x

2
√
n

)
= Pn

(∣∣∣∣S′
n

n
− 1

2

∣∣∣∣ < x

2
√
n

)
, ∀x > 0.

First, consider the case n = 2m. For m ≥ 1 and x ≥ 0, set

qm,x = P2m(|S′
2m −m| < x

√
m/2)

= 2−2m
∑

k:|k−m|<x
√
m/2

(
2m

k

)
= 2−2m

∑
j∈Rm

(
2m

m+ j

)
,

where Rm = {j : |j| < x
√
m/2}. Write 2−2m

(
2m
m+j

)
= pmDm,j with pm = P2m(S

′
2m = m) and

D−1
m,j =

(
1 +

|j|
m

)(
1 +

|j|
m− 1

)
· · ·
(
1 +

|j|
m− |j|+ 1

)
.

Using the expression log(1 + t) = t(1 + f(t)), we have

logDm,j = −
|j|−1∑
k=0

|j|
m− k

(
1 + f

(
|j|

m− k

))
.

This leads to Dm,j = e−(1+ϵm,j)j
2/m with ϵm,0 = 0 and, for j 6= 0,

ϵm,j =
1

|j|

|j|−1∑
k=0

k

m− k
+

1

|j|

|j|−1∑
k=0

m

m− k
f

(
|j|

m− k

)
.

Using the fact that f(t)/t→ −1/2 as t→ 0, one can show that, as m→ ∞,

f

(
|j|

m− k

)
=

|j|
m− k

(
−1

2
+ o(1)

)
,

where o(1) is uniformly for 0 ≤ k < |j| and j ∈ Rm. Consequently, the above computation
yields ϵm,j = O(1/

√
m) uniformly for j ∈ Rm.

Next, we write Dm,j = (1 + ∆m,j)e
−j2/m with ∆m,j = e−ϵm,jj

2/m − 1. As t → 0, one has
et = 1 + t(1 + o(1)). This implies ∆m,j = O(1/

√
m) uniformly for j ∈ Rm as m→ ∞. Recall

the notation pm = 1√
πm

(1 + δm) and set

qm,x =
∑
j∈Rm

pmDm,j = Am +Bm,
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where

Am =
∑
j∈Rm

e−j
2/m

√
πm

, Bm =
1√
πm

∑
j∈Rm

(
∆m,je

−j2/m + δm + δm∆m,je
−j2/m

)
.

Note that

|Bm| ≤
1√
πm

∑
j∈Rm

(|∆m,j |+ |δm|+ |∆m,jδm|).

When m → ∞, Am converges to 1√
2π

∫ x
−x e

−t2/2dt and |Bm| = O(|δm| + 1/
√
m). This proves

the limit in (1.5) with even n.
For the case n = 2m+ 1, let h > 0. Observe that, when n is large enough, one has{

(w, v) ∈ Ω2m × Ω1 : |S′
2m(w)−m| < x− h

2

√
2m

}
⊂
{
(w, v) ∈ Ω2m+1 :

∣∣∣∣S′
2m+1(w, v)−

(
m+

1

2

)∣∣∣∣ < x

2

√
2m+ 1

}
⊂
{
(w, v) ∈ Ω2m × Ω1 : |S′

2m(w)−m| < x+ h

2

√
2m

}
Letting n tend to infinity derives

Φ(x− h)− Φ(h− x) ≤ lim inf
m→∞

P2m+1

(∣∣∣∣S′
2m+1 −

2m+ 1

2

∣∣∣∣ < x

2

√
2m+ 1

)
and

lim sup
m→∞

P2m+1

(∣∣∣∣S′
2m+1 −

2m+ 1

2

∣∣∣∣ < x

2

√
2m+ 1

)
≤ Φ(x+ h)− Φ(−x− h)

Since Φ is continuous, letting h→ 0 gives the desired identity in (1.5). �

1.5. The strong law of large numbers for i.i.d. Bernoulli sequences. The law of large
numbers and the central limit theorem provide us a way of comparing the sample mean of
heads Sn/n and the probability of heads 1/2. It is natural to arise the following question:
Could it be possible that no matter how the first n tosses are, eventually things will settle
down and smooth out in the way that

lim
n→∞

Sn
n

=
1

2
.

Clearly, this can fail if all tosses result in heads.

Theorem 1.5 (Strong law of large numbers). Let Sn be the number of heads in the first n
independent tosses of a fair coin. Then, P(Sn/n→ 1/2) = 1.

As before, let X1, X2, ... be the i.i.d. sequence of random variables satisfying P(X1 = 1) =
P(X1 = 0) = 1/2 and set Sn = X1 +X2 + · · ·+Xn. To prove the above theorem, we need the
following lemma.

Lemma 1.6. Let Ω be the sample space on which X1, X2, ... are defined and Sn =
∑n

i=1Xi.
Then, for ω ∈ Ω,

lim
n→∞

Sn(ω)

n
=

1

2
⇔ lim

m→∞

Sm2(ω)

m2
=

1

2
.
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Proof. For n ≥ 1, let m be a positive integer satisfying m2 ≤ n < (m+ 1)2. It is obvious that
0 ≤ n−m2 ≤ 2m and this implies∣∣∣∣Sn(ω)n

− Sm2(ω)

m2

∣∣∣∣ = ∣∣∣∣Sn(ω)m2
− Sm2(ω)

m2
+

(
1

n
− 1

m2

)
Sn(ω)

∣∣∣∣
≤ |n−m2|

m2
+ n

∣∣∣∣ 1n − 1

m2

∣∣∣∣ = 2|n−m2|
m2

≤ 4

m
.

Letting m→ ∞ gives the desired property. �
Proof of Theorem 1.5. Let F = {ω : Sn(ω)/n9 1/2} and, for ϵ > 0, set

Fϵ =

{
ω :

∣∣∣∣Sm2(ω)

m2
− 1

2

∣∣∣∣ > ϵ for infinitely many m

}
.

Note that Fϵ1 ⊂ Fϵ2 for ϵ1 > ϵ2 and F =
⋃∞
k=1 F1/k. Consider the following two assumptions.

Assumption 1: If B1, B2, ... ∈ F , then
⋃∞
n=1Bn ∈ F and

⋂∞
n=1Bn ∈ F .

Assumption 2: If An ⊂ Ω is a sequence satisfying An ⊂ An+1 (resp. An ⊃ An+1), then

P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An).

(
resp. P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An).

)
To prove P(F ) = 0, it is equivalent to show that P(Fϵ) = 0 for all ϵ > 0. Now, fix ϵ > 0 and

set

Em1,m2 =

m2⋃
m=m1

{
ω :

∣∣∣∣Sm2(ω)

m2
− 1

2

∣∣∣∣ > ϵ

}
,

for positive integers m1 ≤ m2. For m1 ∈ N, define

Em1 =
∞⋃

m2=m1

Em1,m2 =
∞⋃

m2=m1

{
ω :

∣∣∣∣∣Sm2
2
(ω)

m2
2

− 1

2

∣∣∣∣∣ > ϵ

}
.

Clearly, one has Fϵ =
⋂∞
m1=1Em1 =

⋂∞
m1=1

⋃∞
m2=m1

Em1,m2 .
For convenience, if An ⊂ An+1 for all n, we write limnAn for

⋃
nAn. If An ⊃ An+1 for all

n, we write limnAn for
⋂
nAn. Using the above notations, we may rewrite

Em1 = lim
m2→∞

Em1,m2 , Fϵ = lim
m1→∞

Em1 .

By Assumption 2, one has

P

( ∞⋂
m1=1

∞⋃
m2=m1

Em1,m2

)
= lim

m1→∞
lim

m2→∞
P(Em1,m2).

Note that Em1,m2 is determined by Xm1 , ..., Xm2 . Recall the notation S′
n = Xn,1 + · · ·+Xn,n.

By the Chebyshev inequality, one has

P(Em1,m2) ≤
m2∑

m=m1

Pm2

(∣∣∣∣S′
m2

m2
− 1

2

∣∣∣∣ > ϵ

)
≤ 1

4ϵ2

m2∑
m=m1

1

m2
.

As a result, this leads to

P(Fϵ) = lim
m1→∞

lim
m2→∞

P(Em1,m2) ≤
1

4ϵ2
lim

m1→∞
lim

m2→∞

m2∑
m=m1

1

m2
= 0.

�

7


