GUAN-YU CHEN

1. INTRODUCTION

1.1. Probabilities on finite sets. Let's consider an experiment with finite number of possible outcomes, say $\omega_1, ..., \omega_n$. The set $\Omega = \{\omega_1, ..., \omega_n\}$ is called the sample space and ω_i is named as a sample point. An event is a subset of Ω . A probability on Ω is a function \mathbb{P} defined on Ω satisfying

(1) $0 \leq \mathbb{P}(\omega_i) \leq 1$ for all $1 \leq i \leq n$.

(2)
$$\sum_{i=1}^{n} \mathbb{P}(\omega_i) = 1.$$

The probability of event $E \subset \Omega$ is defined by

$$\mathbb{P}(E) = \sum_{\omega_i \in E} \mathbb{P}(\omega_i).$$

Let \mathcal{F} be the collection of all subsets of Ω . The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is named a probability space.

Remark 1.1. It is clear that if E and F are mutually disjoint events, then $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F)$. Moreover, it is clear that $\mathbb{P}(\Omega) = 1$, $\mathbb{P}(\emptyset) = 0$, and $\mathbb{P}(E \cup F) = \mathbb{P}(E) + \mathbb{P}(F) - \mathbb{P}(E \cap F)$, where \emptyset is the empty set.

Let E, F be events and assume that $\mathbb{P}(E) > 0$. The conditional probability of F given E is defined by

$$\mathbb{P}(F|E) = \frac{\mathbb{P}(E \cap F)}{\mathbb{P}(E)}$$

Two events are said to be independent if $\mathbb{P}(E \cap F) = \mathbb{P}(E)\mathbb{P}(F)$.

Remark 1.2. Any event E is independent of Ω and \emptyset . Furthermore, if E and F are independent, then a set in $\{E, E^c, \Omega, \emptyset\}$ and a set in $\{F, F^c, \Omega, \emptyset\}$ are independent, where E^c denotes the complement of E in Ω .

Remark 1.3. Let $E_1, ..., E_m$ be mutually disjoint events such that $\bigcup_{i=1}^m E_i = \Omega$ and $\mathbb{P}(E_i) > 0$ for $1 \leq i \leq m$. Bayes's formula says that, for any event F satisfying $\mathbb{P}(F) > 0$,

$$\mathbb{P}(E_i|F) = \frac{\mathbb{P}(E_i)\mathbb{P}(F|E_i)}{\sum_{j=1}^m \mathbb{P}(E_j)\mathbb{P}(F|E_j)}, \quad \forall 1 \le i \le m.$$

A random variable is a real-valued function defined on Ω . For any random variable X and any subset $B \subset \mathbb{R}$, we write $\{X \in B\}$ for the set $\{\omega \in \Omega | X(\omega) \in B\}$. If B = [a, b], we also write $\{a \leq X \leq b\}$ for $\{X \in [a, b]\}$. For random variables X_1, X_2, \ldots and subsets B_1, B_2, \ldots , both $\{X_1 \in B_1, X_2 \in B_2, \ldots\}$ and $\{X_i \in B_i, \forall i\}$ denote the set $\bigcap_i \{X_i \in B_i\}$.

Two random variables X, Y are said to be independent if $\{X \leq x\}$ and $\{Y \leq y\}$ are independent for all $x, y \in \mathbb{R}$. For any random variable X, the distribution of X is defined by $F_X(x) = \mathbb{P}(X \leq x)$ and the expectation and variance are defined by

$$\mathbb{E}(X) := \sum_{i=1}^{n} X(\omega_i) \mathbb{P}(\omega_i), \quad \operatorname{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2.$$

Remark 1.4. Let X be a random variable and F_X be the distribution of X.

(1) F_X is a right-continuous non-decreasing function.

(2) $F_X(x) \to 0$ as $x \to -\infty$ and $F_X(x) \to 1$ as $x \to \infty$.

Furthermore, $\mathbb{E}(X) = \int_{-\infty}^{\infty} x dF_X(x)$, where the right side is known as the Riemann-Stieljes integral.

A sequence of random variables X_1, X_2, \dots is said to be identically distributed if they have the same distribution. A sequence of random variables X_1, X_2, \dots is said to be independent if, for any n and $x_1, ..., x_n \in \mathbb{R}$, $\mathbb{P}(X_i \le x_i, \forall 1 \le i \le n) = \prod_{i=1}^n \mathbb{P}(X_i \le x_i)$.

Law of large numbers: Consider a sequence of i.i.d. (independent and identically distributed) random variables, X_1, X_2, \dots Set $S_n = X_1 + \dots + X_n$. Suppose $-\infty < \mu = \mathbb{E}(X_1) < \infty$. Then,

- (1) (weak version) $\mathbb{P}(|S_n/n \mu| > \epsilon) \to 0$ as $n \to \infty$ for all $\epsilon > 0$.
- (2) (strong version) $\mathbb{P}(S_n/n \to \mu) = 1.$

Central limit theorem: Let X_1, X_2, \dots be i.i.d. random variables and set $S_n = \sum_{i=1}^n X_i$. Suppose $\mu = \mathbb{E}X_1$ exists and $0 < \sigma^2 = \operatorname{Var}(X_1) < \infty$. Then,

$$\lim_{n \to \infty} \mathbb{P}\left(a \le \frac{S_n - n\mu}{\sqrt{n\sigma^2}} \le b\right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx, \quad \forall a < b.$$

Remark 1.5. In the law of large numbers, the weak version says that S_n/n converges to μ in probability and the strong version says that S_n/n converges to μ almost surely or with probability 1. The central limit theorem says that $(S_n - n\mu)/(\sqrt{n\sigma})$ converges in distribution to the standard normal random variable.

1.2. Independent tosses of a fair coin. Let n be a positive integer. Consider an experiment of tossing a fair coin independently for n times, that is,

- (a) There are 2^n outcomes, which are all $\{H, T\}$ -valued *n*-vectors, where "H" and "T" represent for "Head" and "Tail".
- (b) Each of the 2^n outcomes are equally likely to occur, namely, every *n*-vector has probability 2^{-n} .

Let $(\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$ be the corresponding probability space. It is easy to see that Ω_n consists of all $\{H, T\}$ -valued *n*-vectors, \mathcal{F}_n is the collection of all subsets of Ω_n and \mathbb{P}_n is the probability on \mathcal{F}_n , which is uniform over all sample points in Ω_n .

Concerning the experiment of flipping a fair coin for infinitely many times, we set $\Omega = \{\omega = \omega \}$ $(\omega_1, \omega_2, \ldots) | \omega_i \in \{H, T\}, \forall i\}$ and define

$$\mathcal{E}(x) = \{ \omega \in \Omega | (\omega_1, ..., \omega_n) = x \}, \quad \forall x \in \Omega_n, \ n \ge 1,$$

and

$$\mathcal{E}(A) = \bigcup_{x \in A} \mathcal{E}(x), \quad \forall A \in \mathcal{F}_n, n \ge 1.$$

Clearly, $\mathcal{E}(A) = A \times \Omega$ for all $A \in \bigcup_{n \ge 1} \mathcal{F}_n$. By defining $\mathcal{E}(\mathcal{F}_n) := \{\mathcal{E}(A) | A \in \mathcal{F}_n\}$, one has $\mathcal{E}(\mathcal{F}_n) \subset \mathcal{E}(\mathcal{F}_{n+1})$. To discuss the law of large numbers and the central limit theorem, we address the following assumption.

Suppose there is a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where \mathcal{F} is some structured collection of subsets of Ω (say, a σ -field) containing $\bigcup_{n\geq 1} \mathcal{E}(\mathcal{F}_n)$ and $\mathbb{P}(\mathcal{E}(A)) = \mathbb{P}_n(A)$ for all $A \in \mathcal{F}_n$ and $n \geq 1$.

To quantify the model of flipping coins, we set $X_i(\omega) = \mathbf{1}_H(\omega_i)$. It is easy to check that X_1, X_2, \dots are i.i.d. with $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = 0) = 1/2$. The law of large number says

$$\lim_{n \to \infty} \mathbb{P}(|S_n/n - 1/2| > \epsilon) = 0, \ \forall \epsilon > 0, \quad \mathbb{P}\left(\lim_{n \to \infty} \frac{S_n}{n} = \frac{1}{2}\right) = 1,$$

where $S_n = \sum_{i=1}^n X_i$, while the central limit theorem refers to the limit of

$$\lim_{n \to \infty} \mathbb{P}\left(a \le \frac{S_n - n/2}{\sqrt{n/4}} \le b\right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx, \quad \forall a < b.$$

In the next three subsections, we will give rigorous proofs of the above theorems.

1.3. The weak law of large numbers for i.i.d. Bernoulli sequences.

Theorem 1.1 (Weak law of large numbers). Let S_n be the number of heads in the first n independent tosses of a fair coin. Then, for $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}(|S_n/n - 1/2| \ge \epsilon) = 0.$$

To prove the above theorem, we need the Chebyshev inequality.

Proposition 1.2 (Chebyshev inequality). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with $|\Omega| < \infty$ and X be a random variable on Ω . Then, for any $\epsilon > 0$,

$$\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E}X^2}{\epsilon^2}$$

Exercise 1.1. Prove the above proposition.

Proof of Theorem 1.1. For $n \ge 1$ and $1 \le i \le n$, let $X_{n,i}$ be the random variable defined by

$$X_{n,i}(\omega) = \mathbf{1}_H(\omega_i) = \begin{cases} 1 & \text{if the } i\text{-th entry of } \omega \text{ is } H, \\ 0 & \text{if the } i\text{-th entry of } \omega \text{ is } T, \end{cases} \quad \forall \omega = (\omega_1, ..., \omega_n) \in \Omega_n.$$

Set $S'_n = X_{n,1} + X_{n,2} + \dots + X_{n,n}$. Obviously, one has

$$\{|S_n/n - 1/2| \ge \epsilon\} = \mathcal{E}(\{|S'_n/n - 1/2| \ge \epsilon\}).$$

This implies

$$\mathbb{P}(|S_n/n - 1/2| \ge \epsilon) = \mathbb{P}_n(|S'_n/n - 1/2| \ge \epsilon).$$

Observe that

$$\mathbb{E}X_{n,i}^2 = \mathbb{E}X_{n,i} = \mathbb{P}_n(\{(\omega_1, \dots, \omega_n) | \omega_i = H\}) = 1/2$$

and, for $i \neq j$,

$$\mathbb{E}(X_{n,i}X_{n,j}) = \mathbb{P}_n(\{(\omega_1, \dots, \omega_n) | \omega_i = \omega_j = H\}) = 1/4.$$

Using the linearity of the expectation, we have

$$\forall 1 \le i \le n, \quad \mathbb{E}(X_{n,i} - 1/2)^2 = \mathbb{E}X_{n,i}^2 - \mathbb{E}X_{n,i} + 1/4 = 1/4$$

and

$$\forall i \neq j, \quad \mathbb{E}[(X_{n,i} - 1/2)(X_{n,j} - 1/2)] = 0.$$

Write

$$\frac{S'_n}{n} - \frac{1}{2} = \frac{1}{n} \sum_{i=1}^n (X_{n,i} - 1/2).$$

As a result of the above computations, we obtain

$$\mathbb{E}\left(\frac{S'_n}{n} - \frac{1}{2}\right)^2 = \frac{1}{n^2} \sum_{i,j=1}^n \mathbb{E}[(X_{n,i} - 1/2)(X_{n,j} - 1/2)]$$
$$= \frac{1}{n^2} \sum_{i=1}^n \mathbb{E}(X_{n,i} - 1/2)^2 = \frac{1}{4n}.$$

Consequently, the Chebyshev inequality implies

 $\mathbb{P}_n(|S'_n/n - 1/2| \ge \epsilon) \le 1/(4n\epsilon^2) \to 0,$

as $n \to \infty$.

Remark 1.6. In the above proof, the last inequality says that the probability $\mathbb{P}(|S_n/n-1/2| \ge \epsilon)$ converges to 0 at least polynomially. We refer the readers to the topic of large deviation for a precise estimation of this convergence.

Note that the law of large numbers does not mean $S_n/n = 1/2$ (in any suitable sense). In fact, one has

(1.1)
$$\max_{0 \le k \le n} \mathbb{P}(S_n = k) = \mathbb{P}(S_n = \lfloor n/2 \rfloor), \quad \lim_{n \to \infty} \mathbb{P}(S_n/n = 1/2) = 0.$$

where $\lfloor t \rfloor := \max\{n \in \mathbb{Z} | n \leq t\}$. To see a proof, we need the following facts.

Lemma 1.3. For the *n* independent tosses of a fair coin, there are $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ n-vectors with exactly *k* heads appear.

Stirling's formula

(1.2)
$$n! = \sqrt{2\pi} e^{-n} n^{n+1/2} (1+\epsilon_n)$$

where ϵ_n converges to 0 as n tends to infinity. More precisely, it holds true that

(1.3)
$$\sqrt{2\pi}n^{n+1/2}e^{-n+1/(12n+1)} < n! < \sqrt{2\pi}n^{n+1/2}e^{-n+1/(12n+1)}$$

and this implies that $\epsilon_n = \frac{1}{12n} + O\left(\frac{1}{n^2}\right)$.

The first equality in (1.1) is obvious from Lemma 1.3. To see the limit, we let S'_n be the random variable in the proof of Theorem 1.1. Note that

$$\mathbb{P}(S_n/n = 1/2) = \mathbb{P}_n(S'_n/n = 1/2) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ 2^{-n} \binom{n}{n/2} & \text{if } n \text{ is even} \end{cases}$$

In the case that n = 2m, one has

$$2^{-2m}\binom{2m}{m} = 2^{-2m}\frac{(2m)!}{m!m!} = 2^{-2m}\frac{\sqrt{2\pi}e^{-2m}(2m)^{2m+1/2}(1+\epsilon_{2m})}{2\pi e^{-2m}m^{2m+1}(1+\epsilon_{m})^{2}} = \frac{1}{\sqrt{\pi m}}(1+\delta_{m}).$$

Clearly, $\delta_m \to 0$ as $m \to \infty$.

In fact, there is a more general estimation. For $0 \le k \le n$, we write

(1.4)
$$\mathbb{P}(S_n = k) = \sqrt{\frac{2}{\pi n}} (1 + \delta_{n,k})$$

Exercise 1.2. Let $K_n > 0$ be a sequence satisfying $K_n = o(\sqrt{n})$ and $\delta_{n,k}$ be the constant in (1.4). Show that

$$\max_{k:|k-n/2| < K_n} |\delta_{n,k}| \to 0, \quad \text{as } n \to \infty.$$

Hint: Use Stirling's formula to derive

$$\delta_{n,k} = \frac{n^{n+1}(1+\epsilon_n)}{(2k)^{k+1/2}(2n-2k)^{n-k+1/2}(1+\epsilon_k)(1+\epsilon_{n-k})} - 1$$

One may conclude from the above exercise that, for $K_n \to \infty$ and $K_n = o(\sqrt{n})$,

$$\mathbb{P}(|S_n - n/2| \le K_n) = \frac{2\sqrt{2}K_n}{\sqrt{\pi n}}(1 + o(1)).$$

1.4. The central limit theorem for i.i.d. Bernoulli sequences.

Theorem 1.4 (The central limit theorem). Let S_n denote the number of heads in the first n independent tosses of a fair coin and Φ be a function defined by

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt.$$

For $x \ge 0$, one has

(1.5)
$$\lim_{n \to \infty} \mathbb{P}\left(\left| \frac{S_n}{n} - \frac{1}{2} \right| < \frac{x}{2\sqrt{n}} \right) = \Phi(x) - \Phi(-x).$$

In particular, for $x \in \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{S_n}{n} - \frac{1}{2} < \frac{x}{2\sqrt{n}}\right) = \Phi(x).$$

Proof. Let S'_n be the random variable defined in the proof of the weak law of large numbers. As before, we have

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \frac{1}{2}\right| < \frac{x}{2\sqrt{n}}\right) = \mathbb{P}_n\left(\left|\frac{S'_n}{n} - \frac{1}{2}\right| < \frac{x}{2\sqrt{n}}\right), \quad \forall x > 0.$$

First, consider the case n = 2m. For $m \ge 1$ and $x \ge 0$, set

$$q_{m,x} = \mathbb{P}_{2m}(|S'_{2m} - m| < x\sqrt{m/2})$$

= $2^{-2m} \sum_{k:|k-m| < x\sqrt{m/2}} {2m \choose k} = 2^{-2m} \sum_{j \in R_m} {2m \choose m+j},$

where $R_m = \{j : |j| < x\sqrt{m/2}\}$. Write $2^{-2m} \binom{2m}{m+j} = p_m D_{m,j}$ with $p_m = \mathbb{P}_{2m}(S'_{2m} = m)$ and

$$D_{m,j}^{-1} = \left(1 + \frac{|j|}{m}\right) \left(1 + \frac{|j|}{m-1}\right) \cdots \left(1 + \frac{|j|}{m-|j|+1}\right).$$

Using the expression $\log(1 + t) = t(1 + f(t))$, we have

$$\log D_{m,j} = -\sum_{k=0}^{|j|-1} \frac{|j|}{m-k} \left(1 + f\left(\frac{|j|}{m-k}\right) \right).$$

This leads to $D_{m,j} = e^{-(1+\epsilon_{m,j})j^2/m}$ with $\epsilon_{m,0} = 0$ and, for $j \neq 0$,

$$\epsilon_{m,j} = \frac{1}{|j|} \sum_{k=0}^{|j|-1} \frac{k}{m-k} + \frac{1}{|j|} \sum_{k=0}^{|j|-1} \frac{m}{m-k} f\left(\frac{|j|}{m-k}\right).$$

Using the fact that $f(t)/t \to -1/2$ as $t \to 0$, one can show that, as $m \to \infty$,

$$f\left(\frac{|j|}{m-k}\right) = \frac{|j|}{m-k}\left(-\frac{1}{2} + o(1)\right),$$

where o(1) is uniformly for $0 \le k < |j|$ and $j \in R_m$. Consequently, the above computation yields $\epsilon_{m,j} = O(1/\sqrt{m})$ uniformly for $j \in R_m$.

Next, we write $D_{m,j} = (1 + \Delta_{m,j})e^{-j^2/m}$ with $\Delta_{m,j} = e^{-\epsilon_{m,j}j^2/m} - 1$. As $t \to 0$, one has $e^t = 1 + t(1 + o(1))$. This implies $\Delta_{m,j} = O(1/\sqrt{m})$ uniformly for $j \in R_m$ as $m \to \infty$. Recall the notation $p_m = \frac{1}{\sqrt{\pi m}}(1 + \delta_m)$ and set

$$q_{m,x} = \sum_{j \in R_m} p_m D_{m,j} = A_m + B_m,$$

where

$$A_m = \sum_{j \in R_m} \frac{e^{-j^2/m}}{\sqrt{\pi m}}, \quad B_m = \frac{1}{\sqrt{\pi m}} \sum_{j \in R_m} \left(\Delta_{m,j} e^{-j^2/m} + \delta_m + \delta_m \Delta_{m,j} e^{-j^2/m} \right).$$

Note that

$$|B_m| \le \frac{1}{\sqrt{\pi m}} \sum_{j \in R_m} (|\Delta_{m,j}| + |\delta_m| + |\Delta_{m,j}\delta_m|)$$

When $m \to \infty$, A_m converges to $\frac{1}{\sqrt{2\pi}} \int_{-x}^{x} e^{-t^2/2} dt$ and $|B_m| = O(|\delta_m| + 1/\sqrt{m})$. This proves the limit in (1.5) with even n.

For the case n = 2m + 1, let h > 0. Observe that, when n is large enough, one has

$$\left\{ (w,v) \in \Omega_{2m} \times \Omega_1 : |S'_{2m}(w) - m| < \frac{x - h}{2} \sqrt{2m} \right\}$$
$$\subset \left\{ (w,v) \in \Omega_{2m+1} : \left| S'_{2m+1}(w,v) - \left(m + \frac{1}{2}\right) \right| < \frac{x}{2} \sqrt{2m+1} \right\}$$
$$\subset \left\{ (w,v) \in \Omega_{2m} \times \Omega_1 : |S'_{2m}(w) - m| < \frac{x + h}{2} \sqrt{2m} \right\}$$

Letting n tend to infinity derives

$$\Phi(x-h) - \Phi(h-x) \le \liminf_{m \to \infty} \mathbb{P}_{2m+1}\left(\left| S'_{2m+1} - \frac{2m+1}{2} \right| < \frac{x}{2}\sqrt{2m+1} \right)$$

and

$$\limsup_{m \to \infty} \mathbb{P}_{2m+1}\left(\left| S'_{2m+1} - \frac{2m+1}{2} \right| < \frac{x}{2}\sqrt{2m+1} \right) \le \Phi(x+h) - \Phi(-x-h)$$

Since Φ is continuous, letting $h \to 0$ gives the desired identity in (1.5).

1.5. The strong law of large numbers for i.i.d. Bernoulli sequences. The law of large numbers and the central limit theorem provide us a way of comparing the sample mean of heads S_n/n and the probability of heads 1/2. It is natural to arise the following question: Could it be possible that no matter how the first n tosses are, eventually things will settle down and smooth out in the way that

$$\lim_{n \to \infty} \frac{S_n}{n} = \frac{1}{2}$$

Clearly, this can fail if all tosses result in heads.

Theorem 1.5 (Strong law of large numbers). Let S_n be the number of heads in the first n independent tosses of a fair coin. Then, $\mathbb{P}(S_n/n \to 1/2) = 1$.

As before, let $X_1, X_2, ...$ be the i.i.d. sequence of random variables satisfying $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = 0) = 1/2$ and set $S_n = X_1 + X_2 + \cdots + X_n$. To prove the above theorem, we need the following lemma.

Lemma 1.6. Let Ω be the sample space on which X_1, X_2, \ldots are defined and $S_n = \sum_{i=1}^n X_i$. Then, for $\omega \in \Omega$,

$$\lim_{n \to \infty} \frac{S_n(\omega)}{n} = \frac{1}{2} \quad \Leftrightarrow \quad \lim_{m \to \infty} \frac{S_{m^2}(\omega)}{m^2} = \frac{1}{2}.$$

Proof. For $n \ge 1$, let m be a positive integer satisfying $m^2 \le n < (m+1)^2$. It is obvious that $0 \le n - m^2 \le 2m$ and this implies

$$\left|\frac{S_n(\omega)}{n} - \frac{S_{m^2}(\omega)}{m^2}\right| = \left|\frac{S_n(\omega)}{m^2} - \frac{S_{m^2}(\omega)}{m^2} + \left(\frac{1}{n} - \frac{1}{m^2}\right)S_n(\omega)\right|$$
$$\leq \frac{|n - m^2|}{m^2} + n\left|\frac{1}{n} - \frac{1}{m^2}\right| = \frac{2|n - m^2|}{m^2} \leq \frac{4}{m}.$$

Letting $m \to \infty$ gives the desired property.

Proof of Theorem 1.5. Let $F = \{\omega : S_n(\omega)/n \not\rightarrow 1/2\}$ and, for $\epsilon > 0$, set

$$F_{\epsilon} = \left\{ \omega : \left| \frac{S_{m^2}(\omega)}{m^2} - \frac{1}{2} \right| > \epsilon \text{ for infinitely many } m \right\}$$

Note that $F_{\epsilon_1} \subset F_{\epsilon_2}$ for $\epsilon_1 > \epsilon_2$ and $F = \bigcup_{k=1}^{\infty} F_{1/k}$. Consider the following two assumptions. Assumption 1: If $B_1, B_2, \ldots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} B_n \in \mathcal{F}$ and $\bigcap_{n=1}^{\infty} B_n \in \mathcal{F}$.

Assumption 2: If $A_n \subset \Omega$ is a sequence satisfying $A_n \subset A_{n+1}$ (resp. $A_n \supset A_{n+1}$), then

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n). \quad \left(\text{resp.} \quad \mathbb{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).\right)$$

To prove $\mathbb{P}(F) = 0$, it is equivalent to show that $\mathbb{P}(F_{\epsilon}) = 0$ for all $\epsilon > 0$. Now, fix $\epsilon > 0$ and set

$$E_{m_1,m_2} = \bigcup_{m=m_1}^{m_2} \left\{ \omega : \left| \frac{S_{m^2}(\omega)}{m^2} - \frac{1}{2} \right| > \epsilon \right\},\$$

for positive integers $m_1 \leq m_2$. For $m_1 \in \mathbb{N}$, define

$$E_{m_1} = \bigcup_{m_2=m_1}^{\infty} E_{m_1,m_2} = \bigcup_{m_2=m_1}^{\infty} \left\{ \omega : \left| \frac{S_{m_2^2}(\omega)}{m_2^2} - \frac{1}{2} \right| > \epsilon \right\}.$$

Clearly, one has $F_{\epsilon} = \bigcap_{m_1=1}^{\infty} E_{m_1} = \bigcap_{m_1=1}^{\infty} \bigcup_{m_2=m_1}^{\infty} E_{m_1,m_2}$.

For convenience, if $A_n \subset A_{n+1}$ for all n, we write $\lim_n A_n$ for $\bigcup_n A_n$. If $A_n \supset A_{n+1}$ for all n, we write $\lim_n A_n$ for $\bigcap_n A_n$. Using the above notations, we may rewrite

$$E_{m_1} = \lim_{m_2 \to \infty} E_{m_1, m_2}, \quad F_\epsilon = \lim_{m_1 \to \infty} E_{m_1}.$$

By Assumption 2, one has

$$\mathbb{P}\left(\bigcap_{m_1=1}^{\infty}\bigcup_{m_2=m_1}^{\infty}E_{m_1,m_2}\right) = \lim_{m_1\to\infty}\lim_{m_2\to\infty}\mathbb{P}(E_{m_1,m_2}).$$

Note that E_{m_1,m_2} is determined by $X_{m_1}, ..., X_{m_2}$. Recall the notation $S'_n = X_{n,1} + \cdots + X_{n,n}$. By the Chebyshev inequality, one has

$$\mathbb{P}(E_{m_1,m_2}) \le \sum_{m=m_1}^{m_2} \mathbb{P}_{m^2}\left(\left| \frac{S'_{m^2}}{m^2} - \frac{1}{2} \right| > \epsilon \right) \le \frac{1}{4\epsilon^2} \sum_{m=m_1}^{m_2} \frac{1}{m^2}.$$

As a result, this leads to

$$\mathbb{P}(F_{\epsilon}) = \lim_{m_1 \to \infty} \lim_{m_2 \to \infty} \mathbb{P}(E_{m_1, m_2}) \le \frac{1}{4\epsilon^2} \lim_{m_1 \to \infty} \lim_{m_2 \to \infty} \sum_{m=m_1}^{m_2} \frac{1}{m^2} = 0.$$