2. PROBABILITY SPACES

2.1. Probabilities.

Definition 2.1. Given a set {2, a non-empty collection F of subsets of €2 is a field over € if

(1) AnNBe Fand AUB e F for A,B e F.
(2) A°e Ffor Ae F.

The elements of F are called events.

Remark 2.1. A field is a collection of subsets which is closed under finite union, finite inter-
section and complement. In particular, ) and Q are contained in F.

Remark 2.2. The requirement of AN B € F in (1) can be removed using the identity AN B =
(A°U B)“.

Remark 2.3. The requirement of closedness under the union can be replaced by the following.
AUBeF, VA BeF, AnB=0.
Exercise 2.1. Could Definition 2.1(1) be replaced by the following?
A Be F,AnB=(0 = AUBEF.

Definition 2.2. Let F be a field over 2. A non-negative set function P defined on F is called
a finite probability if

(1) (Normalization) P(2) = 1.

(2) (Finite additivity) P(AU B) = P(A) 4+ P(B) for all A, B € F satisfying AN B = 0.
The triple (€2, F,P) is called a finite probability space.

Remark 2.4. Note that P(0) = 0 and, for A,B € F, P(AUB) =P(A) + P(B) — P(AN B).

Ezample 2.1. For n > 1, let Q,, = {w = (w1, ...,wp)|w; € {0,1},Vi}, F, be the power set
of Q, and P,(A4) = |A|/2". Then, (Qy,,F,,P,) forms a finite probability. Set Q@ = {w =
(wi,wa,...)Jw; € {0,1},Vi} and F = {J,,(Fn x Q), where F, x Q := {A x QA € F,} and
AxQ:={w=(w1,...)|(w1,...,wn) € A}. One may check that F is a field.

Observe that, for B € F, there are n > 1 and A € F,, such that B = A x Q. In the above
setting, define P(B) = P,,(A4). Note that the definition is independent of the choice of n and
A, and P becomes a finite probability.

Exercise 2.2. Let Ay, ..., A, € F. Show that P(|J" ; 4;) < >, P(4).

Definition 2.3. A field F over a set € is a o-field if the countable union and countable
intersection of events in F are closed. That is, if Ay, As,... € F, then |J,, 4, € F and
N, An € F.

Remark 2.5. The filed F in Example 2.1 is not a o-field.

Remark 2.6. Similar to Remarks 2.2 and 2.3, the requirement of [, A, € F can be removed
or the requirement | J,, A,, € F can be restricted to sequences of mutually disjoint sets.

Exercise 2.3. Prove Remark 2.6.

Exercise 2.4. Let F be a collection of subsets of 2. Prove that F is a o-field if and only if
(1) Qe F.
(2) AnB e Fforall A;B e F.
(3) A€ F forall Ac F.
(4) U,, An € F for any mutually disjoint sequence A,, € F.
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Definition 2.4. Let (22, F,P) be a finite probability space. P is called o-additive or count-
ably additive if P(,~, An) = > .2 P(A,) for any sequence of mutually disjoint events
A, € F satisfying | J;7; Ap, € F.

Exercise 2.5. Let (2, F,P) be a finite probability and A,, € F for n > 1. Show that if P is
o-additive and | ;7 ; A, € F, then P(Up" 1 A,) < > 07 P(Ay).

Theorem 2.1. Let (2, F,P) be a finite probability. Then, the following are equivalent.

(1) P is o-additive.

(2) P is continuous from above. That is, P((,2, An) = lim, P(A,) for A, € F satisfying
A, D A1 and ()2, An € F.

(3) P is continuous from below. That is, P(J;~, Ay) = lim,, P(A,) for A, € F satisfying
A, C Apr and U, An € F.

(4) P is continuous at O. That is, lim, P(A,) = 0 for A, € F satisfying A, D Any1 and
Npz1An = 0.

Proof. Obviously, (2) and (3) are equivalent. Assume that (1) holds and let A,, C A, ;1. Set
By = A, and Bpy1 = Apy1 \ Ay for n > 1. 1t is clear that B, € F, ;,_; Bm = A, and
Un, An = U2 By. Since B, are mutually disjoint, the o-additivity implies

P (G An> =P (G Bn) = iIP’(Bn) = lim En: P(By) = lim P(A,).

n=1

This implies (3). Note that (4) is a special case of (2), it remains to show that (4)=-(1).
Assume (4) holds and let A, € F be mutually disjoint and satisfy (J;,; A, € F. Set C), =
A\Ur _ Ap. Clearly, Cp, € F, Cp, D Cpyq and ()2 Cy, = 0. Observe that

P(A) = P(Cy) + P(A\ C) = P(C) + 3 P(Ap).
m=1

Letting n tend to infinity gives the desired identity. U

Exercise 2.6. Prove that, in Example 2.1, P is o-additive. Hint: Cantor’s intersection
theorem.

Definition 2.5. A triple (2, F,P) is called a probability space if F is a o-field and

(1) (Normalization) P(2) = 1.

(2) (o-additivity) P(Us2; An) = > oo P(A,,) for any mutually disjoint sequence A,, € F.
P is called a probability.

Definition 2.6. Let F be a o-field and 4,, € F.

(1) limsup,, A4,, is the event that contains infinitely many A,, which is exactly the set
Mo, (Use_, Am). We write it {A,, i.0.} for short.

n=1 m=n * M
(2) liminf, A, is the event that contains all except finitely many A,, which is equal to

Unz: (Ni=n Am).

Write lim,, A,, for either case if limsup,, A,, = liminf,, A,,.

Exercise 2.7. Let (2, F,P) be a probability space and A,, € F.

(1) Show that P(limsup,, A,) > limsup,, P(4,) and P(liminf,, A,) < liminf, P(A,).
(2) Give examples such the equalities in (1) fail.
(3) Use (1) to conclude that if lim,, A, exists, then P(lim, A,) = lim, P(4,).
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2.2. Fields and o-fields. Given a set 2, there are two trivial o-fields, {A|A C Q} and {0, Q}.
Note that if, for A € L, F) is a field (resp. o-field), then (., F is a field (resp. o-field).

Remark 2.7. Let © be a set and € be a collection of subsets of €). There exist smallest field
and o-field containing &, which are denoted by F(€) and o (&) in this notes.

Remark 2.8. Let F be a collection of subsets of 2. Note that, when there is B C €2 such that
A C B for all A € F, one may consider the smallest o-field over B that contains F and we
write it as op(F).

Definition 2.7. Let €2 be a set and & be a collection subsets of 2. £ is said to be a monotone
class if lim,, 4,, € € for A,, € £ satisfying A,, C A, 11 for all n or A, D A, for all n.

Remark 2.9. As before, monotone classes are closed under the intersection and this implies
that if £ is a collection of subsets of ), then there is a smallest monotone class containing £.
We write it as u(E).

Theorem 2.2 (Monotone class theorem). Let F be a field over Q. Then, u(F) = o(F).

Proof. Tt is obvious from the definition that u(F) C o(F). For u(F) D o(F), it remains to
show that p(F) is closed under complement and finite intersection. We prove the closedness
of complement and leave the closedness of finite intersection for the reader. Set
M = {A € p(F)A° € u(F)}.

Clearly, F € M C p(F) and it suffices to prove that M is a monotone class, which leads
to M = p(F). Let A, € M be a monotone sequence. Clearly, AS € u(F). Since p(F) is a
monotone class, lim, A, € u(F) and (lim, A,)¢ = lim,, AS € p(F). This implies lim,, A,, € M,
as desired. The proof is known as the principle of appropriate sets. O
Definition 2.8. Let C be a class of subsets of 2. Then, C is called

e a w-system if it is closed under finite intersection. That is, AN B € C for A,B € C.
e a A-system if it contains ) and is closed under the complements and the countable
disjoint unions. That is,

QelC, A°eC,VAel

[j A, eC
n=1

for any sequence (A,,)>° ; of mutually disjoint sets in C.

and

Remark 2.10. If a w-system is also a A-system, then it is a o-field.

Remark 2.11. Assuming 2 € C and the closedness of finite disjoint unions in C, the closedness
of complement is equivalent to the closedness of proper difference, that is, B\ A € C for all
A, B € C satisfying A C B.

Remark 2.12. For any two probabilities P1, Py on (€2, F), the class of events in F such that
Py = Py forms a A-system.

Lemma 2.3 (The 7 — A\ lemma). If P is a w-system and L is a A-system that contains P,
then o(P) C L.

Proof. Let Ly be the smallest A\-system containing P. By Remark 2.10, it suffices to show that
Ly is a m-system. For A C Q, let L4 be the class of all subsets B of €2 such that AN B € Ly.
It is obvious that
AeLlp & BeLja.
10



We prove in the following that £, is a A-system for A € Ly. Let A € Ly. Observe that
ANQ = A€ Ly. This implies Q2 € L4. Let (B,):2; be a sequence of mutually disjoint sets
in £4. Then,

AN <G Bn) = G(AmBn)eﬁo,

n=1 n=1
which yields | J;2 | Bn € L4. For B € L4, one has BN A € Ly. By Remark 2.11, BN A =
A\ (BN A) € Ly. This implies B¢ € L4 as desired.

Let A € P. Note that if B € P, then AN B € P C Ly. This implies P C L4 for A € P
and, then, £y C L. Next, for A € P and B € Lj, one has B € L4 or equivalently A € Lp.
This implies that, for B € Ly, P C L and hence £y C Lp. Consequently, we may conclude
that, for A, B € Ly, AN B € L and this proves that Ly is a m-system. O

Exercise 2.8. Let F be a collection of subsets of Q. Define F N B := {AN B|A € F} for
Bc Qand F x B={A x B|A € F} for any set B. Show that, og(F N B) = oq(F) N B for
B C Q and oqxp(F X B) = 0q(F) x B for any set B.

Remark 2.13. In the case Q@ = R and F = {(a,b] : a,b € R,a < b}, o(F) is call the Borel
o-field on R and is denoted by B(R).

Exercise 2.9. Let F be a class of subsets of R. Prove that if, for any a < b, F contains at
least one of (a,b), (a,b], [a,b) and [a,b], then o(F) D B(R).

In the following, a collection of subsets of any set () is mostly assumed to contain 2.

Ezxample 2.2. Given two sets 21,89, let 1 and F» be collections of subsets in €7 and Q9
containing €21, 5. We use the notation F; ® F» to denote the smallest o-filed generated by
F1 X Fy = {Al X Ayt A; € Fi,0 = 1,2}, i.e. U(]rl X ./rg) Then, F1 ® Fo = U(]rl) ® U(.FQ).
To prove this identity, it suffices to show that

FiF=0(F1) @ F, Fi1QF=F Qd(F).

We consider the former, while the latter can be proved in a similar way. Clearly, one has
F1®@ Fy C o(F1) ® Fa. To see the inverse direction, let B € F,. Note that Q1 X B € F; ® Fo.
By Exercise 2.8, this implies
F1®F2 D U(]:l X ]'—2) N (Ql X B) = O'leB((]'—1 X .7'—2) N (Ql X B))
D) Uﬂle(]’—l X B) = O‘(]'—l) X B.

Hence, we have F; ® Fy D o(Fy) x Fa, which leads to F1 ® Fo D o(F1) ® Fo.

Exercise 2.10. For ¢ = 1,2, let F; be a collection of subsets of §2;. Find an example such
that F1 @ Fa # o(F1) ® o(F2).

Ezample 2.3. Let n > 1. For 1 < i < n, let F; be a collection of subsets of €); containing €2;.
We write Q)" F; or F1®- - -®F, for the smallest o-field generated by [[I"_; F; = Fi x-- - X Fy.
By Example 2.2, one has

n k n k n
@7~ (17) (11 #) - (®7) (@ 7).
i=1 i=1 i=k+1 i=1 i=k+1
Inductively, we obtain @ ; F; = ., 0(F;). This leads to the fact that if I,..., I, are
collections of intervals of R in Remark 2.13, then o(I; x --- x I;,) = B(R) ® - - - ® B(R), which
is also written as B(R"™). (Why R € I; for all 1 <14 <mn is not requested?)
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Ezample 2.4. Let Q1, 9, ... be sets and = {w = (w1,w2, ...)|w; € Q;,Vi > 1}. For n > 1 and
A C T, i, define C(A) = {w € Q|(w1,...,w,) € A}. For n > 1, let F,, be a collection of
subsets of €2, including €2,. Consider the following classes.

Ci = U{C(A1 X e XAn)‘Ai € F, vl Slﬁn},
n=1

and

and

Cs=J{cAlAe @ ® F.}.
n=1

Obviously, Cs is a w-system and Cs is a field. It follows immediately from Exercise 2.8 that
o(C1) = 0(C2) = 0(C3). We write o(C;) as @y Fn.

In the case that 2,, = R and F,, is the class of intervals as in Remark 2.13, we write R*
and B(R*>) for  and o(Cy).

For n > 1, let F, be a collection of subsets of €2,,. Let p be a permutation of {1,2,...}. For
B C I[p2, Qn, define p(B) = {(wya),Wp(2); ---)|(w1,wa,...) € B} and, for any collection C of
subsets of [[72; Qy, define p(C) = {p(B)|B € C}. In the case Q,, € F, for all n, one can show
that p(I[,2; Fn) = [Ih=1 Fp(n), which leads to

(2.1) P (®}—”> - ®‘Fp(n)'
n=1 n=1

Further, for any increasing sequence of positive integer, (s,)52,, and B € @), Fs,, one has

(2.2) {w = (w1,ws,...)|(ws,)3%; € B} € Q) Fn-
n=1

Ezample 2.5. Let T be a subset of R and, for ¢t € T, let ; be a set and Q = {w = (w¢)ter|w: €
O, Vt € T}. For t € T, let F; be a collection of subsets of €, and assume that Q; € F;. For
n>1,ti,ty, ...ty € T and A C [ Q,, set D(t1, ..., tn, A) = {w € Q|(wy,, ..., wy,) € A}. For
any sequence t, € T and A C [[;7; Q,, define D(t1,ta,...,A) = {w € Q(wy,,wy,,...) € A}.
Consider the following classes.

(2.3) Dy = | J{D(tr, oo tn, Ay X -+ X Aty ooty € T, Ay € Fy, V1 < i <}
n=1

and
Dy = U {D(tl, vy by Ap X oo+ X An)’tl, ot €T, A; € U(.Fti>,V1 <1< TL}
n=1
and
(2.4) Dy = | J{D(t1, s tn, Altr, sty €ET,AE Fyy @+ ® F, ).
n=1

As before, one can show that o(D;) = o(D2) = 0(D3) and we write @, F for them.

Theorem 2.4. For A € Q,cr Fi, there are a sequence (t,)52, inT and a set B € @, Fi,
such that A = D(t1,ta,..., B).
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Proof. Let D be the following class

D= {D(tl,tQ,...,B)

o0
tneT,Be®}}n}

n=1
and D be the class in (2.3). Clearly, D; C D. To prove this theorem, it remains to show that
D C 0(Dy) and D is a o-field. First, we fix a sequence t,, € T' and let C; be the class relative
to the sequence F;, in Example 2.4. Clearly, 0(C1) = Qoo F,. By setting Q = [[02; Q,,
and Q = HteT\{tLt%_.} O, one has Q = Q x Q and D(ty,ta,...,B) = B x Q for B € o(Cy). By
Exercise 2.8, this implies
J({D(tl,tg, ,B)|B S Cl}) = O'(Cl X Q) = O‘(Cl) x Q) = {D(tl,tg, ,B)|B S O'(Cl)}

Since {D(t1,t2, ..., B)|B € C1} C D1, we obtain D C o(Dy).

Next, we prove that D is a o-field. Clearly, 2 € D. Note that, for A = D(t1,ts,...,B) € D,
A€ = D(t]_,tQ, ...,BC) € D. Forn > 1, let An = D(tnyl,tn’g, ,Bn) for some Bn € ®fi1 ‘Ftnz
We write {s1,s2,...} = {tnili,n > 1} and set

B;L:{UE ﬁQSm

m=1

(Utn,uvtn,z, ) S Bn} .

Clearly, A, = D(s1,$2,...,B],). Let (z]);’il be a subsequence of N such that {t,; : j =
1,2,..} = {sy|j = 1,2,...} and p be ziopermutation of N such that s;; = t, ;) for j > 1.
By defining p ((wr,,)321) = (h,,)) - one has B, = {o € [y Qul(s0,)521 € p(Ba)}

and, by (2.1) and (2.2), B], € Qp._; Fs,,- This implies |J,, A, = D(s1,52,...,U,, B),) € D.
The closedness of finite intersection can be shown in a similar way. This proves that D is a
o-field. O

Remark 2.14. For the special case of ; = R and F; = {(a,b] : a < b}, we write R and B(RT)
for Q@ and @, Fi. Let S C T be an uncountable set and consider

{weQuwy <OVt € S}, {weQuw =0, for some t € S}.

In general, these sets are not in B(RT).
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