2. Probability spaces

2.1. Probabilities.

Definition 2.1. Given a set Ω , a non-empty collection \mathcal{F} of subsets of Ω is a **field** over Ω if

- (1) $A \cap B \in \mathcal{F}$ and $A \cup B \in \mathcal{F}$ for $A, B \in \mathcal{F}$.
- (2) $A^c \in \mathcal{F}$ for $A \in \mathcal{F}$.

The elements of \mathcal{F} are called **events**.

Remark 2.1. A field is a collection of subsets which is closed under finite union, finite intersection and complement. In particular, \emptyset and Ω are contained in \mathcal{F} .

Remark 2.2. The requirement of $A \cap B \in \mathcal{F}$ in (1) can be removed using the identity $A \cap B = (A^c \cup B^c)^c$.

Remark 2.3. The requirement of closedness under the union can be replaced by the following.

$$A \cup B \in \mathcal{F}, \quad \forall A, B \in \mathcal{F}, A \cap B = \emptyset.$$

Exercise 2.1. Could Definition 2.1(1) be replaced by the following?

$$A, B \in \mathcal{F}, A \cap B = \emptyset \quad \Rightarrow \quad A \cup B \in \mathcal{F}.$$

Definition 2.2. Let \mathcal{F} be a field over Ω . A non-negative set function \mathbb{P} defined on \mathcal{F} is called a **finite probability** if

- (1) (Normalization) $\mathbb{P}(\Omega) = 1$.
- (2) (Finite additivity) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ for all $A, B \in \mathcal{F}$ satisfying $A \cap B = \emptyset$.

The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **finite probability space**.

Remark 2.4. Note that $\mathbb{P}(\emptyset) = 0$ and, for $A, B \in \mathcal{F}$, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

Example 2.1. For $n \geq 1$, let $\Omega_n = \{\omega = (\omega_1, ..., \omega_n) | \omega_i \in \{0, 1\}, \forall i\}$, \mathcal{F}_n be the power set of Ω_n and $\mathbb{P}_n(A) = |A|/2^n$. Then, $(\Omega_n, \mathcal{F}_n, \mathbb{P}_n)$ forms a finite probability. Set $\Omega = \{\omega = (\omega_1, \omega_2, ...) | \omega_i \in \{0, 1\}, \forall i\}$ and $\mathcal{F} = \bigcup_n (\mathcal{F}_n \times \Omega)$, where $\mathcal{F}_n \times \Omega := \{A \times \Omega | A \in \mathcal{F}_n\}$ and $A \times \Omega := \{\omega = (\omega_1, ...) | (\omega_1, ..., \omega_n) \in A\}$. One may check that \mathcal{F} is a field.

Observe that, for $B \in \mathcal{F}$, there are $n \geq 1$ and $A \in \mathcal{F}_n$ such that $B = A \times \Omega$. In the above setting, define $\mathbb{P}(B) = \mathbb{P}_n(A)$. Note that the definition is independent of the choice of n and A, and \mathbb{P} becomes a finite probability.

Exercise 2.2. Let $A_1, ..., A_n \in \mathcal{F}$. Show that $\mathbb{P}(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mathbb{P}(A_i)$.

Definition 2.3. A field \mathcal{F} over a set Ω is a σ -field if the countable union and countable intersection of events in \mathcal{F} are closed. That is, if $A_1, A_2, \ldots \in \mathcal{F}$, then $\bigcup_n A_n \in \mathcal{F}$ and $\bigcap_n A_n \in \mathcal{F}$.

Remark 2.5. The filed \mathcal{F} in Example 2.1 is not a σ -field.

Remark 2.6. Similar to Remarks 2.2 and 2.3, the requirement of $\bigcap_n A_n \in \mathcal{F}$ can be removed or the requirement $\bigcup_n A_n \in \mathcal{F}$ can be restricted to sequences of mutually disjoint sets.

Exercise 2.3. Prove Remark 2.6.

Exercise 2.4. Let \mathcal{F} be a collection of subsets of Ω . Prove that \mathcal{F} is a σ -field if and only if

(1)
$$\Omega \in \mathcal{F}$$
.

- (2) $A \cap B \in \mathcal{F}$ for all $A, B \in \mathcal{F}$.
- (3) $A^c \in \mathcal{F}$ for all $A \in \mathcal{F}$.
- (4) $\bigcup_n A_n \in \mathcal{F}$ for any mutually disjoint sequence $A_n \in \mathcal{F}$.

Definition 2.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a finite probability space. \mathbb{P} is called σ -additive or countably additive if $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$ for any sequence of mutually disjoint events $A_n \in \mathcal{F}$ satisfying $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Exercise 2.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a finite probability and $A_n \in \mathcal{F}$ for $n \geq 1$. Show that if \mathbb{P} is σ -additive and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$, then $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mathbb{P}(A_n)$.

Theorem 2.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a finite probability. Then, the following are equivalent.

- (1) \mathbb{P} is σ -additive.
- (2) \mathbb{P} is continuous from above. That is, $\mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = \lim_n \mathbb{P}(A_n)$ for $A_n \in \mathcal{F}$ satisfying $A_n \supset A_{n+1}$ and $\bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.
- (3) \mathbb{P} is continuous from below. That is, $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \lim_n \mathbb{P}(A_n)$ for $A_n \in \mathcal{F}$ satisfying $A_n \subset A_{n+1}$ and $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.
- (4) \mathbb{P} is continuous at \emptyset . That is, $\lim_n \mathbb{P}(A_n) = 0$ for $A_n \in \mathcal{F}$ satisfying $A_n \supset A_{n+1}$ and $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Proof. Obviously, (2) and (3) are equivalent. Assume that (1) holds and let $A_n \subset A_{n+1}$. Set $B_1 = A_n$ and $B_{n+1} = A_{n+1} \setminus A_n$ for $n \ge 1$. It is clear that $B_n \in \mathcal{F}, \bigcup_{m=1}^n B_m = A_n$ and $\bigcup_{n=1}^{\infty} A_n = \bigcup_{n=1}^{\infty} B_n$. Since B_n are mutually disjoint, the σ -additivity implies

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} B_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(B_n) = \lim_{n \to \infty} \sum_{m=1}^{n} \mathbb{P}(B_m) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

This implies (3). Note that (4) is a special case of (2), it remains to show that $(4) \Rightarrow (1)$. Assume (4) holds and let $A_n \in \mathcal{F}$ be mutually disjoint and satisfy $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$. Set $C_n = A \setminus \bigcup_{m=1}^{n} A_m$. Clearly, $C_n \in \mathcal{F}$, $C_n \supset C_{n+1}$ and $\bigcap_{n=1}^{\infty} C_n = \emptyset$. Observe that

$$\mathbb{P}(A) = \mathbb{P}(C_n) + \mathbb{P}(A \setminus C_n) = \mathbb{P}(C_n) + \sum_{m=1}^n \mathbb{P}(A_m)$$

Letting n tend to infinity gives the desired identity.

Exercise 2.6. Prove that, in Example 2.1, \mathbb{P} is σ -additive. *Hint: Cantor's intersection theorem.*

Definition 2.5. A triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **probability space** if \mathcal{F} is a σ -field and

(1) (Normalization) $\mathbb{P}(\Omega) = 1$.

(2) (σ -additivity) $\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mathbb{P}(A_n)$ for any mutually disjoint sequence $A_n \in \mathcal{F}$. \mathbb{P} is called a **probability**.

Definition 2.6. Let \mathcal{F} be a σ -field and $A_n \in \mathcal{F}$.

- (1) $\limsup_n A_n$ is the event that contains infinitely many A_n , which is exactly the set $\bigcap_{n=1}^{\infty} (\bigcup_{m=n}^{\infty} A_m)$. We write it $\{A_n \text{ i.o.}\}$ for short.
- (2) $\liminf_{n \to \infty} A_n$ is the event that contains all except finitely many A_n , which is equal to $\bigcup_{n=1}^{\infty} (\bigcap_{m=n}^{\infty} A_m)$.

Write $\lim_{n \to \infty} A_n$ for either case if $\limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n$.

Exercise 2.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $A_n \in \mathcal{F}$.

- (1) Show that $\mathbb{P}(\limsup_n A_n) \ge \limsup_n \mathbb{P}(A_n)$ and $\mathbb{P}(\liminf_n A_n) \le \liminf_n \mathbb{P}(A_n)$.
- (2) Give examples such the equalities in (1) fail.
- (3) Use (1) to conclude that if $\lim_{n \to \infty} A_n$ exists, then $\mathbb{P}(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n)$.

2.2. Fields and σ -fields. Given a set Ω , there are two trivial σ -fields, $\{A | A \subset \Omega\}$ and $\{\emptyset, \Omega\}$. Note that if, for $\lambda \in L$, \mathcal{F}_{λ} is a field (resp. σ -field), then $\bigcap_{\lambda \in L} \mathcal{F}_{\lambda}$ is a field (resp. σ -field).

Remark 2.7. Let Ω be a set and \mathcal{E} be a collection of subsets of Ω . There exist smallest field and σ -field containing \mathcal{E} , which are denoted by $\mathcal{F}(\mathcal{E})$ and $\sigma(\mathcal{E})$ in this notes.

Remark 2.8. Let \mathcal{F} be a collection of subsets of Ω . Note that, when there is $B \subset \Omega$ such that $A \subset B$ for all $A \in \mathcal{F}$, one may consider the smallest σ -field over B that contains \mathcal{F} and we write it as $\sigma_B(\mathcal{F})$.

Definition 2.7. Let Ω be a set and \mathcal{E} be a collection subsets of Ω . \mathcal{E} is said to be a **monotone** class if $\lim_{n \to \infty} A_n \in \mathcal{E}$ for $A_n \in \mathcal{E}$ satisfying $A_n \subset A_{n+1}$ for all n or $A_n \supset A_{n+1}$ for all n.

Remark 2.9. As before, monotone classes are closed under the intersection and this implies that if \mathcal{E} is a collection of subsets of Ω , then there is a smallest monotone class containing \mathcal{E} . We write it as $\mu(\mathcal{E})$.

Theorem 2.2 (Monotone class theorem). Let \mathcal{F} be a field over Ω . Then, $\mu(\mathcal{F}) = \sigma(\mathcal{F})$.

Proof. It is obvious from the definition that $\mu(\mathcal{F}) \subset \sigma(\mathcal{F})$. For $\mu(\mathcal{F}) \supset \sigma(\mathcal{F})$, it remains to show that $\mu(\mathcal{F})$ is closed under complement and finite intersection. We prove the closedness of complement and leave the closedness of finite intersection for the reader. Set

$$\mathcal{M} = \{ A \in \mu(\mathcal{F}) | A^c \in \mu(\mathcal{F}) \}.$$

Clearly, $\mathcal{F} \subset \mathcal{M} \subset \mu(\mathcal{F})$ and it suffices to prove that \mathcal{M} is a monotone class, which leads to $\mathcal{M} = \mu(\mathcal{F})$. Let $A_n \in \mathcal{M}$ be a monotone sequence. Clearly, $A_n^c \in \mu(\mathcal{F})$. Since $\mu(\mathcal{F})$ is a monotone class, $\lim_n A_n \in \mu(\mathcal{F})$ and $(\lim_n A_n)^c = \lim_n A_n^c \in \mu(\mathcal{F})$. This implies $\lim_n A_n \in \mathcal{M}$, as desired. The proof is known as the **principle of appropriate sets**.

Definition 2.8. Let C be a class of subsets of Ω . Then, C is called

- a π -system if it is closed under finite intersection. That is, $A \cap B \in \mathcal{C}$ for $A, B \in \mathcal{C}$.
- a λ -system if it contains Ω and is closed under the complements and the countable disjoint unions. That is,

$$\Omega \in \mathcal{C}, \quad A^c \in \mathcal{C}, \ \forall A \in \mathcal{C}$$

and

$$\bigcup_{n=1}^{\infty} A_n \in \mathcal{C}$$

for any sequence $(A_n)_{n=1}^{\infty}$ of mutually disjoint sets in \mathcal{C} .

Remark 2.10. If a π -system is also a λ -system, then it is a σ -field.

Remark 2.11. Assuming $\Omega \in \mathcal{C}$ and the closedness of finite disjoint unions in \mathcal{C} , the closedness of complement is equivalent to the closedness of proper difference, that is, $B \setminus A \in \mathcal{C}$ for all $A, B \in \mathcal{C}$ satisfying $A \subset B$.

Remark 2.12. For any two probabilities $\mathbb{P}_1, \mathbb{P}_2$ on (Ω, \mathcal{F}) , the class of events in \mathcal{F} such that $\mathbb{P}_1 = \mathbb{P}_2$ forms a λ -system.

Lemma 2.3 (The $\pi - \lambda$ lemma). If \mathcal{P} is a π -system and \mathcal{L} is a λ -system that contains \mathcal{P} , then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Proof. Let \mathcal{L}_0 be the smallest λ -system containing \mathcal{P} . By Remark 2.10, it suffices to show that \mathcal{L}_0 is a π -system. For $A \subset \Omega$, let \mathcal{L}_A be the class of all subsets B of Ω such that $A \cap B \in \mathcal{L}_0$. It is obvious that

$$A \in \mathcal{L}_B \quad \Leftrightarrow \quad B \in \mathcal{L}_A.$$

We prove in the following that \mathcal{L}_A is a λ -system for $A \in \mathcal{L}_0$. Let $A \in \mathcal{L}_0$. Observe that $A \cap \Omega = A \in \mathcal{L}_0$. This implies $\Omega \in \mathcal{L}_A$. Let $(B_n)_{n=1}^{\infty}$ be a sequence of mutually disjoint sets in \mathcal{L}_A . Then,

$$A \cap \left(\bigcup_{n=1}^{\infty} B_n\right) = \bigcup_{n=1}^{\infty} (A \cap B_n) \in \mathcal{L}_0,$$

which yields $\bigcup_{n=1}^{\infty} B_n \in \mathcal{L}_A$. For $B \in \mathcal{L}_A$, one has $B \cap A \in \mathcal{L}_0$. By Remark 2.11, $B^c \cap A = A \setminus (B \cap A) \in \mathcal{L}_0$. This implies $B^c \in \mathcal{L}_A$ as desired.

Let $A \in \mathcal{P}$. Note that if $B \in \mathcal{P}$, then $A \cap B \in \mathcal{P} \subset \mathcal{L}_0$. This implies $\mathcal{P} \subset \mathcal{L}_A$ for $A \in \mathcal{P}$ and, then, $\mathcal{L}_0 \subset \mathcal{L}_A$. Next, for $A \in \mathcal{P}$ and $B \in \mathcal{L}_0$, one has $B \in \mathcal{L}_A$ or equivalently $A \in \mathcal{L}_B$. This implies that, for $B \in \mathcal{L}_0$, $\mathcal{P} \subset \mathcal{L}_B$ and hence $\mathcal{L}_0 \subset \mathcal{L}_B$. Consequently, we may conclude that, for $A, B \in \mathcal{L}_0$, $A \cap B \in \mathcal{L}_0$ and this proves that \mathcal{L}_0 is a π -system.

Exercise 2.8. Let \mathcal{F} be a collection of subsets of Ω . Define $\mathcal{F} \cap B := \{A \cap B | A \in \mathcal{F}\}$ for $B \subset \Omega$ and $\mathcal{F} \times B = \{A \times B | A \in \mathcal{F}\}$ for any set B. Show that, $\sigma_B(\mathcal{F} \cap B) = \sigma_\Omega(\mathcal{F}) \cap B$ for $B \subset \Omega$ and $\sigma_{\Omega \times B}(\mathcal{F} \times B) = \sigma_\Omega(\mathcal{F}) \times B$ for any set B.

Remark 2.13. In the case $\Omega = \mathbb{R}$ and $\mathcal{F} = \{(a, b] : a, b \in \mathbb{R}, a < b\}, \sigma(\mathcal{F})$ is call the Borel σ -field on \mathbb{R} and is denoted by $\mathcal{B}(\mathbb{R})$.

Exercise 2.9. Let \mathcal{F} be a class of subsets of \mathbb{R} . Prove that if, for any a < b, \mathcal{F} contains at least one of (a, b), (a, b], [a, b) and [a, b], then $\sigma(\mathcal{F}) \supset \mathcal{B}(\mathbb{R})$.

In the following, a collection of subsets of any set Ω is mostly assumed to contain Ω .

Example 2.2. Given two sets Ω_1, Ω_2 , let \mathcal{F}_1 and \mathcal{F}_2 be collections of subsets in Ω_1 and Ω_2 containing Ω_1, Ω_2 . We use the notation $\mathcal{F}_1 \otimes \mathcal{F}_2$ to denote the smallest σ -filed generated by $\mathcal{F}_1 \times \mathcal{F}_2 := \{A_1 \times A_2 : A_i \in \mathcal{F}_i, i = 1, 2\}$, i.e. $\sigma(\mathcal{F}_1 \times \mathcal{F}_2)$. Then, $\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(\mathcal{F}_1) \otimes \sigma(\mathcal{F}_2)$. To prove this identity, it suffices to show that

$$\mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(\mathcal{F}_1) \otimes \mathcal{F}_2, \quad \mathcal{F}_1 \otimes \mathcal{F}_2 = \mathcal{F}_1 \otimes \sigma(\mathcal{F}_2).$$

We consider the former, while the latter can be proved in a similar way. Clearly, one has $\mathcal{F}_1 \otimes \mathcal{F}_2 \subset \sigma(\mathcal{F}_1) \otimes \mathcal{F}_2$. To see the inverse direction, let $B \in \mathcal{F}_2$. Note that $\Omega_1 \times B \in \mathcal{F}_1 \otimes \mathcal{F}_2$. By Exercise 2.8, this implies

$$\mathcal{F}_1 \otimes \mathcal{F}_2 \supset \sigma(\mathcal{F}_1 \times \mathcal{F}_2) \cap (\Omega_1 \times B) = \sigma_{\Omega_1 \times B}((\mathcal{F}_1 \times \mathcal{F}_2) \cap (\Omega_1 \times B))$$
$$\supset \sigma_{\Omega_1 \times B}(\mathcal{F}_1 \times B) = \sigma(\mathcal{F}_1) \times B.$$

Hence, we have $\mathcal{F}_1 \otimes \mathcal{F}_2 \supset \sigma(\mathcal{F}_1) \times \mathcal{F}_2$, which leads to $\mathcal{F}_1 \otimes \mathcal{F}_2 \supset \sigma(\mathcal{F}_1) \otimes \mathcal{F}_2$.

Exercise 2.10. For i = 1, 2, let \mathcal{F}_i be a collection of subsets of Ω_i . Find an example such that $\mathcal{F}_1 \otimes \mathcal{F}_2 \neq \sigma(\mathcal{F}_1) \otimes \sigma(\mathcal{F}_2)$.

Example 2.3. Let $n \ge 1$. For $1 \le i \le n$, let \mathcal{F}_i be a collection of subsets of Ω_i containing Ω_i . We write $\bigotimes_{i=1}^n \mathcal{F}_i$ or $\mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n$ for the smallest σ -field generated by $\prod_{i=1}^n \mathcal{F}_i = \mathcal{F}_1 \times \cdots \times \mathcal{F}_n$. By Example 2.2, one has

$$\bigotimes_{i=1}^{n} \mathcal{F}_{i} = \left(\prod_{i=1}^{k} \mathcal{F}_{i}\right) \otimes \left(\prod_{i=k+1}^{n} \mathcal{F}_{i}\right) = \left(\bigotimes_{i=1}^{k} \mathcal{F}_{i}\right) \otimes \left(\bigotimes_{i=k+1}^{n} \mathcal{F}_{i}\right).$$

Inductively, we obtain $\bigotimes_{i=1}^{n} \mathcal{F}_{i} = \bigotimes_{i=1}^{n} \sigma(\mathcal{F}_{i})$. This leads to the fact that if $I_{1}, ..., I_{n}$ are collections of intervals of \mathbb{R} in Remark 2.13, then $\sigma(I_{1} \times \cdots \times I_{n}) = \mathcal{B}(\mathbb{R}) \otimes \cdots \otimes \mathcal{B}(\mathbb{R})$, which is also written as $\mathcal{B}(\mathbb{R}^{n})$. (Why $\mathbb{R} \in I_{i}$ for all $1 \leq i \leq n$ is not requested?)

Example 2.4. Let $\Omega_1, \Omega_2, ...$ be sets and $\Omega = \{\omega = (\omega_1, \omega_2, ...) | \omega_i \in \Omega_i, \forall i \ge 1\}$. For $n \ge 1$ and $A \subset \prod_{i=1}^n \Omega_i$, define $\mathcal{C}(A) = \{\omega \in \Omega | (\omega_1, ..., \omega_n) \in A\}$. For $n \ge 1$, let \mathcal{F}_n be a collection of subsets of Ω_n including Ω_n . Consider the following classes.

$$C_1 = \bigcup_{n=1}^{\infty} \{ C(A_1 \times \cdots \times A_n) | A_i \in \mathcal{F}_i, \forall 1 \le i \le n \}$$

and

$$\mathcal{C}_2 = \bigcup_{n=1}^{\infty} \{ \mathcal{C}(A_1 \times \cdots \times A_n) | A_i \in \sigma(\mathcal{F}_i), \forall 1 \le i \le n \},\$$

and

$$\mathcal{C}_3 = \bigcup_{n=1}^{\infty} \{ \mathcal{C}(A) | A \in \mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n \}.$$

Obviously, C_2 is a π -system and C_3 is a field. It follows immediately from Exercise 2.8 that $\sigma(C_1) = \sigma(C_2) = \sigma(C_3)$. We write $\sigma(C_i)$ as $\bigotimes_{n=1}^{\infty} \mathcal{F}_n$.

In the case that $\Omega_n = \mathbb{R}$ and \mathcal{F}_n is the class of intervals as in Remark 2.13, we write \mathbb{R}^{∞} and $\mathcal{B}(\mathbb{R}^{\infty})$ for Ω and $\sigma(\mathcal{C}_1)$.

For $n \geq 1$, let \mathcal{F}_n be a collection of subsets of Ω_n . Let ρ be a permutation of $\{1, 2, ...\}$. For $B \subset \prod_{n=1}^{\infty} \Omega_n$, define $\rho(B) = \{(\omega_{\rho(1)}, \omega_{\rho(2)}, ...) | (\omega_1, \omega_2, ...) \in B\}$ and, for any collection \mathcal{C} of subsets of $\prod_{n=1}^{\infty} \Omega_n$, define $\rho(\mathcal{C}) = \{\rho(B) | B \in \mathcal{C}\}$. In the case $\Omega_n \in \mathcal{F}_n$ for all n, one can show that $\rho(\prod_{n=1}^{\infty} \mathcal{F}_n) = \prod_{n=1}^{\infty} \mathcal{F}_{\rho(n)}$, which leads to

(2.1)
$$\rho\left(\bigotimes_{n=1}^{\infty}\mathcal{F}_n\right) = \bigotimes_{n=1}^{\infty}\mathcal{F}_{\rho(n)}.$$

Further, for any increasing sequence of positive integer, $(s_n)_{n=1}^{\infty}$, and $B \in \bigotimes_{n=1}^{\infty} \mathcal{F}_{s_n}$, one has

(2.2)
$$\{\omega = (\omega_1, \omega_2, ...) | (\omega_{s_n})_{n=1}^{\infty} \in B\} \in \bigotimes_{n=1}^{\infty} \mathcal{F}_n.$$

Example 2.5. Let T be a subset of \mathbb{R} and, for $t \in T$, let Ω_t be a set and $\Omega = \{\omega = (\omega_t)_{t \in T} | \omega_t \in \Omega_t, \forall t \in T\}$. For $t \in T$, let \mathcal{F}_t be a collection of subsets of Ω_t and assume that $\Omega_t \in \mathcal{F}_t$. For $n \geq 1, t_1, t_2, ..., t_n \in T$ and $A \subset \prod_{i=1}^n \Omega_{t_i}$, set $\mathcal{D}(t_1, ..., t_n, A) = \{\omega \in \Omega | (\omega_{t_1}, ..., \omega_{t_n}) \in A\}$. For any sequence $t_n \in T$ and $A \subset \prod_{n=1}^\infty \Omega_{t_n}$, define $\mathcal{D}(t_1, t_2, ..., A) = \{\omega \in \Omega | (\omega_{t_1}, \omega_{t_2}, ...) \in A\}$. Consider the following classes.

(2.3)
$$\mathcal{D}_1 = \bigcup_{n=1}^{\infty} \{ \mathcal{D}(t_1, \dots, t_n, A_1 \times \dots \times A_n) | t_1, \dots, t_n \in T, A_i \in \mathcal{F}_{t_i}, \forall 1 \le i \le n \}$$

and

$$\mathcal{D}_2 = \bigcup_{n=1}^{\infty} \{ \mathcal{D}(t_1, ..., t_n, A_1 \times \cdots \times A_n) | t_1, ..., t_n \in T, A_i \in \sigma(\mathcal{F}_{t_i}), \forall 1 \le i \le n \}$$

and

(2.4)
$$\mathcal{D}_3 = \bigcup_{n=1}^{\infty} \{ \mathcal{D}(t_1, ..., t_n, A) | t_1, ..., t_n \in T, A \in \mathcal{F}_{t_1} \otimes \cdots \otimes \mathcal{F}_{t_n} \}.$$

As before, one can show that $\sigma(\mathcal{D}_1) = \sigma(\mathcal{D}_2) = \sigma(\mathcal{D}_3)$ and we write $\bigotimes_{t \in T} \mathcal{F}_t$ for them.

Theorem 2.4. For $A \in \bigotimes_{t \in T} \mathcal{F}_t$, there are a sequence $(t_n)_{n=1}^{\infty}$ in T and a set $B \in \bigotimes_{n=1}^{\infty} \mathcal{F}_{t_n}$ such that $A = \mathcal{D}(t_1, t_2, ..., B)$.

Proof. Let \mathcal{D} be the following class

$$\mathcal{D} = \left\{ \mathcal{D}(t_1, t_2, ..., B) \middle| t_n \in T, B \in \bigotimes_{n=1}^{\infty} \mathcal{F}_{t_n} \right\}$$

and \mathcal{D}_1 be the class in (2.3). Clearly, $\mathcal{D}_1 \subset \mathcal{D}$. To prove this theorem, it remains to show that $\mathcal{D} \subset \sigma(\mathcal{D}_1)$ and \mathcal{D} is a σ -field. First, we fix a sequence $t_n \in T$ and let \mathcal{C}_1 be the class relative to the sequence \mathcal{F}_{t_n} in Example 2.4. Clearly, $\sigma(\mathcal{C}_1) = \bigotimes_{n=1}^{\infty} \mathcal{F}_{t_n}$. By setting $\overline{\Omega} = \prod_{n=1}^{\infty} \Omega_{t_n}$ and $\widetilde{\Omega} = \prod_{t \in T \setminus \{t_1, t_2, \ldots\}} \Omega_t$, one has $\Omega = \overline{\Omega} \times \widetilde{\Omega}$ and $\mathcal{D}(t_1, t_2, \ldots, B) = B \times \widetilde{\Omega}$ for $B \in \sigma(\mathcal{C}_1)$. By Exercise 2.8, this implies

$$\sigma(\{\mathcal{D}(t_1, t_2, ..., B) | B \in \mathcal{C}_1\}) = \sigma(\mathcal{C}_1 \times \widetilde{\Omega}) = \sigma(\mathcal{C}_1) \times \widetilde{\Omega} = \{\mathcal{D}(t_1, t_2, ..., B) | B \in \sigma(\mathcal{C}_1)\}.$$

Since $\{\mathcal{D}(t_1, t_2, ..., B) | B \in \mathcal{C}_1\} \subset \mathcal{D}_1$, we obtain $\mathcal{D} \subset \sigma(\mathcal{D}_1)$.

Next, we prove that \mathcal{D} is a σ -field. Clearly, $\Omega \in \mathcal{D}$. Note that, for $A = \mathcal{D}(t_1, t_2, ..., B) \in \mathcal{D}$, $A^c = \mathcal{D}(t_1, t_2, ..., B^c) \in \mathcal{D}$. For $n \ge 1$, let $A_n = \mathcal{D}(t_{n,1}, t_{n,2}, ..., B_n)$ for some $B_n \in \bigotimes_{i=1}^{\infty} \mathcal{F}_{t_{n,i}}$. We write $\{s_1, s_2, ...\} = \{t_{n,i} | i, n \ge 1\}$ and set

$$B'_{n} = \left\{ v \in \prod_{m=1}^{\infty} \Omega_{s_{m}} \middle| (v_{t_{n,1}}, v_{t_{n,2}}, ...) \in B_{n} \right\}.$$

Clearly, $A_n = \mathcal{D}(s_1, s_2, ..., B'_n)$. Let $(i_j)_{j=1}^{\infty}$ be a subsequence of \mathbb{N} such that $\{t_{n,j} : j = 1, 2, ...\} = \{s_{i_j} | j = 1, 2, ...\}$ and ρ be a permutation of \mathbb{N} such that $s_{i_j} = t_{n,\rho(j)}$ for $j \ge 1$. By defining $\rho\left((\omega_{t_{n,j}})_{j=1}^{\infty}\right) = \left(\omega_{t_{n,\rho(j)}}\right)_{j=1}^{\infty}$, one has $B'_n = \{v \in \prod_{m=1}^{\infty} \Omega_{s_m} | (s_{i_j})_{j=1}^{\infty} \in \rho(B_n)\}$ and, by (2.1) and (2.2), $B'_n \in \bigotimes_{m=1}^{\infty} \mathcal{F}_{s_m}$. This implies $\bigcup_n A_n = \mathcal{D}(s_1, s_2, ..., \bigcup_n B'_n) \in \mathcal{D}$. The closedness of finite intersection can be shown in a similar way. This proves that \mathcal{D} is a σ -field.

Remark 2.14. For the special case of $\Omega_t = \mathbb{R}$ and $\mathcal{F}_t = \{(a, b] : a < b\}$, we write \mathbb{R}^T and $\mathcal{B}(\mathbb{R}^T)$ for Ω and $\bigotimes_{t \in T} \mathcal{F}_t$. Let $S \subset T$ be an uncountable set and consider

 $\{\omega\in\Omega|\omega_t< C, \forall t\in S\}, \quad \{\omega\in\Omega|\omega_t=0, \text{ for some } t\in S\}.$

In general, these sets are not in $\mathcal{B}(\mathbb{R}^T)$.