
2. Probability spaces

2.1. Probabilities.

Definition 2.1. Given a set Ω, a non-empty collection F of subsets of Ω is a field over Ω if

(1) A ∩B ∈ F and A ∪B ∈ F for A,B ∈ F .
(2) Ac ∈ F for A ∈ F .

The elements of F are called events.

Remark 2.1. A field is a collection of subsets which is closed under finite union, finite inter-
section and complement. In particular, ∅ and Ω are contained in F .

Remark 2.2. The requirement of A∩B ∈ F in (1) can be removed using the identity A∩B =
(Ac ∪Bc)c.

Remark 2.3. The requirement of closedness under the union can be replaced by the following.

A ∪B ∈ F , ∀A,B ∈ F , A ∩B = ∅.

Exercise 2.1. Could Definition 2.1(1) be replaced by the following?

A,B ∈ F , A ∩B = ∅ ⇒ A ∪B ∈ F .

Definition 2.2. Let F be a field over Ω. A non-negative set function P defined on F is called
a finite probability if

(1) (Normalization) P(Ω) = 1.
(2) (Finite additivity) P(A ∪B) = P(A) + P(B) for all A,B ∈ F satisfying A ∩B = ∅.

The triple (Ω,F ,P) is called a finite probability space.

Remark 2.4. Note that P(∅) = 0 and, for A,B ∈ F , P(A ∪B) = P(A) + P(B)− P(A ∩B).

Example 2.1. For n ≥ 1, let Ωn = {ω = (ω1, ..., ωn)|ωi ∈ {0, 1},∀i}, Fn be the power set
of Ωn and Pn(A) = |A|/2n. Then, (Ωn,Fn,Pn) forms a finite probability. Set Ω = {ω =
(ω1, ω2, ...)|ωi ∈ {0, 1}, ∀i} and F =

⋃
n(Fn × Ω), where Fn × Ω := {A × Ω|A ∈ Fn} and

A× Ω := {ω = (ω1, ...)|(ω1, ..., ωn) ∈ A}. One may check that F is a field.
Observe that, for B ∈ F , there are n ≥ 1 and A ∈ Fn such that B = A× Ω. In the above

setting, define P(B) = Pn(A). Note that the definition is independent of the choice of n and
A, and P becomes a finite probability.

Exercise 2.2. Let A1, ..., An ∈ F . Show that P(
⋃n
i=1Ai) ≤

∑n
i=1 P(Ai).

Definition 2.3. A field F over a set Ω is a σ-field if the countable union and countable
intersection of events in F are closed. That is, if A1, A2, ... ∈ F , then

⋃
nAn ∈ F and⋂

nAn ∈ F .

Remark 2.5. The filed F in Example 2.1 is not a σ-field.

Remark 2.6. Similar to Remarks 2.2 and 2.3, the requirement of
⋂
nAn ∈ F can be removed

or the requirement
⋃
nAn ∈ F can be restricted to sequences of mutually disjoint sets.

Exercise 2.3. Prove Remark 2.6.

Exercise 2.4. Let F be a collection of subsets of Ω. Prove that F is a σ-field if and only if

(1) Ω ∈ F .
(2) A ∩B ∈ F for all A,B ∈ F .
(3) Ac ∈ F for all A ∈ F .
(4)

⋃
nAn ∈ F for any mutually disjoint sequence An ∈ F .
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Definition 2.4. Let (Ω,F ,P) be a finite probability space. P is called σ-additive or count-
ably additive if P(

⋃∞
n=1An) =

∑∞
n=1 P(An) for any sequence of mutually disjoint events

An ∈ F satisfying
⋃∞
n=1An ∈ F .

Exercise 2.5. Let (Ω,F ,P) be a finite probability and An ∈ F for n ≥ 1. Show that if P is
σ-additive and

⋃∞
n=1An ∈ F , then P(

⋃∞
n=1An) ≤

∑∞
n=1 P(An).

Theorem 2.1. Let (Ω,F ,P) be a finite probability. Then, the following are equivalent.

(1) P is σ-additive.
(2) P is continuous from above. That is, P(

⋂∞
n=1An) = limn P(An) for An ∈ F satisfying

An ⊃ An+1 and
⋂∞
n=1An ∈ F .

(3) P is continuous from below. That is, P(
⋃∞
n=1An) = limn P(An) for An ∈ F satisfying

An ⊂ An+1 and
⋃∞
n=1An ∈ F .

(4) P is continuous at ∅. That is, limn P(An) = 0 for An ∈ F satisfying An ⊃ An+1 and
∩∞
n=1An = ∅.

Proof. Obviously, (2) and (3) are equivalent. Assume that (1) holds and let An ⊂ An+1. Set
B1 = An and Bn+1 = An+1 \ An for n ≥ 1. It is clear that Bn ∈ F ,

⋃n
m=1Bm = An and⋃∞

n=1An =
⋃∞
n=1Bn. Since Bn are mutually disjoint, the σ-additivity implies

P

( ∞⋃
n=1

An

)
= P

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn) = lim
n→∞

n∑
m=1

P(Bm) = lim
n→∞

P(An).

This implies (3). Note that (4) is a special case of (2), it remains to show that (4)⇒(1).
Assume (4) holds and let An ∈ F be mutually disjoint and satisfy

⋃∞
n=1An ∈ F . Set Cn =

A \
⋃n
m=1Am. Clearly, Cn ∈ F , Cn ⊃ Cn+1 and

⋂∞
n=1Cn = ∅. Observe that

P(A) = P(Cn) + P(A \ Cn) = P(Cn) +
n∑

m=1

P(Am).

Letting n tend to infinity gives the desired identity. �

Exercise 2.6. Prove that, in Example 2.1, P is σ-additive. Hint: Cantor’s intersection
theorem.

Definition 2.5. A triple (Ω,F ,P) is called a probability space if F is a σ-field and

(1) (Normalization) P(Ω) = 1.
(2) (σ-additivity) P(

⋃∞
n=1An) =

∑∞
n=1 P(An) for any mutually disjoint sequence An ∈ F .

P is called a probability.

Definition 2.6. Let F be a σ-field and An ∈ F .

(1) lim supnAn is the event that contains infinitely many An, which is exactly the set⋂∞
n=1 (

⋃∞
m=nAm). We write it {An i.o.} for short.

(2) lim infnAn is the event that contains all except finitely many An, which is equal to⋃∞
n=1 (

⋂∞
m=nAm).

Write limnAn for either case if lim supnAn = lim infnAn.

Exercise 2.7. Let (Ω,F ,P) be a probability space and An ∈ F .

(1) Show that P(lim supnAn) ≥ lim supn P(An) and P(lim infnAn) ≤ lim infn P(An).
(2) Give examples such the equalities in (1) fail.
(3) Use (1) to conclude that if limnAn exists, then P(limnAn) = limn P(An).
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2.2. Fields and σ-fields. Given a set Ω, there are two trivial σ-fields, {A|A ⊂ Ω} and {∅,Ω}.
Note that if, for λ ∈ L, Fλ is a field (resp. σ-field), then

⋂
λ∈LFλ is a field (resp. σ-field).

Remark 2.7. Let Ω be a set and E be a collection of subsets of Ω. There exist smallest field
and σ-field containing E , which are denoted by F(E) and σ(E) in this notes.

Remark 2.8. Let F be a collection of subsets of Ω. Note that, when there is B ⊂ Ω such that
A ⊂ B for all A ∈ F , one may consider the smallest σ-field over B that contains F and we
write it as σB(F).

Definition 2.7. Let Ω be a set and E be a collection subsets of Ω. E is said to be a monotone
class if limnAn ∈ E for An ∈ E satisfying An ⊂ An+1 for all n or An ⊃ An+1 for all n.

Remark 2.9. As before, monotone classes are closed under the intersection and this implies
that if E is a collection of subsets of Ω, then there is a smallest monotone class containing E .
We write it as µ(E).

Theorem 2.2 (Monotone class theorem). Let F be a field over Ω. Then, µ(F) = σ(F).

Proof. It is obvious from the definition that µ(F) ⊂ σ(F). For µ(F) ⊃ σ(F), it remains to
show that µ(F) is closed under complement and finite intersection. We prove the closedness
of complement and leave the closedness of finite intersection for the reader. Set

M = {A ∈ µ(F)|Ac ∈ µ(F)}.
Clearly, F ⊂ M ⊂ µ(F) and it suffices to prove that M is a monotone class, which leads
to M = µ(F). Let An ∈ M be a monotone sequence. Clearly, Acn ∈ µ(F). Since µ(F) is a
monotone class, limnAn ∈ µ(F) and (limnAn)

c = limnA
c
n ∈ µ(F). This implies limnAn ∈ M,

as desired. The proof is known as the principle of appropriate sets. �
Definition 2.8. Let C be a class of subsets of Ω. Then, C is called

• a π-system if it is closed under finite intersection. That is, A ∩B ∈ C for A,B ∈ C.
• a λ-system if it contains Ω and is closed under the complements and the countable
disjoint unions. That is,

Ω ∈ C, Ac ∈ C, ∀A ∈ C
and

∞⋃
n=1

An ∈ C

for any sequence (An)
∞
n=1 of mutually disjoint sets in C.

Remark 2.10. If a π-system is also a λ-system, then it is a σ-field.

Remark 2.11. Assuming Ω ∈ C and the closedness of finite disjoint unions in C, the closedness
of complement is equivalent to the closedness of proper difference, that is, B \ A ∈ C for all
A,B ∈ C satisfying A ⊂ B.

Remark 2.12. For any two probabilities P1,P2 on (Ω,F), the class of events in F such that
P1 = P2 forms a λ-system.

Lemma 2.3 (The π − λ lemma). If P is a π-system and L is a λ-system that contains P,
then σ(P) ⊂ L.

Proof. Let L0 be the smallest λ-system containing P. By Remark 2.10, it suffices to show that
L0 is a π-system. For A ⊂ Ω, let LA be the class of all subsets B of Ω such that A ∩B ∈ L0.
It is obvious that

A ∈ LB ⇔ B ∈ LA.
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We prove in the following that LA is a λ-system for A ∈ L0. Let A ∈ L0. Observe that
A ∩ Ω = A ∈ L0. This implies Ω ∈ LA. Let (Bn)

∞
n=1 be a sequence of mutually disjoint sets

in LA. Then,

A ∩

( ∞⋃
n=1

Bn

)
=

∞⋃
n=1

(A ∩Bn) ∈ L0,

which yields
⋃∞
n=1Bn ∈ LA. For B ∈ LA, one has B ∩ A ∈ L0. By Remark 2.11, Bc ∩ A =

A \ (B ∩A) ∈ L0. This implies Bc ∈ LA as desired.
Let A ∈ P. Note that if B ∈ P, then A ∩ B ∈ P ⊂ L0. This implies P ⊂ LA for A ∈ P

and, then, L0 ⊂ LA. Next, for A ∈ P and B ∈ L0, one has B ∈ LA or equivalently A ∈ LB.
This implies that, for B ∈ L0, P ⊂ LB and hence L0 ⊂ LB. Consequently, we may conclude
that, for A,B ∈ L0, A ∩B ∈ L0 and this proves that L0 is a π-system. �

Exercise 2.8. Let F be a collection of subsets of Ω. Define F ∩ B := {A ∩ B|A ∈ F} for
B ⊂ Ω and F × B = {A× B|A ∈ F} for any set B. Show that, σB(F ∩ B) = σΩ(F) ∩ B for
B ⊂ Ω and σΩ×B(F ×B) = σΩ(F)×B for any set B.

Remark 2.13. In the case Ω = R and F = {(a, b] : a, b ∈ R, a < b}, σ(F) is call the Borel
σ-field on R and is denoted by B(R).

Exercise 2.9. Let F be a class of subsets of R. Prove that if, for any a < b, F contains at
least one of (a, b), (a, b], [a, b) and [a, b], then σ(F) ⊃ B(R).

In the following, a collection of subsets of any set Ω is mostly assumed to contain Ω.

Example 2.2. Given two sets Ω1,Ω2, let F1 and F2 be collections of subsets in Ω1 and Ω2

containing Ω1,Ω2. We use the notation F1 ⊗ F2 to denote the smallest σ-filed generated by
F1 × F2 := {A1 × A2 : Ai ∈ Fi, i = 1, 2}, i.e. σ(F1 × F2). Then, F1 ⊗ F2 = σ(F1) ⊗ σ(F2).
To prove this identity, it suffices to show that

F1 ⊗F2 = σ(F1)⊗F2, F1 ⊗F2 = F1 ⊗ σ(F2).

We consider the former, while the latter can be proved in a similar way. Clearly, one has
F1 ⊗F2 ⊂ σ(F1)⊗F2. To see the inverse direction, let B ∈ F2. Note that Ω1 ×B ∈ F1 ⊗F2.
By Exercise 2.8, this implies

F1 ⊗F2 ⊃ σ(F1 ×F2) ∩ (Ω1 ×B) = σΩ1×B((F1 ×F2) ∩ (Ω1 ×B))

⊃ σΩ1×B(F1 ×B) = σ(F1)×B.

Hence, we have F1 ⊗F2 ⊃ σ(F1)×F2, which leads to F1 ⊗F2 ⊃ σ(F1)⊗F2.

Exercise 2.10. For i = 1, 2, let Fi be a collection of subsets of Ωi. Find an example such
that F1 ⊗F2 6= σ(F1)⊗ σ(F2).

Example 2.3. Let n ≥ 1. For 1 ≤ i ≤ n, let Fi be a collection of subsets of Ωi containing Ωi.
We write

⊗n
i=1Fi or F1⊗· · ·⊗Fn for the smallest σ-field generated by

∏n
i=1Fi = F1×· · ·×Fn.

By Example 2.2, one has

n⊗
i=1

Fi =

(
k∏
i=1

Fi

)
⊗

(
n∏

i=k+1

Fi

)
=

(
k⊗
i=1

Fi

)
⊗

(
n⊗

i=k+1

Fi

)
.

Inductively, we obtain
⊗n

i=1Fi =
⊗n

i=1 σ(Fi). This leads to the fact that if I1, ..., In are
collections of intervals of R in Remark 2.13, then σ(I1 × · · · × In) = B(R)⊗ · · · ⊗ B(R), which
is also written as B(Rn). (Why R ∈ Ii for all 1 ≤ i ≤ n is not requested?)
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Example 2.4. Let Ω1,Ω2, ... be sets and Ω = {ω = (ω1, ω2, ...)|ωi ∈ Ωi,∀i ≥ 1}. For n ≥ 1 and
A ⊂

∏n
i=1Ωi, define C(A) = {ω ∈ Ω|(ω1, ..., ωn) ∈ A}. For n ≥ 1, let Fn be a collection of

subsets of Ωn including Ωn. Consider the following classes.

C1 =
∞⋃
n=1

{C(A1 × · · · ×An)|Ai ∈ Fi,∀1 ≤ i ≤ n},

and

C2 =
∞⋃
n=1

{C(A1 × · · · ×An)|Ai ∈ σ(Fi),∀1 ≤ i ≤ n},

and

C3 =
∞⋃
n=1

{C(A)|A ∈ F1 ⊗ · · · ⊗ Fn}.

Obviously, C2 is a π-system and C3 is a field. It follows immediately from Exercise 2.8 that
σ(C1) = σ(C2) = σ(C3). We write σ(Ci) as

⊗∞
n=1Fn.

In the case that Ωn = R and Fn is the class of intervals as in Remark 2.13, we write R∞

and B(R∞) for Ω and σ(C1).

For n ≥ 1, let Fn be a collection of subsets of Ωn. Let ρ be a permutation of {1, 2, ...}. For
B ⊂

∏∞
n=1Ωn, define ρ(B) = {(ωρ(1), ωρ(2), ...)|(ω1, ω2, ...) ∈ B} and, for any collection C of

subsets of
∏∞
n=1Ωn, define ρ(C) = {ρ(B)|B ∈ C}. In the case Ωn ∈ Fn for all n, one can show

that ρ(
∏∞
n=1Fn) =

∏∞
n=1Fρ(n), which leads to

(2.1) ρ

( ∞⊗
n=1

Fn

)
=

∞⊗
n=1

Fρ(n).

Further, for any increasing sequence of positive integer, (sn)
∞
n=1, and B ∈

⊗∞
n=1Fsn , one has

(2.2) {ω = (ω1, ω2, ...)|(ωsn)∞n=1 ∈ B} ∈
∞⊗
n=1

Fn.

Example 2.5. Let T be a subset of R and, for t ∈ T , let Ωt be a set and Ω = {ω = (ωt)t∈T |ωt ∈
Ωt,∀t ∈ T}. For t ∈ T , let Ft be a collection of subsets of Ωt and assume that Ωt ∈ Ft. For
n ≥ 1, t1, t2, ..., tn ∈ T and A ⊂

∏n
i=1Ωti , set D(t1, ..., tn, A) = {ω ∈ Ω|(ωt1 , ..., ωtn) ∈ A}. For

any sequence tn ∈ T and A ⊂
∏∞
n=1Ωtn , define D(t1, t2, ..., A) = {ω ∈ Ω|(ωt1 , ωt2 , ...) ∈ A}.

Consider the following classes.

(2.3) D1 =
∞⋃
n=1

{D(t1, ..., tn, A1 × · · · ×An)|t1, ..., tn ∈ T,Ai ∈ Fti , ∀1 ≤ i ≤ n}

and

D2 =
∞⋃
n=1

{D(t1, ..., tn, A1 × · · · ×An)|t1, ..., tn ∈ T,Ai ∈ σ(Fti), ∀1 ≤ i ≤ n}

and

(2.4) D3 =
∞⋃
n=1

{D(t1, ..., tn, A)|t1, ..., tn ∈ T,A ∈ Ft1 ⊗ · · · ⊗ Ftn}.

As before, one can show that σ(D1) = σ(D2) = σ(D3) and we write
⊗

t∈T Ft for them.

Theorem 2.4. For A ∈
⊗

t∈T Ft, there are a sequence (tn)
∞
n=1 in T and a set B ∈

⊗∞
n=1Ftn

such that A = D(t1, t2, ..., B).
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Proof. Let D be the following class

D =

{
D(t1, t2, ..., B)

∣∣∣∣∣tn ∈ T,B ∈
∞⊗
n=1

Ftn

}
and D1 be the class in (2.3). Clearly, D1 ⊂ D. To prove this theorem, it remains to show that
D ⊂ σ(D1) and D is a σ-field. First, we fix a sequence tn ∈ T and let C1 be the class relative
to the sequence Ftn in Example 2.4. Clearly, σ(C1) =

⊗∞
n=1Ftn . By setting Ω =

∏∞
n=1Ωtn

and Ω̃ =
∏
t∈T\{t1,t2,...}Ωt, one has Ω = Ω× Ω̃ and D(t1, t2, ..., B) = B × Ω̃ for B ∈ σ(C1). By

Exercise 2.8, this implies

σ({D(t1, t2, ..., B)|B ∈ C1}) = σ(C1 × Ω̃) = σ(C1)× Ω̃ = {D(t1, t2, ..., B)|B ∈ σ(C1)}.
Since {D(t1, t2, ..., B)|B ∈ C1} ⊂ D1, we obtain D ⊂ σ(D1).

Next, we prove that D is a σ-field. Clearly, Ω ∈ D. Note that, for A = D(t1, t2, ..., B) ∈ D,
Ac = D(t1, t2, ..., B

c) ∈ D. For n ≥ 1, let An = D(tn,1, tn,2, ..., Bn) for some Bn ∈
⊗∞

i=1Ftn,i .
We write {s1, s2, ...} = {tn,i|i, n ≥ 1} and set

B′
n =

{
v ∈

∞∏
m=1

Ωsm

∣∣∣∣(vtn,1 , vtn,2 , ...) ∈ Bn

}
.

Clearly, An = D(s1, s2, ..., B
′
n). Let (ij)

∞
j=1 be a subsequence of N such that {tn,j : j =

1, 2, ...} = {sij |j = 1, 2, ...} and ρ be a permutation of N such that sij = tn,ρ(j) for j ≥ 1.

By defining ρ
(
(ωtn,j )

∞
j=1

)
=
(
ωtn,ρ(j)

)∞
j=1

, one has B′
n = {v ∈

∏∞
m=1Ωsm |(sij )∞j=1 ∈ ρ(Bn)}

and, by (2.1) and (2.2), B′
n ∈

⊗∞
m=1Fsm . This implies

⋃
nAn = D(s1, s2, ...,

⋃
nB

′
n) ∈ D.

The closedness of finite intersection can be shown in a similar way. This proves that D is a
σ-field. �
Remark 2.14. For the special case of Ωt = R and Ft = {(a, b] : a < b}, we write RT and B(RT )
for Ω and

⊗
t∈T Ft. Let S ⊂ T be an uncountable set and consider

{ω ∈ Ω|ωt < C, ∀t ∈ S}, {ω ∈ Ω|ωt = 0, for some t ∈ S}.
In general, these sets are not in B(RT ).
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