3. DISTRIBUTIONS

In this subsection, we introduce the notion of distributions.

3.1. Distributions on R.

Definition 3.1. Let (R, B(R),P) be a probability space. The distribution of P is a function
F on R defined by F(z) = P((—o0, x]).

It follows immediately from the above definition that F' is non-decreasing, right-continuous
and satisfies
(3.1) F(—=00) = lim F(z)=0, F(o0):= lim F(z)=1.
T—r—00 T—r00

Definition 3.2. A non-decreasing, right-continuous function satisfying (3.1) is called a dis-
tribution function.

Theorem 3.1. For any distribution function F, there is a unique probability P on (R, B(R))
such that F' is the distribution of P.

Proof. The proof is based on Carathéodory’s extension theorem. We display the version in
probability as follows but skip its proof.

Theorem 3.2 (Carathéodory’s extension theorem). Let (Q, F,Py) be a finite probability space.
If Py is o-additive, then there is a probability space (2, 0(F),P) such that P(A) = Py(A) for
AeF.

Consider the following class.
Co={(a,b]| —o0 <a<b< oo}, C={finite disjoint unions of sets in Cy},

where (a,a] := () for a € R and (a, 0] := (a,0) for a € RU{—o0}. For A =J!" (a;,b;] € C,
define Po(A) = Y1 | (F(b;) — F(a;)), where F(—o0) := 0 and F(c0) := 1. One can prove
that C is a field, o(C) = B(R) and Py is a finite probability on (R,C). By Theorem 3.2, it
remains to show that Py is o-additive or, equivalently, Py is continuous at (). Let A, be a
sequence in C satisfying A, D A,+1 and ﬂn A, = 0. Given € > 0, one may choose N > 0 such
that Po((—N, N]) > 1 — ¢/2. By the right continuity of F', one may choose B,, € C such that
B, C A, N (=N, N] and Py(B,) > Py(A, N (=N, N]) — /2" for n > 1. Set C,, = (i, Bi.
Since N,, An =0, N,, Cn =,, Bn = 0. Note that B, is compact. By the nested set property,
Nre, Gy =N, By, = 0 for some ng and, hence, (>, B,, = (). This implies

n=1

PO(ATLO) < §+P0(An0 N (_Nv N]) = % +P0 <(An0 N (_N7 N])\ ﬁ Bn)

n=1
€ 0 € 10 €
< 2+;P0((Anm(—N,N])\Bn) <3 +;2n+1 <e

This proves that Pg is continuous at (0. O

Remark 3.1. The probability corresponding to a distribution function is called a Lebesgue-
Stieltjes probability.

3.2. Distributions on R".

Definition 3.3. Fix n > 1 and let (R", B(R"),P) be a probability space. The distribution of
P is defined by F(z1,...,z,) = P([]}, (—o0, z]).
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For1 <i<nand —oco <a; < b < oo, set
AL b (1, mp) = F(o1, 0 21,00, Tig 1, o Tn) — F(21, 000, Tie1, G4, i1, -0, Tn)-
Clearly, one has
i J
AahbiAa‘j,bJ‘

Exercise 3.1. Let P be a probability on (R", B(R™)) with distribution F.

F(zy,.xn) = Aij,bin b F (215 0y ).

23]

(1) Show that P([];—,(as;,bi]) = A}lhbl ARy F(z, ., n). (Hint: Prove that if a; =
—oo for k < i <n, then P(J];_,(ai, b;]) = Aéhbl e A2k7bkF(x1, vy Thoy bRt 15 ooy D).

(2) We write ym = (Ym,1, s Ymn) + © = (21, ..., ) if ym i } 25 for 1 <i < n. Prove that
if ym, | x, then F(yy,) | F(z).

(3) Prove that F(z1,...,x,) — 1 if z1,...,2,, — 00 and F(z1,...,x,) — 0 if 2; — —o0o for
some 1 <3 <mn.

Definition 3.4. A non-negative function F' defined on R" is called a distribution function if
(1) For a; < b; and 1 <i <n, A}zl,bl <A F(2q, ) > 0.
(2) F(x1,...,xpn) = Lif z1,..., 2, — 00.
(3) F(z1,...,xn) — 0 if ; & —o0 for some 1 <7 <n.
(4) Flym) | F(@) if ym | 2.
Remark 3.2. Note that Definition 3.4(4) implies that if x = (z1,...,z,) and y = (1, ..., Yn)
satisfy x; <wy; for all 1 <i <mn, then F(z) < F(y). As a consequence, for i # 7,

n
an,bn

lim lim F(xy,..,z,) = lim lim F(zy,...,2z,).
Tj—>00 Ty —>00 Z;—>00 XTj—>00

Theorem 3.3. For any distribution function F on R™, there is a unique probability P on
(R™, B(R™)) such that F is the distribution of P.

Proof. Let Cy be the following class
Co = {H(%bi]
i=1

where (a,a] := 0 for a € R and (a,o0] := (a,00) for a € RU {—oc}, and C be the class
consisting of finite unions of mutually disjoint sets in Cy.

Exercise 3.2. Prove that C is a field.

ai, by € RU {+o0}, lgign,nZI},

Let z = (21, ...,zpn) € (RU{£o0})". For z;;, =--- = x;, = 00, we define
F(z):= lim  F(y),
Yiis 7yik*>00
where y = (y1,...,yn) and y; = x; for j & {iy,...,4;}. If 2; = —oo for some 1 < i < n, we set
F(z) =0. For A =[]\ (as;,b;] € Cy, define
P(A) .= Aclu,bl o AZman(xl, vy Tp)

and, for B =J | A; € C with 4; € Cp and A; N A; =0 if i # j, define
(3.2) P(B) = > P(A).
i=1

Exercise 3.3. Prove that P is well-defined.

It is easy to see from (3.2) that [P is a finite probability on (R™,C). Note that o(C) = B(R").
By Theorem 3.2, it remains to show that PP is continuous at (). This can be proved in a similar
way as the one-dimensional case and is left for the reader. O
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Exercise 3.4. Fix n € N and let p be a permutation of {1,2,...,n}. For z = (x1,...,x,) € R"
and A C R", define p(x) = (1), ---s Zp(n)) and p(A) = {p(z)|z € A}. Let I be a distribution
function on R™ and set G(z) = F(p(x)).

(1) Prove that G is a distribution function on R™.
(2) Let Pgr,Pe be the probabilities on (R™, B(R™)) with distributions F,G. Show that
Pa(B) =Pr(p(B)).
Hint: The m — X\ lemma.

Exercise 3.5. Let F' be a distribution function on R"™ and set

H(zy,...,2p—1) = xliLnOOF(xl, ey L)

Show that H is a distribution function on R"~!. Let Pg, Py be probabilities on B(R™), B(R"!)
with distributions F, H. Show that Py (A) = Pr(A x R) for A € B(R™™1).

3.3. Distributions on R*. Recall the notation C(B) = {x = (z1, 2, ...) € R®|(z1,...,2,) €
B} for B € B(R™). Note that if By € B(R™), By € B(R™) with m < n and C(B;) = C(B2),
then By = By x R"™™.

Theorem 3.4 (Kolmogorov’s extension theorem on R*). For n € N, let P, be a probability
on (R™, B(R™)). Suppose that P,, satisfies the following consistency property

P,.1(B x R) = P,(B), VB e B([R"),ncN.
Then, there is a unique probability P on (R, B(R*>)) such that
P(C(B)) =P,(B), VBeB(R"), neN.

Proof. Let F = {C(B)|B € B(R™),n > 1} and define P(C(B)) = P,(B). Obviously, F is
a field. Note that if C(B;) = C(Bz2) with By € B(R™), By € B(R") and m < n, then
Bs = By x R™"™ ", This implies

P(C(B1)) = Pm(B1) = Pn(B1 x R"™™) = Py (B2) = P(C(B2)),

which proves that P is well-defined. Further, for m < n and A € B(R™),B € B(R"), if
C(A)NC(B) =0, then (A x R"™™)N B = () and this yields
P(C(A)UC(B)) =P(C(AXxR"™)UB)) =P,((AxR"™)UB)
=P, (AXR"™™) +Py(B) =P,(A) + P,(B)
=P(C(A4)) +P(C(B)).

Hence, P is a finite probability on (R, F).

Note that o(F) = B(R*). By Carathéodory’s extension theorem, it remains to show the
continuity of P at (). Let C(B,) be a decreasing sequence in F satisfying (>, C(B,) =
(. Without loss of generality, we may assume that B,, € B(R™). Assume the inverse that
P(C(B,)) > €> 0.

Exercise 3.6. Let P be a probability on (R", B(R")). Prove that, for any S € B(R") and
€ > 0, there are an open set A D S and a closed set B C S such that

P(A\S)<e, P(S\B)<e.

Exercise 3.7. Let F be a field over Q2 and P be a probability on (2, o(F)). Show that, for any
A € o(F) and € > 0, there is B € F such that P(AAB) < ¢, where AAB = (A\ B)U(B\ A).
16



By Exercise 3.6, we may choose, for n > 1, a compact set K,, C B, such that P, (‘Bn\Kn) <
€271 or, equivalently, P(C(B,) \ C(K,)) < €271 Set A, = N,(K; x R"7). Clearly,
B, xR D> B, for all i > 1. As a result, one has

n

P(C(Bn) \ C(An)) = Pu(Ba \ A) < ) Pu(Ba \ (Ki x R"™))

=1
<D Pu((Bi x R")\ (K x R™) = Py(B; \ K;) < €/2.
=1 =1

Hence, P(C(A,,)) > €/2 and this implies C(A,,) is non-empty.

Next, for n € N, let z, = (zpn,1,Zp2,...) € C(4,). Note that C(A,) DO C(An+1). This
implies {(z4 1, ..., Zin)|i > n} C Ay, for n > 1. For n =1, since A; is compact, we may choose
a subsequence (k1,)p—; of N and 31 € Ay such that xz,,,1 — y1. Inductively, one may
select a subsequence (Kiy1,m)py=1 Of (kim)m=1 and y;41 € R such that @y, i1 — Yis1-
Set n; = k;;. Obviously, one has (zpn, 1,..., Zn;m) — (Y1,...,Ym) as i — oo for any m > 1.
By the compactness of A, (y1,...,Ym) € Am. Consequently, we obtain C({(y1,...,ym)}) C
C(Am) C C(Bp,) for all m > 1 and this yields (y1,%2,...) € (o C(Bn), which contradicts
N C(By) = 0. .

Definition 3.5. Let P be a probability on (R*, B(R*°)). For n > 1, the n-dimensional
distribution of IP is defined by

Fo(x1,...,zp) =P (H(—oo,a:z] X Roo> .

i=1
Remark 3.3. Note that the family of finitely dimensional distributions of P satisfying the
following consistency property.
(3.3) lim Fpy1(x1, .y Znyy) = Fn(x1, . 20).

Y—00
The following theorem is a simple corollary of Theorems 3.3, 3.4 and the m-A lemma.

Theorem 3.5. For n > 1, let F,, be a distribution function on R™. If the family {F,|n =
1,2, ...} satisfies the consistency property in (3.3), then there is a probability P on (R*, B(R*))
such that F,, is the n-dimensional distribution of P for all n € N.

Example 3.1. Recall the model of independent tosses of a fair coin. Let F' be a function on R
defined by F = %1[0,00) + %1[1,00). For n > 1, set Fy,(z1,...,x,) = F(x1) X --- x F(x,). Then,
F, is the distribution of n independent tosses of fair coins, where 0,1 denote respectively for
the tail and head. By Theorem 3.5, there is a probability on (R*°, B(R>)) such that F), is the
corresponding n-dimensional distribution.

Exercise 3.8. Let p be a permutation of positive integers and F, : R™ — R be a family
of distribution functions satisfying (3.3). For z = (z1,z2,...) € R® and A C R*, define
p(x) = (Zp1), Tp(2), ---) and p(A) = {p(z)|z € A}. For n > 1, let m,, = max{p~'(i)[1 <i < n}
and set

Gn(SL'l, ceny l’n) = xp(lii)goo an (l‘p(l), ceey xp(mn))
igp~ ({1,...,n})
(1) Prove that G, is a distribution function on R™ and satisfies (3.3).
(2) Let Pp,Pq be the probabilities in Theorem 3.5 associated with F,,G,,. Prove that
Po(A) =Pp(p(A)) for all A € B(R*>).
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3.4. Distributions on R”. In this section, we introduce the extension theorem of Kol-
mogorov on RT. Let T be a set and S(T) be the set of all finite or infinite sequences in T with
distinct terms. For ¢ € T, let £; = R. Within this subsection, we set z = (z¢)er, Q@ = [[,c1 Q¢
and B = B(2). For 7 = (t,) € S(T), we write x; = (x¢,) and Q, = [[,, Q, = {z-]2s, €
Q,,vn} and B, = B(€;). For any (finite or infinite) sequence § = (s,) € S({t,, : n > 1}) and
B C Qg, define
D;(0,B) = {z; € Q;|xs € B}, D(0,B)={z € Q|zs € B}.
We write (s,) < (tn) if (sn) is a subsequence of (,,).
For 7 = (t,) € S(T), B C Q. and any permutation p of the subindex of 7, write
p(T) = (tp(n))a p(B) = {wp(T) € Qp(T)"TT € B}

Definition 3.6. Let T' be a set. For 7 = (t1,...,t,) € S(T), let P, be a probability on (2., B;).
The family {P,|7 € S(T), 7 is finite} is said to have the consistency property if

(1) For 6 = (S1,....,8m) < 7= (t1,....tn) € S(T') and B € By,

P7(D7(0, B)) = Py(B).
(2) For 7 = (t1,...,tn) € S(T'), B € B; and any permutation p of {1,...,n},

Theorem 3.6 (Kolmogorov’s extension theorem on RT). Let T be a set and assume that
{P;|T € S(T), T is finite} satisfies the consistency property in Definition 3.6. Then, there is
a unique probability P on (Q, B) such that

B(D(r, B)) = P+ (B).
for any finite sequence T € S(T) and B € B;.
Proof. By Theorem 3.4, for 7 = (t,,)72, € S(T), there is a unique probability P» on (2, B;)
satisfying
PT(DT(t17 -'-at'mB)) - IP)(151,...71571)(3)7 VB € B(tl,...,tn)7 n € N.
First, we prove that, for 7 = (¢,)22; € S(T'), 6 < 7 and any permutation p of N,

(i) P-(D,(0, B)) = Py(B) for all B € By.
(ii) Py(r)(p(B)) = Py(B) for all B € B,.

For (i), it is obviously true when @ is finite. We consider the case that 6 is infinite in the
following. Let 6 = (s,)0%; and set

A = {A € By|P-(D, (6, A)) = Py(A)}.

Clearly, A is a A-system. By the 7-A lemma, it remains to show that B x Q. 5. ., )€ A
for all B € By, ... s,) and n > 1. Fix n > 1 and set 0,, = (s1, ..., 8,,). Since 6, < 6 < 7, one has

'DT(Qn,B) = 'DT(H,'DQ(Qn,B)), VB € Bgn.

As 6 < 7, there are positive integers ky < --- < k, such that s; = t;, for 1 < i < n. Set
M =k, and 15y = (t1,...,tpr). Since 6, < T3y < 7, one has

DT(TM7 DTM (Hna B)) = DT(env B)
As a consequence, this implies
]P’T(DT(Q, Dﬁ(em B))) = PT(DT(TM7DTM (Qn, B))) = ]PTM (D’T]\/I (Qn, B))
=Py, (B) = Py(Dy(0,, B)).

This proves (i).
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For (ii), let 7 = (¢,)52; be a sequence, p be a permutation of N. Consider the following
class.

A= {A € BT“P)p(T) (p(A)) = ]P)T(A)}
By the 7-A lemma, as A’ is a A-system, it suffices to show that C' x Q¢ . 4 .y € A for all
C e By, 1,y andn > 1. Fixn > 1. Let 7, = (t1,...,t,) and 7,, = (tny1,tnt2,...) and write
{by < -+ < b} ={p7t1),...,p~Y(n)}. Set N = b, and let p’ be a permutation of {1,...,n}
defined by
pl(i) =p(bi) V1<i<n.
Note that p'(75) = (ty (1), s L)) < (Ep(1)s - tp(ny) < p(7). This implies, for C € B,
p

p(C % Q) = Dy (0 (), #(C)) = D) (o) s oy )

where

C' = D(tp(1)7""tp(N))(p/(Tn)7 pl(C))-
By the consistency property, we obtain

Poiry (P(C % Q7)) =Pty i) (C1) = Pt (0/(C)) = Pr, (C) = P(C x Qry),

as desired. This proves (ii).
For A € B, one may select 7 € S(T) and B € B; such that A = D(r, B). Define

P(A) = P-(B).
Exercise 3.9. Prove that P is well-defined.

To prove that P is a probability on (2, B), it remains to show that P is o-additive. Let
A, € B be mutually disjoint sets. For n € N, one may choose 1, € S(T') and B,, € B,, such
that A, = D(n,, By). Let n € S(T') be a sequence consisting of terms in 7, for all n. For
n € N, there is a permutation p,, of N such that p,(n,) < n. Note that

An = D(ﬂn(nn)7 Pn(Bn)) = D(% Cn)a Cn = Dn(pn(nn)7 pn(Bn))
Clearly, ), are mutually disjoint and, by the o-additivity of P,, we have

P (U An) =P (D (777 U Cn)) = ZPW(Cn) = prn(nn)(pn(Bn)) = ZP(An)'
n=1 n=1 n=1 n=1 n=1

This finishes the proof. U

Definition 3.7. Let P be a probability on (Q2,B). For 7 = (t1,...,t,) € S(T), the function
Fr(z;) :=P(D(7, ][}~ (—00,z])) is called a finite dimensional distribution of P.

Theorem 3.7. Let T be a set. Forn € N and finite T € S(T'), let F; be a distribution function
on Q. Suppose that, forn > 1, 7 = (t1,...,tn) € S(T), z+ € Q; and any permutation p of

{1,...,n},

(3'4) Fp(T) (:L‘p(T)) = FT(mT)a
and
(35) hg FT(mT) = F%(LU—;),

n

where T = (t1,...,tn—1). Then, there is a unique probability P on (Q, B) such that
FT(SUT) = P(D(Tv (—OO, xtl] X X (_OO’ $tn:|))
for all 7= (t1,...,tn) € T and n > 1.

19



