3. DISTRIBUTIONS

In this subsection, we introduce the notion of distributions.

3.1. **Distributions on** R**.**

Definition 3.1. Let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{P})$ be a probability space. The distribution of \mathbb{P} is a function *F* on $\mathbb R$ defined by $F(x) = \mathbb P((-\infty, x]).$

It follows immediately from the above definition that *F* is non-decreasing, right-continuous and satisfies

(3.1)
$$
F(-\infty) := \lim_{x \to -\infty} F(x) = 0, \quad F(\infty) := \lim_{x \to \infty} F(x) = 1.
$$

Definition 3.2. A non-decreasing, right-continuous function satisfying (3.1) is called a distribution function.

Theorem 3.1. For any distribution function F, there is a unique probability \mathbb{P} on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that F is the distribution of \mathbb{P} .

Proof. The proof is based on Carathéodory's extension theorem. We display the version in probability as follows but skip its proof.

Theorem 3.2 (Carathéodory's extension theorem). Let $(\Omega, \mathcal{F}, \mathbb{P}_0)$ be a finite probability space. *If* \mathbb{P}_0 *is* σ -additive, then there is a probability space $(\Omega, \sigma(\mathcal{F}), \mathbb{P})$ *such that* $\mathbb{P}(A) = \mathbb{P}_0(A)$ for *A ∈ F.*

Consider the following class.

 $\mathcal{C}_0 = \{(a, b] | -\infty \le a \le b \le \infty\}, \quad \mathcal{C} = \{\text{finite disjoint unions of sets in } \mathcal{C}_0\},\$

where $(a, a] := \emptyset$ for $a \in \mathbb{R}$ and $(a, \infty) := (a, \infty)$ for $a \in \mathbb{R} \cup \{-\infty\}$. For $A = \bigcup_{i=1}^{n} (a_i, b_i] \in \mathcal{C}$, define $\mathbb{P}_0(A) = \sum_{i=1}^n (F(b_i) - F(a_i))$, where $F(-\infty) := 0$ and $F(\infty) := 1$. One can prove that *C* is a field, $\sigma(C) = \mathcal{B}(\mathbb{R})$ and \mathbb{P}_0 is a finite probability on (\mathbb{R}, C) . By Theorem 3.2, it remains to show that \mathbb{P}_0 is *σ*-additive or, equivalently, \mathbb{P}_0 is continuous at *Ø*. Let *A_n* be a sequence in *C* satisfying $A_n \supset A_{n+1}$ and $\bigcap_n A_n = \emptyset$. Given $\epsilon > 0$, one may choose $N > 0$ such that $\mathbb{P}_0((-N, N]) \geq 1 - \epsilon/2$. By the right continuity of *F*, one may choose $B_n \in \mathcal{C}$ such that $\overline{B}_n \subset A_n \cap (-N, N]$ and $\mathbb{P}_0(B_n) \ge \mathbb{P}_0(A_n \cap (-N, N]) - \epsilon/2^{n+1}$ for $n \ge 1$. Set $C_n = \bigcap_{i=1}^n \overline{B}_i$. Since $\bigcap_n A_n = \emptyset$, $\bigcap_n C_n = \bigcap_n \overline{B}_n = \emptyset$. Note that \overline{B}_n is compact. By the nested set property, $\bigcap_{n=1}^{n_0} C_n = \bigcap_{n=1}^{n_0} \overline{B}_n = \emptyset$ for some n_0 and, hence, $\bigcap_{n=1}^{n_0} B_n = \emptyset$. This implies

$$
\mathbb{P}_0(A_{n_0}) \leq \frac{\epsilon}{2} + \mathbb{P}_0(A_{n_0} \cap (-N, N]) = \frac{\epsilon}{2} + \mathbb{P}_0\left((A_{n_0} \cap (-N, N]) \setminus \bigcap_{n=1}^{n_0} B_n\right)
$$

$$
\leq \frac{\epsilon}{2} + \sum_{n=1}^{n_0} \mathbb{P}_0((A_n \cap (-N, N]) \setminus B_n) \leq \frac{\epsilon}{2} + \sum_{n=1}^{n_0} \frac{\epsilon}{2^{n+1}} < \epsilon.
$$

This proves that \mathbb{P}_0 is continuous at \emptyset .

Remark 3.1*.* The probability corresponding to a distribution function is called a Lebesgue-Stieltjes probability.

3.2. Distributions on \mathbb{R}^n .

Definition 3.3. Fix $n \geq 1$ and let $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mathbb{P})$ be a probability space. The distribution of \mathbb{P} is defined by $F(x_1, ..., x_n) = \mathbb{P}(\prod_{i=1}^n (-\infty, x_i]).$

For $1 \leq i \leq n$ and $-\infty \leq a_i \leq b_i \leq \infty$, set

 $\Delta_{a_i,b_i}^i F(x_1,...,x_n) = F(x_1,...,x_{i-1},b_i,x_{i+1},...,x_n) - F(x_1,...,x_{i-1},a_i,x_{i+1},...,x_n).$

Clearly, one has

$$
\Delta_{a_i,b_i}^i \Delta_{a_j,b_j}^j F(x_1,...,x_n) = \Delta_{a_j,b_j}^j \Delta_{a_i,b_i}^i F(x_1,...,x_n).
$$

Exercise 3.1. Let \mathbb{P} be a probability on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ with distribution *F*.

- (1) Show that $\mathbb{P}(\prod_{i=1}^n (a_i, b_i]) = \Delta^1_{a_1, b_1} \cdots \Delta^n_{a_n, b_n} F(x_1, ..., x_n)$. (*Hint:* Prove that if $a_i =$ $-\infty$ for $k < i \leq n$, then $\mathbb{P}(\prod_{i=1}^{n} (a_i, b_i]) = \Delta^1_{a_1, b_1} \cdots \Delta^k_{a_k, b_k} F(x_1, ..., x_k, b_{k+1}, ..., b_n)$.
- (2) We write $y_m = (y_{m,1},...,y_{m,n}) \downarrow x = (x_1,...,x_n)$ if $y_{m,i} \downarrow x_i$ for $1 \leq i \leq n$. Prove that if $y_m \downarrow x$, then $F(y_m) \downarrow F(x)$.
- (3) Prove that $F(x_1, ..., x_n) \to 1$ if $x_1, ..., x_n \to \infty$ and $F(x_1, ..., x_n) \to 0$ if $x_i \to -\infty$ for some $1 \leq i \leq n$.

Definition 3.4. A non-negative function F defined on \mathbb{R}^n is called a distribution function if

- (1) For $a_i < b_i$ and $1 \leq i \leq n$, $\Delta_{a_1,b_1}^1 \cdots \Delta_{a_n,b_n}^n F(x_1,...,x_n) \geq 0$.
- (2) $F(x_1, ..., x_n) \to 1$ if $x_1, ..., x_n \to \infty$.
- (3) $F(x_1, ..., x_n) \to 0$ if $x_i \to -\infty$ for some $1 \leq i \leq n$.
- (4) $F(y_m) \downarrow F(x)$ if $y_m \downarrow x$.

Remark 3.2. Note that Definition 3.4(4) implies that if $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ satisfy $x_i \leq y_i$ for all $1 \leq i \leq n$, then $F(x) \leq F(y)$. As a consequence, for $i \neq j$,

$$
\lim_{x_j \to \infty} \lim_{x_i \to \infty} F(x_1, ..., x_n) = \lim_{x_i \to \infty} \lim_{x_j \to \infty} F(x_1, ..., x_n).
$$

Theorem 3.3. For any distribution function F on \mathbb{R}^n , there is a unique probability \mathbb{P} on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ *such that F is the distribution of* \mathbb{P} *.*

Proof. Let C_0 be the following class

$$
\mathcal{C}_0 = \left\{ \prod_{i=1}^n (a_i, b_i) \middle| a_i, b_i \in \mathbb{R} \cup \{\pm \infty\}, \ 1 \leq i \leq n, n \geq 1 \right\},\
$$

where $(a, a] := \emptyset$ for $a \in \mathbb{R}$ and $(a, \infty) := (a, \infty)$ for $a \in \mathbb{R} \cup \{-\infty\}$, and C be the class consisting of finite unions of mutually disjoint sets in *C*0.

Exercise 3.2. Prove that C is a field.

Let
$$
x = (x_1, ..., x_n) \in (\mathbb{R} \cup \{\pm \infty\})^n
$$
. For $x_{i_1} = \cdots = x_{i_k} = \infty$, we define

$$
F(x) := \lim_{y_{i_1}, ..., y_{i_k} \to \infty} F(y),
$$

where $y = (y_1, ..., y_n)$ and $y_j = x_j$ for $j \notin \{i_1, ..., i_k\}$. If $x_i = -\infty$ for some $1 \le i \le n$, we set $F(x) = 0$. For $A = \prod_{i=1}^{n} (a_i, b_i] \in \mathcal{C}_0$, define

$$
\mathbb{P}(A) := \Delta^1_{a_1, b_1} \cdots \Delta^n_{a_n, b_n} F(x_1, \ldots, x_n)
$$

and, for $B = \bigcup_{i=1}^{n} A_i \in \mathcal{C}$ with $A_i \in \mathcal{C}_0$ and $A_i \cap A_j = \emptyset$ if $i \neq j$, define

(3.2)
$$
\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(A_i).
$$

Exercise 3.3. Prove that $\mathbb P$ is well-defined.

It is easy to see from (3.2) that $\mathbb P$ is a finite probability on $(\mathbb R^n, \mathcal C)$. Note that $\sigma(\mathcal C) = \mathcal B(\mathbb R^n)$. By Theorem 3.2, it remains to show that P is continuous at *∅*. This can be proved in a similar way as the one-dimensional case and is left for the reader. **Exercise 3.4.** Fix $n \in \mathbb{N}$ and let ρ be a permutation of $\{1, 2, ..., n\}$. For $x = (x_1, ..., x_n) \in \mathbb{R}^n$ and $A \subset \mathbb{R}^n$, define $\rho(x) = (x_{\rho(1)}, ..., x_{\rho(n)})$ and $\rho(A) = {\rho(x)|x \in A}$. Let F be a distribution function on \mathbb{R}^n and set $G(x) = F(\rho(x))$.

- (1) Prove that *G* is a distribution function on \mathbb{R}^n .
- (2) Let \mathbb{P}_F , \mathbb{P}_G be the probabilities on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ with distributions F, G . Show that $\mathbb{P}_G(B) = \mathbb{P}_F(\rho(B)).$

Hint: The $\pi - \lambda$ *lemma.*

Exercise 3.5. Let F be a distribution function on \mathbb{R}^n and set

$$
H(x_1, ..., x_{n-1}) = \lim_{x_n \to \infty} F(x_1, ..., x_n).
$$

Show that *H* is a distribution function on \mathbb{R}^{n-1} . Let \mathbb{P}_F , \mathbb{P}_H be probabilities on $\mathcal{B}(\mathbb{R}^n)$, $\mathcal{B}(\mathbb{R}^{n-1})$ with distributions F, H . Show that $\mathbb{P}_H(A) = \mathbb{P}_F(A \times \mathbb{R})$ for $A \in \mathcal{B}(\mathbb{R}^{n-1})$.

3.3. **Distributions on** \mathbb{R}^{∞} . Recall the notation $\mathcal{C}(B) = \{x = (x_1, x_2, \ldots) \in \mathbb{R}^{\infty} | (x_1, \ldots, x_n) \in$ *B*[}] for $B \in \mathcal{B}(\mathbb{R}^n)$. Note that if $B_1 \in \mathcal{B}(\mathbb{R}^m)$, $B_2 \in \mathcal{B}(\mathbb{R}^n)$ with $m \leq n$ and $\mathcal{C}(B_1) = \mathcal{C}(B_2)$, then $B_2 = B_1 \times \mathbb{R}^{n-m}$.

Theorem 3.4 (Kolmogorov's extension theorem on \mathbb{R}^{∞}). For $n \in \mathbb{N}$, let \mathbb{P}_n be a probability on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ *. Suppose that* \mathbb{P}_n *satisfies the following consistency property*

$$
\mathbb{P}_{n+1}(B \times \mathbb{R}) = \mathbb{P}_n(B), \quad \forall B \in \mathcal{B}(\mathbb{R}^n), n \in \mathbb{N}.
$$

Then, there is a unique probability \mathbb{P} *on* $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$ *such that*

$$
\mathbb{P}(\mathcal{C}(B)) = \mathbb{P}_n(B), \quad \forall B \in \mathcal{B}(\mathbb{R}^n), n \in \mathbb{N}.
$$

Proof. Let $\mathcal{F} = \{C(B)|B \in \mathcal{B}(\mathbb{R}^n), n \geq 1\}$ and define $\mathbb{P}(\mathcal{C}(B)) = \mathbb{P}_n(B)$. Obviously, \mathcal{F} is a field. Note that if $\mathcal{C}(B_1) = \mathcal{C}(B_2)$ with $B_1 \in \mathcal{B}(\mathbb{R}^m)$, $B_2 \in \mathcal{B}(\mathbb{R}^n)$ and $m \leq n$, then $B_2 = B_1 \times \mathbb{R}^{n-m}$. This implies

$$
\mathbb{P}(\mathcal{C}(B_1)) = \mathbb{P}_m(B_1) = \mathbb{P}_n(B_1 \times \mathbb{R}^{n-m}) = \mathbb{P}_n(B_2) = \mathbb{P}(\mathcal{C}(B_2)),
$$

which proves that \mathbb{P} is well-defined. Further, for $m < n$ and $A \in \mathcal{B}(\mathbb{R}^m)$, $B \in \mathcal{B}(\mathbb{R}^n)$, if $\mathcal{C}(A) \cap \mathcal{C}(B) = \emptyset$, then $(A \times \mathbb{R}^{n-m}) \cap B = \emptyset$ and this yields

$$
\mathbb{P}(\mathcal{C}(A) \cup \mathcal{C}(B)) = \mathbb{P}(\mathcal{C}((A \times \mathbb{R}^{n-m}) \cup B)) = \mathbb{P}_n((A \times \mathbb{R}^{n-m}) \cup B)
$$

= $\mathbb{P}_n(A \times \mathbb{R}^{n-m}) + \mathbb{P}_n(B) = \mathbb{P}_m(A) + \mathbb{P}_n(B)$
= $\mathbb{P}(\mathcal{C}(A)) + \mathbb{P}(\mathcal{C}(B)).$

Hence, $\mathbb P$ is a finite probability on $(\mathbb R^\infty, \mathcal F)$.

Note that $\sigma(\mathcal{F}) = \mathcal{B}(\mathbb{R}^{\infty})$. By Carathéodory's extension theorem, it remains to show the continuity of \mathbb{P} at \emptyset . Let $\mathcal{C}(B_n)$ be a decreasing sequence in *F* satisfying $\bigcap_{n=1}^{\infty} \mathcal{C}(B_n)$ = \emptyset *.* Without loss of generality, we may assume that $B_n \in \mathcal{B}(\mathbb{R}^n)$. Assume the inverse that $\mathbb{P}(\mathcal{C}(B_n)) \geq \epsilon > 0.$

Exercise 3.6. Let \mathbb{P} be a probability on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Prove that, for any $S \in \mathcal{B}(\mathbb{R}^n)$ and ϵ > 0, there are an open set *A* ⊃ *S* and a closed set *B* ⊂ *S* such that

$$
\mathbb{P}(A \setminus S) < \epsilon, \quad \mathbb{P}(S \setminus B) < \epsilon.
$$

Exercise 3.7. Let F be a field over Ω and \mathbb{P} be a probability on $(\Omega, \sigma(\mathcal{F}))$. Show that, for any $A \in \sigma(\mathcal{F})$ and $\epsilon > 0$, there is $B \in \mathcal{F}$ such that $\mathbb{P}(A \Delta B) < \epsilon$, where $A \Delta B = (A \setminus B) \cup (B \setminus A)$.

By Exercise 3.6, we may choose, for $n \geq 1$, a compact set $K_n \subset B_n$ such that $\mathbb{P}_n(B_n \setminus K_n) \leq$ $\epsilon 2^{-n-1}$ or, equivalently, $\mathbb{P}(\mathcal{C}(B_n) \setminus \mathcal{C}(K_n)) \leq \epsilon 2^{-n-1}$. Set $A_n = \bigcap_{i=1}^n (K_i \times \mathbb{R}^{n-i})$. Clearly, $B_n \times \mathbb{R}^i \supset B_{n+i}$ for all $i \geq 1$. As a result, one has

$$
\mathbb{P}(\mathcal{C}(B_n) \setminus \mathcal{C}(A_n)) = \mathbb{P}_n(B_n \setminus A_n) \le \sum_{i=1}^n \mathbb{P}_n(B_n \setminus (K_i \times \mathbb{R}^{n-i}))
$$

$$
\le \sum_{i=1}^n \mathbb{P}_n((B_i \times \mathbb{R}^{n-i}) \setminus (K_i \times \mathbb{R}^{n-i})) = \sum_{i=1}^n \mathbb{P}_i(B_i \setminus K_i) < \epsilon/2.
$$

Hence, $\mathbb{P}(\mathcal{C}(A_n)) > \epsilon/2$ and this implies $\mathcal{C}(A_n)$ is non-empty.

Next, for $n \in \mathbb{N}$, let $x_n = (x_{n,1}, x_{n,2}, \ldots) \in C(A_n)$. Note that $C(A_n) \supset C(A_{n+1})$. This implies ${(x_{i,1},...,x_{i,n})|i ≥ n} ⊂ A_n$ for $n ≥ 1$. For $n = 1$, since A_1 is compact, we may choose a subsequence $(k_{1,m})_{m=1}^{\infty}$ of N and $y_1 \in A_1$ such that $x_{k_{1,m},1} \to y_1$. Inductively, one may select a subsequence $(k_{i+1,m})_{m=1}^{\infty}$ of $(k_{i,m})_{m=1}^{\infty}$ and $y_{i+1} \in \mathbb{R}$ such that $x_{k_{i+1,m},i+1} \to y_{i+1}$. Set $n_i = k_{i,i}$. Obviously, one has $(x_{n_i,1},...,x_{n_i,m}) \rightarrow (y_1,...,y_m)$ as $i \rightarrow \infty$ for any $m \geq 1$. By the compactness of A_m , $(y_1, ..., y_m) \in A_m$. Consequently, we obtain $\mathcal{C}(\{(y_1, ..., y_m)\}) \subset$ $\mathcal{C}(A_m) \subset \mathcal{C}(B_m)$ for all $m \geq 1$ and this yields $(y_1, y_2, ...) \in \bigcap_{n=1}^{\infty} \mathcal{C}(B_n)$, which contradicts $\bigcap_{n=1}^{\infty} C(B_n) = \emptyset.$

Definition 3.5. Let \mathbb{P} be a probability on $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$. For $n \geq 1$, the *n*-dimensional distribution of $\mathbb P$ is defined by

$$
F_n(x_1,...,x_n) = \mathbb{P}\left(\prod_{i=1}^n(-\infty,x_i]\times\mathbb{R}^\infty\right).
$$

Remark 3.3. Note that the family of finitely dimensional distributions of \mathbb{P} satisfying the following consistency property.

(3.3)
$$
\lim_{y \to \infty} F_{n+1}(x_1, ..., x_n, y) = F_n(x_1, ..., x_n).
$$

The following theorem is a simple corollary of Theorems 3.3, 3.4 and the *π*-*λ* lemma.

Theorem 3.5. For $n \geq 1$, let F_n be a distribution function on \mathbb{R}^n . If the family $\{F_n | n = n\}$ 1,2,...*} satisfies the consistency property in* (3.3)*, then there is a probability* \mathbb{P} *on* ($\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty})$) *such that* F_n *is the n*-dimensional distribution of \mathbb{P} *for all* $n \in \mathbb{N}$ *.*

Example 3.1*.* Recall the model of independent tosses of a fair coin. Let *F* be a function on R defined by $F=\frac{1}{2}$ $\frac{1}{2}$ **1**_{[0,∞)} + $\frac{1}{2}$ $\frac{1}{2}$ **1**_{[1,∞)}. For $n \ge 1$, set $F_n(x_1, ..., x_n) = F(x_1) \times \cdots \times F(x_n)$. Then, F_n is the distribution of *n* independent tosses of fair coins, where 0, 1 denote respectively for the tail and head. By Theorem 3.5, there is a probability on $(\mathbb{R}^{\infty}, \mathcal{B}(\mathbb{R}^{\infty}))$ such that F_n is the corresponding *n*-dimensional distribution.

Exercise 3.8. Let ρ be a permutation of positive integers and $F_n : \mathbb{R}^n \to \mathbb{R}$ be a family of distribution functions satisfying (3.3). For $x = (x_1, x_2, ...)\in \mathbb{R}^{\infty}$ and $A \subset \mathbb{R}^{\infty}$, define $\rho(x) = (x_{\rho(1)}, x_{\rho(2)}, \ldots)$ and $\rho(A) = \{\rho(x) | x \in A\}$. For $n \ge 1$, let $m_n = \max\{\rho^{-1}(i) | 1 \le i \le n\}$ and set

$$
G_n(x_1, ..., x_n) = \lim_{\substack{x_{\rho(i)} \to \infty \\ i \notin \rho^{-1}(\{1, ..., n\})}} F_{m_n}(x_{\rho(1)}, ..., x_{\rho(m_n)}).
$$

- (1) Prove that G_n is a distribution function on \mathbb{R}^n and satisfies (3.3).
- (2) Let \mathbb{P}_F , \mathbb{P}_G be the probabilities in Theorem 3.5 associated with F_n, G_n . Prove that $\mathbb{P}_G(A) = \mathbb{P}_F(\rho(A))$ for all $A \in \mathcal{B}(\mathbb{R}^\infty)$.

3.4. Distributions on \mathbb{R}^T . In this section, we introduce the extension theorem of Kolmogorov on \mathbb{R}^T . Let *T* be a set and $\mathcal{S}(T)$ be the set of all finite or infinite sequences in *T* with distinct terms. For $t \in T$, let $\Omega_t = \mathbb{R}$. Within this subsection, we set $x = (x_t)_{t \in T}$, $\Omega = \prod_{t \in T} \Omega_t$ and $\mathcal{B} = \mathcal{B}(\Omega)$. For $\tau = (t_n) \in \mathcal{S}(T)$, we write $x_{\tau} = (x_{t_n})$ and $\Omega_{\tau} = \prod_n \Omega_{t_n} := \{x_{\tau} | x_{t_n} \in$ $\Omega_{t_n}, \forall n$ and $\mathcal{B}_{\tau} = \mathcal{B}(\Omega_{\tau}).$ For any (finite or infinite) sequence $\delta = (s_n) \in \mathcal{S}(\{t_n : n \geq 1\})$ and $B \subset \Omega_{\delta}$, define

$$
\mathcal{D}_{\tau}(\delta, B) = \{x_{\tau} \in \Omega_{\tau} | x_{\delta} \in B\}, \quad \mathcal{D}(\delta, B) = \{x \in \Omega | x_{\delta} \in B\}.
$$

We write $(s_n) \prec (t_n)$ if (s_n) is a subsequence of (t_n) .

For $\tau = (t_n) \in \mathcal{S}(T)$, $B \subset \Omega_{\tau}$ and any permutation ρ of the subindex of τ , write

$$
\rho(\tau) = (t_{\rho(n)}), \quad \rho(B) = \{x_{\rho(\tau)} \in \Omega_{\rho(\tau)} | x_{\tau} \in B\}.
$$

Definition 3.6. Let *T* be a set. For $\tau = (t_1, ..., t_n) \in \mathcal{S}(T)$, let \mathbb{P}_{τ} be a probability on $(\Omega_{\tau}, \mathcal{B}_{\tau})$. The family $\{\mathbb{P}_{\tau} | \tau \in \mathcal{S}(T), \tau \text{ is finite}\}\$ is said to have the **consistency property** if

(1) For $\theta = (s_1, ..., s_m) \prec \tau = (t_1, ..., t_n) \in \mathcal{S}(T)$ and $B \in \mathcal{B}_{\theta}$,

$$
\mathbb{P}_{\tau}(\mathcal{D}_{\tau}(\theta, B)) = \mathbb{P}_{\theta}(B).
$$

(2) For $\tau = (t_1, ..., t_n) \in \mathcal{S}(T)$, $B \in \mathcal{B}_{\tau}$ and any permutation ρ of $\{1, ..., n\}$,

$$
\mathbb{P}_{\rho(\tau)}(\rho(B)) = \mathbb{P}_{\tau}(B).
$$

Theorem 3.6 (Kolmogorov's extension theorem on R *T*)**.** *Let T be a set and assume that* $\{P_{\tau} | \tau \in S(T), \tau \text{ is finite} \}$ *satisfies the consistency property in Definition 3.6. Then, there is a unique probability* $\mathbb P$ *on* (Ω, \mathcal{B}) *such that*

$$
\mathbb{P}(\mathcal{D}(\tau,B)) = \mathbb{P}_{\tau}(B).
$$

for any finite sequence $\tau \in \mathcal{S}(T)$ *and* $B \in \mathcal{B}_{\tau}$ *.*

Proof. By Theorem 3.4, for $\tau = (t_n)_{n=1}^{\infty} \in \mathcal{S}(T)$, there is a unique probability \mathbb{P}_{τ} on $(\Omega_{\tau}, \mathcal{B}_{\tau})$ satisfying

 $\mathbb{P}_{\tau}(\mathcal{D}_{\tau}(t_1, ..., t_n, B)) = \mathbb{P}_{(t_1, ..., t_n)}(B), \quad \forall B \in \mathcal{B}_{(t_1, ..., t_n)}, n \in \mathbb{N}.$

First, we prove that, for $\tau = (t_n)_{n=1}^{\infty} \in \mathcal{S}(T)$, $\theta \prec \tau$ and any permutation ρ of N,

- (i) $\mathbb{P}_{\tau}(\mathcal{D}_{\tau}(\theta, B)) = \mathbb{P}_{\theta}(B)$ for all $B \in \mathcal{B}_{\theta}$.
- (ii) $\mathbb{P}_{\rho(\tau)}(\rho(B)) = \mathbb{P}_{\tau}(B)$ for all $B \in \mathcal{B}_{\tau}$.

For (i), it is obviously true when θ is finite. We consider the case that θ is infinite in the following. Let $\theta = (s_n)_{n=1}^{\infty}$ and set

$$
\mathcal{A} = \{A \in \mathcal{B}_{\theta} | \mathbb{P}_{\tau}(\mathcal{D}_{\tau}(\theta, A)) = \mathbb{P}_{\theta}(A)\}.
$$

Clearly, *A* is a *λ*-system. By the π -*λ* lemma, it remains to show that $B \times \Omega_{(s_{n+1}, s_{n+2},...)} \in A$ for all $B \in \mathcal{B}_{(s_1,\ldots,s_n)}$ and $n \geq 1$. Fix $n \geq 1$ and set $\theta_n = (s_1,\ldots,s_n)$. Since $\theta_n \prec \theta \prec \tau$, one has

$$
\mathcal{D}_{\tau}(\theta_n, B) = \mathcal{D}_{\tau}(\theta, \mathcal{D}_{\theta}(\theta_n, B)), \quad \forall B \in \mathcal{B}_{\theta_n}
$$

.

As $\theta \prec \tau$, there are positive integers $k_1 < \cdots < k_n$ such that $s_i = t_{k_i}$ for $1 \leq i \leq n$. Set $M = k_n$ and $\tau_M = (t_1, ..., t_M)$. Since $\theta_n \prec \tau_M \prec \tau$, one has

$$
\mathcal{D}_{\tau}(\tau_M, \mathcal{D}_{\tau_M}(\theta_n, B)) = \mathcal{D}_{\tau}(\theta_n, B).
$$

As a consequence, this implies

$$
\mathbb{P}_{\tau}(\mathcal{D}_{\tau}(\theta, \mathcal{D}_{\theta}(\theta_n, B))) = \mathbb{P}_{\tau}(\mathcal{D}_{\tau}(\tau_M, \mathcal{D}_{\tau_M}(\theta_n, B))) = \mathbb{P}_{\tau_M}(\mathcal{D}_{\tau_M}(\theta_n, B))
$$

= $\mathbb{P}_{\theta_n}(B) = \mathbb{P}_{\theta}(\mathcal{D}_{\theta}(\theta_n, B)).$

This proves (i).

For (ii), let $\tau = (t_n)_{n=1}^{\infty}$ be a sequence, ρ be a permutation of N. Consider the following class.

$$
\mathcal{A}' := \{ A \in \mathcal{B}_{\tau} | \mathbb{P}_{\rho(\tau)}(\rho(A)) = \mathbb{P}_{\tau}(A) \}.
$$

By the π - λ lemma, as \mathcal{A}' is a λ -system, it suffices to show that $C \times \Omega_{(t_{n+1}, t_{n+2}, \dots)} \in \mathcal{A}'$ for all $C \in \mathcal{B}_{(t_1,...,t_n)}$ and $n \ge 1$. Fix $n \ge 1$. Let $\tau_n = (t_1,...,t_n)$ and $\tau'_n = (t_{n+1}, t_{n+2}, ...)$ and write $\{b_1 < \cdots < b_n\} = \{\rho^{-1}(1), ..., \rho^{-1}(n)\}\$. Set $N = b_n$ and let ρ' be a permutation of $\{1, ..., n\}$ defined by

$$
\rho'(i) = \rho(b_i) \quad \forall 1 \le i \le n.
$$

Note that $\rho'(\tau_n) = (t_{\rho'(1)}, ..., t_{\rho'(n)}) \prec (t_{\rho(1)}, ..., t_{\rho(N)}) \prec \rho(\tau)$. This implies, for $C \in \mathcal{B}_{\tau_n}$, $\rho\left(C \times \Omega_{\tau'_n}\right) = \mathcal{D}_{\rho(\tau)}(\rho'(\tau_n), \rho'(C)) = \mathcal{D}_{\rho(\tau)}\left(t_{\rho(1)}, ..., t_{\rho(N)}, C'\right),$

where

$$
C' = \mathcal{D}_{(t_{\rho(1)},...,t_{\rho(N)})}(\rho'(\tau_n), \rho'(C)).
$$

By the consistency property, we obtain

 $\mathbb{P}_{\rho(\tau)}(\rho(C \times \Omega_{\tau'_n})) = \mathbb{P}_{(t_{\rho(1)},...,t_{\rho(N)})}(C') = \mathbb{P}_{\rho'(\tau_n)}(\rho'(C)) = \mathbb{P}_{\tau_n}(C) = \mathbb{P}_{\tau}(C \times \Omega_{\tau'_n}),$

as desired. This proves (ii).

For $A \in \mathcal{B}$, one may select $\tau \in \mathcal{S}(T)$ and $B \in \mathcal{B}_{\tau}$ such that $A = \mathcal{D}(\tau, B)$. Define

 $\mathbb{P}(A) = \mathbb{P}_{\tau}(B)$.

Exercise 3.9. Prove that $\mathbb P$ is well-defined.

To prove that $\mathbb P$ is a probability on $(\Omega, \mathcal B)$, it remains to show that $\mathbb P$ is σ -additive. Let $A_n \in \mathcal{B}$ be mutually disjoint sets. For $n \in \mathbb{N}$, one may choose $\eta_n \in \mathcal{S}(T)$ and $B_n \in \mathcal{B}_{\eta_n}$ such that $A_n = \mathcal{D}(\eta_n, B_n)$. Let $\eta \in \mathcal{S}(T)$ be a sequence consisting of terms in η_n for all *n*. For $n \in \mathbb{N}$, there is a permutation ρ_n of N such that $\rho_n(\eta_n) \prec \eta$. Note that

$$
A_n = \mathcal{D}(\rho_n(\eta_n), \rho_n(B_n)) = \mathcal{D}(\eta, C_n), \quad C_n = \mathcal{D}_\eta(\rho_n(\eta_n), \rho_n(B_n)).
$$

Clearly, C_n are mutually disjoint and, by the σ -additivity of \mathbb{P}_n , we have

$$
\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \mathbb{P}\left(\mathcal{D}\left(\eta, \bigcup_{n=1}^{\infty} C_n\right)\right) = \sum_{n=1}^{\infty} \mathbb{P}_{\eta}(C_n) = \sum_{n=1}^{\infty} \mathbb{P}_{\rho_n(\eta_n)}(\rho_n(B_n)) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).
$$

This finishes the proof.

Definition 3.7. Let \mathbb{P} be a probability on (Ω, \mathcal{B}) . For $\tau = (t_1, ..., t_n) \in \mathcal{S}(T)$, the function $F_{\tau}(x_{\tau}) := \mathbb{P}(\mathcal{D}(\tau, \prod_{i=1}^{n}(-\infty, x_{t_i}]))$ is called a **finite dimensional distribution** of \mathbb{P} .

Theorem 3.7. Let *T* be a set. For $n \in \mathbb{N}$ and finite $\tau \in S(T)$, let F_{τ} be a distribution function on Ω_{τ} . Suppose that, for $n \geq 1$, $\tau = (t_1, ..., t_n) \in \mathcal{S}(T)$, $x_{\tau} \in \Omega_{\tau}$ and any permutation ρ of *{*1*, ..., n},*

$$
(3.4) \t\t F_{\rho(\tau)}(x_{\rho(\tau)}) = F_{\tau}(x_{\tau}),
$$

and

(3.5)
$$
\lim_{x_{t_n} \to \infty} F_\tau(x_\tau) = F_{\tilde{\tau}}(x_{\tilde{\tau}}),
$$

where $\check{\tau} = (t_1, ..., t_{n-1})$ *. Then, there is a unique probability* \mathbb{P} *on* (Ω, \mathcal{B}) *such that*

$$
F_{\tau}(x_{\tau}) = \mathbb{P}(\mathcal{D}(\tau, (-\infty, x_{t_1}] \times \cdots \times (-\infty, x_{t_n}]))
$$

for all $\tau = (t_1, ..., t_n) \in T$ *and* $n \geq 1$ *.*