
3. Distributions

In this subsection, we introduce the notion of distributions.

3.1. Distributions on R.

Definition 3.1. Let (R,B(R),P) be a probability space. The distribution of P is a function
F on R defined by F (x) = P((−∞, x]).

It follows immediately from the above definition that F is non-decreasing, right-continuous
and satisfies

(3.1) F (−∞) := lim
x→−∞

F (x) = 0, F (∞) := lim
x→∞

F (x) = 1.

Definition 3.2. A non-decreasing, right-continuous function satisfying (3.1) is called a dis-
tribution function.

Theorem 3.1. For any distribution function F , there is a unique probability P on (R,B(R))
such that F is the distribution of P.

Proof. The proof is based on Carathéodory’s extension theorem. We display the version in
probability as follows but skip its proof.

Theorem 3.2 (Carathéodory’s extension theorem). Let (Ω,F ,P0) be a finite probability space.
If P0 is σ-additive, then there is a probability space (Ω, σ(F),P) such that P(A) = P0(A) for
A ∈ F .

Consider the following class.

C0 = {(a, b]| −∞ ≤ a ≤ b ≤ ∞}, C = {finite disjoint unions of sets in C0},

where (a, a] := ∅ for a ∈ R and (a,∞] := (a,∞) for a ∈ R ∪ {−∞}. For A =
⋃n
i=1(ai, bi] ∈ C,

define P0(A) =
∑n

i=1(F (bi) − F (ai)), where F (−∞) := 0 and F (∞) := 1. One can prove
that C is a field, σ(C) = B(R) and P0 is a finite probability on (R, C). By Theorem 3.2, it
remains to show that P0 is σ-additive or, equivalently, P0 is continuous at ∅. Let An be a
sequence in C satisfying An ⊃ An+1 and

⋂
nAn = ∅. Given ϵ > 0, one may choose N > 0 such

that P0((−N,N ]) ≥ 1− ϵ/2. By the right continuity of F , one may choose Bn ∈ C such that
Bn ⊂ An ∩ (−N,N ] and P0(Bn) ≥ P0(An ∩ (−N,N ])− ϵ/2n+1 for n ≥ 1. Set Cn =

⋂n
i=1Bi.

Since
⋂
nAn = ∅,

⋂
nCn =

⋂
nBn = ∅. Note that Bn is compact. By the nested set property,⋂n0

n=1Cn =
⋂n0
n=1Bn = ∅ for some n0 and, hence,

⋂n0
n=1Bn = ∅. This implies

P0(An0) ≤
ϵ

2
+ P0(An0 ∩ (−N,N ]) =

ϵ

2
+ P0

(
(An0 ∩ (−N,N ]) \

n0⋂
n=1

Bn

)

≤ ϵ

2
+

n0∑
n=1

P0((An ∩ (−N,N ]) \Bn) ≤
ϵ

2
+

n0∑
n=1

ϵ

2n+1
< ϵ.

This proves that P0 is continuous at ∅. �

Remark 3.1. The probability corresponding to a distribution function is called a Lebesgue-
Stieltjes probability.

3.2. Distributions on Rn.

Definition 3.3. Fix n ≥ 1 and let (Rn,B(Rn),P) be a probability space. The distribution of
P is defined by F (x1, ..., xn) = P(

∏n
i=1(−∞, xi]).
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For 1 ≤ i ≤ n and −∞ ≤ ai < bi ≤ ∞, set

∆i
ai,bi

F (x1, ..., xn) = F (x1, ..., xi−1, bi, xi+1, ..., xn)− F (x1, ..., xi−1, ai, xi+1, ..., xn).

Clearly, one has

∆i
ai,bi

∆j
aj ,bj

F (x1, ..., xn) = ∆j
aj ,bj

∆i
ai,bi

F (x1, ..., xn).

Exercise 3.1. Let P be a probability on (Rn,B(Rn)) with distribution F .

(1) Show that P(
∏n
i=1(ai, bi]) = ∆1

a1,b1
· · ·∆n

an,bn
F (x1, ..., xn). (Hint: Prove that if ai =

−∞ for k < i ≤ n, then P(
∏n
i=1(ai, bi]) = ∆1

a1,b1
· · ·∆k

ak,bk
F (x1, ..., xk, bk+1, ..., bn).

(2) We write ym = (ym,1, ..., ym,n) ↓ x = (x1, ..., xn) if ym,i ↓ xi for 1 ≤ i ≤ n. Prove that
if ym ↓ x, then F (ym) ↓ F (x).

(3) Prove that F (x1, ..., xn) → 1 if x1, ..., xn → ∞ and F (x1, ..., xn) → 0 if xi → −∞ for
some 1 ≤ i ≤ n.

Definition 3.4. A non-negative function F defined on Rn is called a distribution function if

(1) For ai < bi and 1 ≤ i ≤ n, ∆1
a1,b1

· · ·∆n
an,bn

F (x1, ..., xn) ≥ 0.

(2) F (x1, ..., xn) → 1 if x1, ..., xn → ∞.
(3) F (x1, ..., xn) → 0 if xi → −∞ for some 1 ≤ i ≤ n.
(4) F (ym) ↓ F (x) if ym ↓ x.

Remark 3.2. Note that Definition 3.4(4) implies that if x = (x1, ..., xn) and y = (y1, ..., yn)
satisfy xi ≤ yi for all 1 ≤ i ≤ n, then F (x) ≤ F (y). As a consequence, for i 6= j,

lim
xj→∞

lim
xi→∞

F (x1, ..., xn) = lim
xi→∞

lim
xj→∞

F (x1, ..., xn).

Theorem 3.3. For any distribution function F on Rn, there is a unique probability P on
(Rn,B(Rn)) such that F is the distribution of P.

Proof. Let C0 be the following class

C0 =

{
n∏
i=1

(ai, bi]

∣∣∣∣ai, bi ∈ R ∪ {±∞}, 1 ≤ i ≤ n, n ≥ 1

}
,

where (a, a] := ∅ for a ∈ R and (a,∞] := (a,∞) for a ∈ R ∪ {−∞}, and C be the class
consisting of finite unions of mutually disjoint sets in C0.

Exercise 3.2. Prove that C is a field.

Let x = (x1, ..., xn) ∈ (R ∪ {±∞})n. For xi1 = · · · = xik = ∞, we define

F (x) := lim
yi1 ,...,yik→∞

F (y),

where y = (y1, ..., yn) and yj = xj for j /∈ {i1, ..., ik}. If xi = −∞ for some 1 ≤ i ≤ n, we set
F (x) = 0. For A =

∏n
i=1(ai, bi] ∈ C0, define

P(A) := ∆1
a1,b1 · · ·∆

n
an,bnF (x1, ..., xn)

and, for B =
⋃n
i=1Ai ∈ C with Ai ∈ C0 and Ai ∩Aj = ∅ if i 6= j, define

(3.2) P(B) =
n∑
i=1

P(Ai).

Exercise 3.3. Prove that P is well-defined.

It is easy to see from (3.2) that P is a finite probability on (Rn, C). Note that σ(C) = B(Rn).
By Theorem 3.2, it remains to show that P is continuous at ∅. This can be proved in a similar
way as the one-dimensional case and is left for the reader. �
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Exercise 3.4. Fix n ∈ N and let ρ be a permutation of {1, 2, ..., n}. For x = (x1, ..., xn) ∈ Rn
and A ⊂ Rn, define ρ(x) = (xρ(1), ..., xρ(n)) and ρ(A) = {ρ(x)|x ∈ A}. Let F be a distribution
function on Rn and set G(x) = F (ρ(x)).

(1) Prove that G is a distribution function on Rn.
(2) Let PF ,PG be the probabilities on (Rn,B(Rn)) with distributions F,G. Show that

PG(B) = PF (ρ(B)).

Hint: The π − λ lemma.

Exercise 3.5. Let F be a distribution function on Rn and set

H(x1, ..., xn−1) = lim
xn→∞

F (x1, ..., xn).

Show thatH is a distribution function on Rn−1. Let PF ,PH be probabilities on B(Rn),B(Rn−1)
with distributions F,H. Show that PH(A) = PF (A× R) for A ∈ B(Rn−1).

3.3. Distributions on R∞. Recall the notation C(B) = {x = (x1, x2, ...) ∈ R∞|(x1, ..., xn) ∈
B} for B ∈ B(Rn). Note that if B1 ∈ B(Rm), B2 ∈ B(Rn) with m ≤ n and C(B1) = C(B2),
then B2 = B1 × Rn−m.

Theorem 3.4 (Kolmogorov’s extension theorem on R∞). For n ∈ N, let Pn be a probability
on (Rn,B(Rn)). Suppose that Pn satisfies the following consistency property

Pn+1(B × R) = Pn(B), ∀B ∈ B(Rn), n ∈ N.

Then, there is a unique probability P on (R∞,B(R∞)) such that

P(C(B)) = Pn(B), ∀B ∈ B(Rn), n ∈ N.

Proof. Let F = {C(B)|B ∈ B(Rn), n ≥ 1} and define P(C(B)) = Pn(B). Obviously, F is
a field. Note that if C(B1) = C(B2) with B1 ∈ B(Rm), B2 ∈ B(Rn) and m ≤ n, then
B2 = B1 × Rn−m. This implies

P(C(B1)) = Pm(B1) = Pn(B1 × Rn−m) = Pn(B2) = P(C(B2)),

which proves that P is well-defined. Further, for m < n and A ∈ B(Rm), B ∈ B(Rn), if
C(A) ∩ C(B) = ∅, then (A× Rn−m) ∩B = ∅ and this yields

P(C(A) ∪ C(B)) = P(C((A× Rn−m) ∪B)) = Pn((A× Rn−m) ∪B)

= Pn(A× Rn−m) + Pn(B) = Pm(A) + Pn(B)

= P(C(A)) + P(C(B)).

Hence, P is a finite probability on (R∞,F).
Note that σ(F) = B(R∞). By Carathéodory’s extension theorem, it remains to show the

continuity of P at ∅. Let C(Bn) be a decreasing sequence in F satisfying
⋂∞
n=1 C(Bn) =

∅. Without loss of generality, we may assume that Bn ∈ B(Rn). Assume the inverse that
P(C(Bn)) ≥ ϵ > 0.

Exercise 3.6. Let P be a probability on (Rn,B(Rn)). Prove that, for any S ∈ B(Rn) and
ϵ > 0, there are an open set A ⊃ S and a closed set B ⊂ S such that

P(A \ S) < ϵ, P(S \B) < ϵ.

Exercise 3.7. Let F be a field over Ω and P be a probability on (Ω, σ(F)). Show that, for any
A ∈ σ(F) and ϵ > 0, there is B ∈ F such that P(A∆B) < ϵ, where A∆B = (A \B)∪ (B \A).
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By Exercise 3.6, we may choose, for n ≥ 1, a compact set Kn ⊂ Bn such that Pn(Bn\Kn) ≤
ϵ2−n−1 or, equivalently, P(C(Bn) \ C(Kn)) ≤ ϵ2−n−1. Set An =

⋂n
i=1(Ki × Rn−i). Clearly,

Bn × Ri ⊃ Bn+i for all i ≥ 1. As a result, one has

P(C(Bn) \ C(An)) = Pn(Bn \An) ≤
n∑
i=1

Pn(Bn \ (Ki × Rn−i))

≤
n∑
i=1

Pn((Bi × Rn−i) \ (Ki × Rn−i)) =
n∑
i=1

Pi(Bi \Ki) < ϵ/2.

Hence, P(C(An)) > ϵ/2 and this implies C(An) is non-empty.
Next, for n ∈ N, let xn = (xn,1, xn,2, ...) ∈ C(An). Note that C(An) ⊃ C(An+1). This

implies {(xi,1, ..., xi,n)|i ≥ n} ⊂ An for n ≥ 1. For n = 1, since A1 is compact, we may choose
a subsequence (k1,m)

∞
m=1 of N and y1 ∈ A1 such that xk1,m,1 → y1. Inductively, one may

select a subsequence (ki+1,m)
∞
m=1 of (ki,m)

∞
m=1 and yi+1 ∈ R such that xki+1,m,i+1 → yi+1.

Set ni = ki,i. Obviously, one has (xni,1, ..., xni,m) → (y1, ..., ym) as i → ∞ for any m ≥ 1.
By the compactness of Am, (y1, ..., ym) ∈ Am. Consequently, we obtain C({(y1, ..., ym)}) ⊂
C(Am) ⊂ C(Bm) for all m ≥ 1 and this yields (y1, y2, ...) ∈

⋂∞
n=1 C(Bn), which contradicts⋂∞

n=1 C(Bn) = ∅. �

Definition 3.5. Let P be a probability on (R∞,B(R∞)). For n ≥ 1, the n-dimensional
distribution of P is defined by

Fn(x1, ..., xn) = P

(
n∏
i=1

(−∞, xi]× R∞

)
.

Remark 3.3. Note that the family of finitely dimensional distributions of P satisfying the
following consistency property.

(3.3) lim
y→∞

Fn+1(x1, ..., xn, y) = Fn(x1, ..., xn).

The following theorem is a simple corollary of Theorems 3.3, 3.4 and the π-λ lemma.

Theorem 3.5. For n ≥ 1, let Fn be a distribution function on Rn. If the family {Fn|n =
1, 2, ...} satisfies the consistency property in (3.3), then there is a probability P on (R∞,B(R∞))
such that Fn is the n-dimensional distribution of P for all n ∈ N.

Example 3.1. Recall the model of independent tosses of a fair coin. Let F be a function on R
defined by F = 1

21[0,∞) +
1
21[1,∞). For n ≥ 1, set Fn(x1, ..., xn) = F (x1)× · · · × F (xn). Then,

Fn is the distribution of n independent tosses of fair coins, where 0, 1 denote respectively for
the tail and head. By Theorem 3.5, there is a probability on (R∞,B(R∞)) such that Fn is the
corresponding n-dimensional distribution.

Exercise 3.8. Let ρ be a permutation of positive integers and Fn : Rn → R be a family
of distribution functions satisfying (3.3). For x = (x1, x2, ...) ∈ R∞ and A ⊂ R∞, define
ρ(x) = (xρ(1), xρ(2), ...) and ρ(A) = {ρ(x)|x ∈ A}. For n ≥ 1, let mn = max{ρ−1(i)|1 ≤ i ≤ n}
and set

Gn(x1, ..., xn) = lim
xρ(i)→∞

i/∈ρ−1({1,...,n})

Fmn(xρ(1), ..., xρ(mn)).

(1) Prove that Gn is a distribution function on Rn and satisfies (3.3).
(2) Let PF ,PG be the probabilities in Theorem 3.5 associated with Fn, Gn. Prove that

PG(A) = PF (ρ(A)) for all A ∈ B(R∞).
17



3.4. Distributions on RT . In this section, we introduce the extension theorem of Kol-
mogorov on RT . Let T be a set and S(T ) be the set of all finite or infinite sequences in T with
distinct terms. For t ∈ T , let Ωt = R. Within this subsection, we set x = (xt)t∈T , Ω =

∏
t∈T Ωt

and B = B(Ω). For τ = (tn) ∈ S(T ), we write xτ = (xtn) and Ωτ =
∏
nΩtn := {xτ |xtn ∈

Ωtn ,∀n} and Bτ = B(Ωτ ). For any (finite or infinite) sequence δ = (sn) ∈ S({tn : n ≥ 1}) and
B ⊂ Ωδ, define

Dτ (δ,B) = {xτ ∈ Ωτ |xδ ∈ B}, D(δ,B) = {x ∈ Ω|xδ ∈ B}.
We write (sn) ≺ (tn) if (sn) is a subsequence of (tn).

For τ = (tn) ∈ S(T ), B ⊂ Ωτ and any permutation ρ of the subindex of τ , write

ρ(τ) = (tρ(n)), ρ(B) = {xρ(τ) ∈ Ωρ(τ)|xτ ∈ B}.

Definition 3.6. Let T be a set. For τ = (t1, ..., tn) ∈ S(T ), let Pτ be a probability on (Ωτ ,Bτ ).
The family {Pτ |τ ∈ S(T ), τ is finite} is said to have the consistency property if

(1) For θ = (s1, ..., sm) ≺ τ = (t1, ..., tn) ∈ S(T ) and B ∈ Bθ,
Pτ (Dτ (θ,B)) = Pθ(B).

(2) For τ = (t1, ..., tn) ∈ S(T ), B ∈ Bτ and any permutation ρ of {1, ..., n},
Pρ(τ)(ρ(B)) = Pτ (B).

Theorem 3.6 (Kolmogorov’s extension theorem on RT ). Let T be a set and assume that
{Pτ |τ ∈ S(T ), τ is finite} satisfies the consistency property in Definition 3.6. Then, there is
a unique probability P on (Ω,B) such that

P(D(τ,B)) = Pτ (B).

for any finite sequence τ ∈ S(T ) and B ∈ Bτ .

Proof. By Theorem 3.4, for τ = (tn)
∞
n=1 ∈ S(T ), there is a unique probability Pτ on (Ωτ ,Bτ )

satisfying
Pτ (Dτ (t1, ..., tn, B)) = P(t1,...,tn)(B), ∀B ∈ B(t1,...,tn), n ∈ N.

First, we prove that, for τ = (tn)
∞
n=1 ∈ S(T ), θ ≺ τ and any permutation ρ of N,

(i) Pτ (Dτ (θ,B)) = Pθ(B) for all B ∈ Bθ.
(ii) Pρ(τ)(ρ(B)) = Pτ (B) for all B ∈ Bτ .
For (i), it is obviously true when θ is finite. We consider the case that θ is infinite in the

following. Let θ = (sn)
∞
n=1 and set

A = {A ∈ Bθ|Pτ (Dτ (θ,A)) = Pθ(A)}.
Clearly, A is a λ-system. By the π-λ lemma, it remains to show that B × Ω(sn+1,sn+2,...) ∈ A
for all B ∈ B(s1,...,sn) and n ≥ 1. Fix n ≥ 1 and set θn = (s1, ..., sn). Since θn ≺ θ ≺ τ , one has

Dτ (θn, B) = Dτ (θ,Dθ(θn, B)), ∀B ∈ Bθn .
As θ ≺ τ , there are positive integers k1 < · · · < kn such that si = tki for 1 ≤ i ≤ n. Set
M = kn and τM = (t1, ..., tM ). Since θn ≺ τM ≺ τ , one has

Dτ (τM ,DτM (θn, B)) = Dτ (θn, B).

As a consequence, this implies

Pτ (Dτ (θ,Dθ(θn, B))) = Pτ (Dτ (τM ,DτM (θn, B))) = PτM (DτM (θn, B))

= Pθn(B) = Pθ(Dθ(θn, B)).

This proves (i).
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For (ii), let τ = (tn)
∞
n=1 be a sequence, ρ be a permutation of N. Consider the following

class.
A′ := {A ∈ Bτ |Pρ(τ)(ρ(A)) = Pτ (A)}.

By the π-λ lemma, as A′ is a λ-system, it suffices to show that C × Ω(tn+1,tn+2,...) ∈ A′ for all
C ∈ B(t1,...,tn) and n ≥ 1. Fix n ≥ 1. Let τn = (t1, ..., tn) and τ ′n = (tn+1, tn+2, ...) and write

{b1 < · · · < bn} = {ρ−1(1), ..., ρ−1(n)}. Set N = bn and let ρ′ be a permutation of {1, ..., n}
defined by

ρ′(i) = ρ(bi) ∀1 ≤ i ≤ n.

Note that ρ′(τn) = (tρ′(1), ..., tρ′(n)) ≺ (tρ(1), ..., tρ(N)) ≺ ρ(τ). This implies, for C ∈ Bτn ,

ρ
(
C × Ωτ ′n

)
= Dρ(τ)(ρ

′(τn), ρ
′(C)) = Dρ(τ)

(
tρ(1), ..., tρ(N), C

′) ,
where

C ′ = D(tρ(1),...,tρ(N))(ρ
′(τn), ρ

′(C)).

By the consistency property, we obtain

Pρ(τ)
(
ρ(C × Ωτ ′n)

)
= P(tρ(1),...,,tρ(N))(C

′) = Pρ′(τn)(ρ
′(C)) = Pτn(C) = Pτ (C × Ωτ ′n),

as desired. This proves (ii).
For A ∈ B, one may select τ ∈ S(T ) and B ∈ Bτ such that A = D(τ,B). Define

P(A) = Pτ (B).

Exercise 3.9. Prove that P is well-defined.

To prove that P is a probability on (Ω,B), it remains to show that P is σ-additive. Let
An ∈ B be mutually disjoint sets. For n ∈ N, one may choose ηn ∈ S(T ) and Bn ∈ Bηn such
that An = D(ηn, Bn). Let η ∈ S(T ) be a sequence consisting of terms in ηn for all n. For
n ∈ N, there is a permutation ρn of N such that ρn(ηn) ≺ η. Note that

An = D(ρn(ηn), ρn(Bn)) = D(η, Cn), Cn = Dη(ρn(ηn), ρn(Bn)).

Clearly, Cn are mutually disjoint and, by the σ-additivity of Pη, we have

P

( ∞⋃
n=1

An

)
= P

(
D

(
η,

∞⋃
n=1

Cn

))
=

∞∑
n=1

Pη(Cn) =
∞∑
n=1

Pρn(ηn)(ρn(Bn)) =
∞∑
n=1

P(An).

This finishes the proof. �
Definition 3.7. Let P be a probability on (Ω,B). For τ = (t1, ..., tn) ∈ S(T ), the function
Fτ (xτ ) := P(D(τ,

∏n
i=1(−∞, xti ])) is called a finite dimensional distribution of P.

Theorem 3.7. Let T be a set. For n ∈ N and finite τ ∈ S(T ), let Fτ be a distribution function
on Ωτ . Suppose that, for n ≥ 1, τ = (t1, ..., tn) ∈ S(T ), xτ ∈ Ωτ and any permutation ρ of
{1, ..., n},
(3.4) Fρ(τ)(xρ(τ)) = Fτ (xτ ),

and

(3.5) lim
xtn→∞

Fτ (xτ ) = Fτ̌ (xτ̌ ),

where τ̌ = (t1, ..., tn−1). Then, there is a unique probability P on (Ω,B) such that

Fτ (xτ ) = P(D(τ, (−∞, xt1 ]× · · · × (−∞, xtn ]))

for all τ = (t1, ..., tn) ∈ T and n ≥ 1.
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