## 4. Random variables and concepts of convergence

## 4.1. **Random variables.**

**Definition 4.1.** Let  $(\Omega, \mathcal{F})$  and  $(R, \mathcal{B})$  be *σ*-fields. A function  $X : \Omega \to R$  is called a  $(\mathcal{F}/\mathcal{B})$ **random element** if *X* is *F*-measurable, i.e.  $\{X \in B\} \in \mathcal{F}$  for all  $B \in \mathcal{B}$ . If  $R = \mathbb{R}$  and  $\mathcal{B} = \mathcal{B}(\mathbb{R})$ , then *X* is called a **random variable**. If  $R = \mathbb{R}^n$  and  $\mathcal{B} = \mathcal{B}(\mathbb{R}^n)$ , then *X* is called an *n***-dimensional random vector**.

*Remark* 4.1. Let *X* be a map from  $\Omega$  to *R* and set  $\mathcal{F}(X) = \{X^{-1}(B)|B \in \mathcal{B}\}\$ and  $\mathcal{B}(X) =$  ${B \subset R | X^{-1}(B) \in \mathcal{F}}$ . Then,  $\mathcal{F}(X), \mathcal{B}(X)$  are  $\sigma$ -fields over  $\Omega, R$ , and *X* is *F*-measurable iff *F*(*X*) ⊂ *F* iff *B*(*X*) ⊃ *B*. In particular, if *X* is a random element, then *X* is *F*(*X*)-measurable.

**Lemma 4.1.** *Let*  $\mathcal{F}, \mathcal{B}$  *be*  $\sigma$ -fields over  $\Omega$ ,  $R$  and  $X$  *be* a mapping from  $\Omega$  to  $R$ *. Set*  $\mathcal{B}(X)$  =  ${B \subset R | X^{-1}(B) \in \mathcal{F}}$ *. Let*  $C \subset B$  *be such that*  $\sigma(C) = B$ *. Then, X is F*-measurable *if and only if*  $C \subset \mathcal{B}(X)$ *.* 

**Corollary 4.2.** *Let*  $(\Omega, \mathcal{F})$  *be a σ-field and X be a real-valued function defined on*  $\Omega$ *. Then, X* is a random variable if and only if  $\{X \le c\} \in \mathcal{F}$  for all  $c \in \mathbb{R}$ .

*Remark* 4.2. Let  $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$  and  $\mathcal{B}(\overline{\mathbb{R}}) = \sigma(\mathcal{B}(\mathbb{R}) \cup \{\{\infty\}, \{-\infty\}\})$ . Clearly,  $\mathcal{B}(\overline{\mathbb{R}}) =$  $\sigma({\vert -\infty, c \vert c \in \mathbb{R}})$ . A function *X* taking values on the extended real field R is called an extended random variable if  $\{X \in B\} \in \mathcal{F}$  for  $B \in \mathcal{B}(\overline{\mathbb{R}})$ . By Lemma 4.1, Corollary 4.2 also applies for extended random variables.

**Proposition 4.3.** *Let*  $X, Y$  *be random variables and*  $a, b \in \mathbb{R}$ *. Then,*  $aX + bY, XY, \max\{X, Y\}$ *are random variables. Furthermore, if*  $X_n$  *is an extended random variable for all*  $n \in \mathbb{N}$ *, then*  $\sup_n X_n$ ,  $\inf_n X_n$ ,  $\limsup_n X_n$  and  $\liminf_n X_n$  are extended random variables. In particular, *if*  $X_n$  *converges to*  $X$ *, then*  $X$  *is a random variable.* 

**Proposition 4.4.** *For any extended random variable X defined on* Ω*, there is a sequence* of random variables, say  $X_n$ , satisfying  $|X_n| \leq |X_{n+1}|$ ,  $X_n(\Omega)$  is a finite set and  $X_n \to X$ , *where, in the case*  $X(\omega) = \infty$ ,  $X_n(\omega) \to X(\omega)$  *means that*  $X_n(\omega)$  *diverges to infinity.* 

**Exercise 4.1.** Let  $\Omega$  be a metric space and  $\mathcal F$  be the *σ*-field generated by the open sets in  $\Omega$ . Prove that if  $X : \Omega \to \mathbb{R}$  is upper semicontinuous, i.e.  $\limsup_{x\to y} X(x) \leq X(y)$  for all  $y \in \Omega$ , then *X* is a random variable.

**Proposition 4.5.** *Let*  $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$  *be a random element and*  $f : (R, \mathcal{B}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ *be a random variable. Then, f*(*X*) *is a random variable.*

**Exercise 4.2.** Let  $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$  be a random element and g be a  $\mathcal{F}(X)$ -measurable random variable. Prove that there is a *B*-measurable random variable *f* such that  $q = f(X)$ .

**Lemma 4.6.** For  $1 \leq i \leq n$ , let  $\mathcal{F}_i$  be a  $\sigma$ -field over  $\Omega_i$  and set  $\Omega = \prod_{i=1}^n \Omega_i$  and  $\mathcal{F} = \bigotimes_{i=1}^n \mathcal{F}_i$ . *Consider the projection mapping*  $P_i: \Omega \to \Omega_i$  *defined by*  $P_i(\omega_1, ..., \omega_n) = \omega_i$ *. Then,*  $P_i$  *is a*  $\mathcal{F}/\mathcal{F}_i$  *random element for*  $1 \leq i \leq n$ *.* 

**Proposition 4.7.** *Let*  $X : \Omega \to \mathbb{R}^n$  *and write*  $X = (X_1, ..., X_n)$ *. Then,*  $X$  *is an n-dimensional random vector if and only if*  $X_1, ..., X_n$  *are random variables.* 

**Definition 4.2.** Let *T* be a subset of R and  $(\Omega, \mathcal{F})$  be a *σ*-field. A **stochastic process**  $X: \Omega \to \mathbb{R}^T$  is a  $(\mathcal{F}/\mathcal{B}(\mathbb{R}^T))$  random element. The process is of **discrete time** if *T* is a countable set, e.g.  $\{0, 1, ...\}$  and is of **continuous time** if *T* is an interval, e.g.  $[0, 1]$ ,  $[0, \infty)$ , R. For any  $\omega \in \Omega$ ,  $(X_t(\omega))_{t \in T}$  is called a **realization** corresponding to  $\omega$ .

**Proposition 4.8.** Let  $(\Omega, \mathcal{F})$  be a  $\sigma$ -field,  $T \subset \mathbb{R}$  and  $X = (X_t)_{t \in T} : \Omega \to \mathbb{R}^T$ . Then, X is a *stochastic process if and only if*  $X_t$  *is a random variable for all*  $t \in T$ *.* 

**Proposition 4.9.** Let  $T$  be a set and, for  $t_1, ..., t_n \in T$ ,  $F_{t_1, ..., t_n}$  be a *n*-dimensional distribution *function satisfying the consistency property. Then, there is a stochastic process*  $(X_t)_{t \in T}$  *such* that  $\mathbb{P}(X_{t_i} \leq x_i, \forall 1 \leq i \leq n) = F_{t_1, ..., t_n}(x_1, ..., x_n)$  for  $t_1, ..., t_n \in T$  and  $n \in \mathbb{N}$ .

*Proof.* By Theorem 3.7, there is a probability  $\mathbb{P}$  on  $(\mathbb{R}^T, \mathcal{B}(\mathbb{R}^T))$  such that

$$
\mathbb{P}(\mathcal{D}(t_1, ..., t_n, \prod_{i=1}^n(-\infty, x_i]) = F_{t_1, ..., t_n}(x_1, ..., x_n).
$$

The desired process is then given by  $(X_t)_{t \in T} : \mathbb{R}^T \to \mathbb{R}$ , where  $X_t(\omega) = \omega_t$  for all  $\omega = (\omega_t)_{t \in T} \in$  $\mathbb{R}^T$ . The contract of the contract<br>The contract of the contract o

*Example* 4.1*.* Let  $E_1, E_2, ...$  be mutually disjoint non-empty sets satisfying  $E_1 \cup E_2 \cup \cdots = \Omega$ and *F* be the *σ*-field generated by  $(E_n)_{n=1}^{\infty}$ . Note that *F* consists of  $\emptyset$ ,  $\Omega$ , finite unions of  $(E_n)_{n=1}^{\infty}$  and complements of finite unions of  $(E_n)_{n=1}^{\infty}$ . This implies that any *F*-measurable random variable *X* is constant on  $E_n$  for all *n*. Hence, there is a sequence  $(a_n)_{n=1}^{\infty}$  such that  $X = \sum_{n=1}^{\infty} a_n \mathbf{1}_{E_n}.$ 

**Exercise 4.3.** Let *X, Y* be *F*-measurable random variables. Suppose that  $X(\Omega) = Y(\Omega)$  $\{1, 2, ..., N\}$  and  $\mathcal{F}(X) = \mathcal{F}(Y)$ . Show that there is a permutation  $\sigma$  of  $\{1, 2, ..., N\}$  such that *{X* = *i}* = *{Y* = *σ*(*i*)*}* for 1 *≤ i ≤ N*.

In the end of this subsection, we introduce a useful technique. For any family *Q* of realvalued functions defined on Ω, let *F*(*Q*) be the *σ*-field over Ω generated by *Q*, which is defined to be the smallest  $\sigma$ -field over  $\Omega$  such that each function in  $Q$  is measurable. Then,  $\mathcal{F}(Q) = \sigma(\lbrace f^{-1}(B) : f \in Q, B \in \mathcal{B}(\mathbb{R}) \rbrace)$ . A sequence of functions  $X_n$  is said to **converge boundedly** to *X* if  $X_n$  converges to *X* and  $X_n$  is uniformly bounded. A family of real-valued functions on  $\Omega$  is called a **multiplicative system** if it is closed under multiplication.

**Theorem 4.10** (Multiplicative system theorem)**.** *Let H be a linear space of bounded functions on*  $\Omega$  *which contains*  $\mathbf{1}_{\Omega}$  *and is closed under bounded convergence. If H contains a multiplicative system*  $Q$ *, then it contains all bounded*  $\mathcal{F}(Q)$ *-measurable functions.* 

*Proof.* Let  $\mathcal{L}$  be the class containing subsets  $A \subset \Omega$  for which  $\mathbf{1}_A \in H$ . Let  $\mathcal{P}$  be the class of subsets of the following form

$$
(4.1) \qquad \{ \omega \in \Omega : X_1(\omega) \in I_1, \dots, X_n(\omega) \in I_n \}
$$

where  $X_1, ..., X_n \in Q$ ,  $I_1, ..., I_n$  are open intervals and  $n \in \mathbb{N}$ . It is obvious that  $P$  is a  $\pi$ system and, by the assumption that  $H$  is linear and closed under bounded convergence,  $\mathcal{L}$  is a *λ*-system.

Next, we prove that  $\mathcal{P} \subset \mathcal{L}$ . Note that the indicator function of the set in (4.1) is equal to

$$
\mathbf{1}_{I_1}(X_1)\mathbf{1}_{I_2}(X_2)\cdots\mathbf{1}_{I_n}(X_n).
$$

For  $1 \leq k \leq n$ , one may choose a sequence of continuous functions  $(f_m^{(k)})_{m=1}^{\infty}$  that converges boundedly to  $\mathbf{1}_{I_k}$ . Set  $c = \sup\{|X_k(\omega)| : \omega \in \Omega, 1 \leq k \leq n\}$ . By the Stone-Weierstrass theorem, we may choose, for each  $k, m$ , a polynomial  $g_m^{(k)}$  such that

$$
|g_m^{(k)}(t) - f_m^{(k)}(t)| \le \frac{1}{m}, \quad \text{for } |t| \le c.
$$

This implies that, for  $1 \leq k \leq n$ ,  $g_m^{(k)}(X_k) \to \mathbf{1}_{I_k}(X_k)$  boundedly as  $m \to \infty$ . Since *Q* is a multiplicative system and  $H$  is a linear space, we have

$$
g_m^{(1)}(X_1)g_m^{(2)}(X_2)\cdots g_m^{(n)}(X_n) \in H, \quad \forall m \ge 1.
$$

By the bounded convergence of *H*, the indicating function of the set in (4.1) belongs to *H*, which implies  $\mathcal{P} \subset \mathcal{L}$ . As a result of the  $\pi - \lambda$  lemma,  $\mathcal{L} \supset \sigma(\mathcal{P}) = \mathcal{F}(Q)$ . Now let X be a bounded  $\sigma(\mathcal{P})$ -measurable function and set, for  $n \geq 1$ ,

$$
X_n = \sum_{k} \frac{k}{n} \mathbf{1}_{\left\{\frac{k}{n} < X \leq \frac{k+1}{n}\right\}}.
$$

It is easy to see that  $X_n \in H$  for  $n \geq 1$  and  $X_n$  converges boundedly to X and, hence,  $X \in H$ .

## 4.2. **Expectations.**

**Definition 4.3.** Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space and *X* be a random variable on  $(\Omega, \mathcal{F})$ . The expectation of *X* is defined by

$$
\mathbb{E} X:=\int_{\Omega} X(\omega) d\mathbb{P}(\omega),
$$

provided the right side is well-defined.

*Remark* 4.3. In the case  $\mathbb{P}(X \ge c) = 1$  for some  $c \in \mathbb{R}$ , if  $\int_{\Omega} X(\omega) d\mathbb{P}(\omega)$  does not exist, we write  $\mathbb{E}X = \infty$ . Similarly, when  $\mathbb{P}(X \leq c) = 1$  and the expectation of X does not exist, we write  $\mathbb{E}X = -\infty$ .

**Definition 4.4.** Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space. Two random variables *X, Y* are said to be equal a.s. (almost surely) if  $\mathbb{P}(X \neq Y) = 0$ . A sequence of random variables  $(X_n)_{n=1}^{\infty}$  is said to converge to a function *X* a.s. if  $\mathbb{P}(X_n \to X) = 1$ .

*Remark* 4.4. Note that  $\{\omega \in \Omega | X_n(\omega) \text{ converges}\}\in \mathcal{F}$ . This implies that if  $\mathbb{P}$  is complete and  $X_n$  converges almost surely to *X*, then *X* is a random variable.

**Proposition 4.11.** Let  $X, Y$  be random variables on a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . Suppose *that*  $\mathbb{E}|X| < \infty$  *and*  $\mathbb{E}|Y| < \infty$ *. Then,* 

- (1) If  $X \geq Y$  *a.s, then*  $\mathbb{E}X \geq \mathbb{E}Y$ *. In particular, if*  $X \geq c$  *a.s., then*  $\mathbb{E}X \geq c$ *.*
- (2) If  $X = Y$  a.s., then  $\mathbb{E}X = \mathbb{E}Y$ .
- (3) For  $a, b \in \mathbb{R}$ ,  $\mathbb{E}|aX + bY| < \infty$  and  $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$ .

*Remark* 4.5. Referring to the setting in Proposition 4.11, one has that  $X \geq Y$  a.s. (resp.  $X = Y$  a.s.) if and only if  $\mathbb{E}(X\mathbf{1}_A) \geq \mathbb{E}(Y\mathbf{1}_A)$  (resp.  $\mathbb{E}(X\mathbf{1}_A) = \mathbb{E}(Y\mathbf{1}_A)$ ) for all  $A \in \mathcal{F}$ .

**Theorem 4.12** (Monotone convergence theorem). Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space and  $X, X_n$  *be nonnegative random variables defined on*  $\Omega$ *. Suppose that*  $X_n \uparrow X$  *a.s..* Then,  $\mathbb{E}X_n \uparrow \mathbb{E}X$ .

**Theorem 4.13** (Lebesgue's dominated convergence theorem). Let  $X_n, X, Y$  be random vari*ables on*  $(\Omega, \mathcal{F}, \mathbb{P})$ *. Suppose that*  $|X_n| \leq Y$  *a.s.*,  $\mathbb{E}Y < \infty$  *and*  $X_n \to X$  *a.s..* Then,  $\mathbb{E}X_n \to \mathbb{E}X$ .

**Theorem 4.14** (Fatou's lemma). For  $n \geq 1$ , let  $X_n$  be a non-negative random variable defined *on a probability space*  $(\Omega, \mathcal{F}, \mathbb{P})$ *. Then,*  $\mathbb{E}(\liminf_n X_n) \leq \liminf_n \mathbb{E}X_n$ *.* 

*Remark* 4.6*.* The monotone convergence theorem, dominated convergence theorem and Fatou's lemma are equivalent.

**Definition 4.5.** Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space and  $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$  be a random element. The **distribution** of *X* is the probability  $\mathbb{P}_X$  on  $(R, \mathcal{B})$  induced by *X*, i.e.  $\mathbb{P}_X(B)$  =  $\mathbb{P}(X \in B)$  for *B* ∈ *B*. In the case of  $(R, B) = (\mathbb{R}, B(\mathbb{R}))$ , the distribution function of *X* is defined by  $F_X(a) := \mathbb{P}_X((-\infty, a])$  for  $a \in \mathbb{R}$ .

*Remark* 4.7. If  $R = \mathbb{R}^n$ , then  $\mathbb{P}_X$  is characterized by its *n*-dimensional distribution. If  $R = \mathbb{R}^T$ , then  $\mathbb{P}_X$  is characterized by its finite dimensional distributions. There is no confusion to called the *n*-dimensional and finite dimensional distribution functions as the distribution functions of *X*.

**Theorem 4.15.** *Let*  $X = (X_t)_{t \in T}$  *be a stochastic process on*  $(\Omega, \mathcal{F}, \mathbb{P})$  *and*  $\mathbb{P}_X$  *be the distribution of X. Let*  $f : \mathbb{R}^T \to \mathbb{R}$  *be a*  $\mathcal{B}(\mathbb{R}^T)$ *-measurable random variable. Then,* 

(4.2) 
$$
\int_{\Omega} f(X(\omega))d\mathbb{P}(\omega) = \int_{\mathbb{R}^T} f(x)d\mathbb{P}_X(x)
$$

*in the sense that if either side is well-defined.*

*Proof.* Let *H* be the class of bounded  $\mathcal{B}(\mathbb{R}^T)$ -measurable functions *f* such that (4.2) holds. Then, by Proposition 4.11, *H* is a linear space containing constant function **1** and, by Lebesgue's dominated convergent theorem, *H* is closed under bounded convergence. Set  $Q := \{\mathbf{1}_B | B \in \mathcal{B}(\mathbb{R}^T)\}\.$  It is obvious that  $Q$  is a multiplicative system contained in *H*. Note that  $\mathcal{F}(Q) = \mathcal{B}(\mathbb{R}^T)$ . By the multiplicative systems theorem, (4.2) holds for all bounded  $\mathcal{B}(\mathbb{R}^T)$ -measurable functions.

Next, let *f* be any  $\mathcal{B}(\mathbb{R}^T)$ -measurable function and set  $f_n = f \cdot \mathbf{1}_{\{x:|f(x)| \leq n\}}$ . Clearly,  $|f_n| \leq |f|$  and  $f_n \to f$ . Since  $f_n$  is bounded and  $\mathcal{B}(\mathbb{R}^T)$ -measurable,

$$
\int_{\Omega} f_n(X(\omega))d\mathbb{P}(\omega) = \int_{\mathbb{R}^T} f_n(x)d\mathbb{P}_X(x).
$$

By the Lebesgue dominated convergence theorem, (4.2) holds when *f* is integrable under  $\mathbb{P}_X$ .

**Corollary 4.16.** *Let*  $(\Omega, \mathcal{F}, \mathbb{P})$  *and*  $(\Omega', \mathcal{F}', \mathbb{P}')$  *be probability spaces and*  $X : \Omega \to \mathbb{R}^T$  *and*  $X' : \Omega' \to \mathbb{R}^T$  be stochastic processes. If  $\mathbb{P}_X = \mathbb{P}_{X'}$ , then

$$
\int_{\Omega} f(X)d\mathbb{P} = \int_{\Omega'} f(X')d\mathbb{P}',
$$

*for any*  $\mathcal{B}(\mathbb{R}^T)$ -measurable random variable f satisfying  $\int |f| d\mathbb{P}_X < \infty$ .

**Exercise 4.4.** Let f be a real-valued function defined on an interval  $I \subset \mathbb{R}$  and X be a random variable taking values on *I*. Prove that if *f* is convex,  $\mathbb{E}|X| < \infty$  and  $\mathbb{E}|f(X)| < \infty$ , then  $E f(X) > f(E X)$ .

## 4.3. **Convergence concepts.**

**Definition 4.6.** Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a probability space and *X, X<sub>n</sub>* be random variables on  $\Omega$ . A sequence  $(X_n)_{n=1}^{\infty}$  converges to X

- (1) almost surely or with probability 1 if  $\mathbb{P}(X_n \to X) = 1$ .
- (2) in probability if  $\mathbb{P}(|X_n X| > \epsilon) \to 0$  for all  $\epsilon > 0$ .
- (3) in the rth norm if  $\mathbb{E}|X_n X|^r \to 0$  for  $r \in [1,\infty)$  and  $||X_n X||_{\infty} \to 0$  for  $r = \infty$ ,  $\text{where } ||Y||_{\infty} := \inf \{ c | \mathbb{P}(|Y| \leq c) = 1 \}.$
- (4) in distribution if the distribution functions of  $X_n$  and  $X$ , say  $F_n$  and  $F$ , satisfy

$$
\lim_{n \to \infty} F_n(x) = F(x), \quad \forall x \in \mathcal{C},
$$

where  $\mathcal C$  is the set of all continuous points of  $F$ .

(5) almost uniformly if, for any  $\epsilon > 0$ , there is  $E_{\epsilon} \in \mathcal{F}$  such that  $\mathbb{P}(E_{\epsilon}^c) < \epsilon$  and  $X_n$ converges uniformly to  $X$  on  $E_{\epsilon}$ .

*Remark* 4.8*.* It is obvious that both the a.s. convergence and the convergence in the *r*th mean with  $r \geq 1$  imply the convergence in probability.

*Remark* 4.9. For  $1 \leq r < s \leq \infty$ , if  $X_n \to X$  in the *s*th norm, then  $X_n \to X$  in the *r*th norm.

*Remark* 4.10. Note that  $X_n \to X$  a.s. if and only if  $X_n \to X$  a.u.. (The direction a.s.  $\Rightarrow$  a.u. is a special case of Egorov's theorem.)

**Exercise 4.5.** Prove that  $X_n$  converges to  $X$  in probability if and only if, any subsequence of  $(X_n)_{n=1}^{\infty}$  has a further subsequence that converges to *X* a.s. Give an example that  $X_n$ converges to *X* in probability but not a.s.

**Definition 4.7.** A sequence of random variables  $(X_n)_{n=1}^{\infty}$  is Cauchy a.s., Cauchy in probability and Cauchy in the *r*th mean if  $X_n - X_m \to 0$  as  $n, m \to \infty$  in the sense of Definition 4.6(1)-(3).

**Proposition 4.17.** *If*  $(X_n)_{n=1}^{\infty}$  *is a sequence of random variables that are Cauchy a.s. (resp. in probability and in the rth mean), then there exists a random variable*  $X$  *such that*  $X_n$ *converges to X a.s (resp. in probability and in the rth mean).*

*Proof.* The proof for a.s. convergence is given by Exercise 4.6, while the others are left as exercises.

**Exercise 4.6.** Let  $X_n$  be a sequence of random variables on  $(\Omega, \mathcal{F})$  and set

 $E_1 = \{ \omega \in \Omega : X_n(\omega) \text{ is a Cauchy sequence} \}$ 

and

$$
E_2 = \{\omega \in \Omega : X_n(\omega) \to \infty\}, \quad E_3 = \{\omega \in \Omega : X_n(\omega) \to -\infty\}.
$$

Prove that  $E_1, E_2, E_3$  are contained in  $\mathcal{F}$ .

*Remark* 4.11*.* It follows immediately from Exercise 4.6 that

$$
\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \text{ does not exist}\right\} \in \mathcal{F}.
$$

**Exercise 4.7.** Let  $X_n, Y_n$  be random variables on  $(\Omega, \mathcal{F}, \mathbb{P}), (\Omega', \mathcal{F}', \mathbb{P}').$  Suppose  $\mathbb{P}_X = \mathbb{P}_Y$ , where  $X = (X_n)_{n=1}^{\infty}$  and  $Y = (Y_n)_{n=1}^{\infty}$ . Prove that if  $X_n$  converges a.s. (resp. in probability and in the *r*th mean) to  $\tilde{X}$ , then there exists another random variable  $\tilde{Y}$  defined on  $\Omega'$  such that  $Y_n$  converges to  $\widetilde{Y}$  a.s (resp. in probability and in the *r*th mean).

We end this section by introducing the concept of uniform integrability.

**Definition 4.8.** A sequence of random variables  $(X_n)_{n=1}^{\infty}$  defined on a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$  is **uniformly integrable** if

$$
\sup_{n\geq 1}\int_{\{|X_n|>c\}}|X_n|d\mathbb{P}\to 0,\quad \text{as }c\to\infty.
$$

*Remark* 4.12*.* If  $(X_n)_{n=1}^{\infty}$  is uniformly integrable, then  $\sup_n \mathbb{E}|X_n| < \infty$ .

*Remark* 4.13. Note that if  $|X_n| \leq X$  and  $\mathbb{E}|X| < \infty$ , then  $(X_n)_{n=1}^{\infty}$  is uniformly integrable.

**Lemma 4.18.** If  $(X_n)_{n=1}^{\infty}$  and  $(Y_n)_{n=1}^{\infty}$  are uniformly integrable, then  $(aX_n)_{n=1}^{\infty}$  for any  $a \in \mathbb{R}$ ,  $(\max\{X_n, 0\})_{n=1}^{\infty}$  *and*  $(X_n + Y_n)_{n=1}^{\infty}$  *are uniformly integrable.* 

*Proof.* The uniform integrability of the first two sequences are clear. For the last one, note that

$$
\int_{\{|X_n+Y_n|>c, |X_n|\geq |Y_n|\}} |X_n + Y_n| d\mathbb{P} \leq 2 \int_{\{|X_n|>c/2\}} |X_n| d\mathbb{P}
$$
  

$$
\int_{\{|X_n+Y_n|>c, |X_n|<|Y_n|\}} |X_n + Y_n| d\mathbb{P} \leq 2 \int_{\{|Y_n|>c/2\}} |Y_n| d\mathbb{P}.
$$

and

This implies that, when  $c \to \infty$ ,

$$
\sup_{n\geq 1} \int_{\{|X_n+Y_n|>c\}} |X_n+Y_n|d\mathbb{P} \leq 2\left\{\sup_{n\geq 1} \int_{\{|X_n|>c/2\}} |X_n|d\mathbb{P} + \sup_{n\geq 1} \int_{\{|Y_n|>c/2\}} |Y_n|d\mathbb{P}\right\} \to 0.
$$

**Theorem 4.19.** *Let*  $(X_n)_{n=1}^{\infty}$  *be a sequence of random variables defined on*  $(\Omega, \mathcal{F})$ *. Then,*  $(X_n)_{n=1}^{\infty}$  *is uniformly integrable if and only if the following holds.* 

- $(1)$  sup<sub>n</sub>  $\mathbb{E}|X_n| < \infty$ .
- (2) For any sequence of events  $(A_m)_{m=1}^{\infty}$  in F satisfying  $\mathbb{P}(A_m) \to 0$ ,  $\sup_n \mathbb{E}(|X_n|\mathbf{1}_{A_m}) \to 0$  $as m \rightarrow \infty$ .

*Remark* 4.14. An equivalent statement of (2) says that, for any  $\epsilon > 0$ , there is  $\delta > 0$  such that  $\sup_n \mathbb{E}(|X_n|\mathbf{1}_A) < \epsilon$  for all  $A \in \mathcal{F}$  satisfying  $\mathbb{P}(A) < \delta$ .

*Proof of Theorem 4.19.* It loses no generality to assume that  $X_n \geq 0$ . First, assume that  $(X_n)_{n=1}^{\infty}$  is uniformly integrable. Note that, for *A* ∈ *F* and *c* > 0,

$$
\sup_{n\geq 1} \mathbb{E}(X_n \mathbf{1}_A) \leq \sup_{n\geq 1} \mathbb{E}(X_n \mathbf{1}_{\{X_n \geq c\}}) + c \mathbb{P}(A).
$$

Setting  $A = \Omega$  and choosing *c* large enough gives (1), while (2) is provided by replacing A with  $A_m$  and passing m to the infinity and then c to the infinity.

Next, assume that (1) and (2) hold. Note that, for  $c > 0$ ,  $\mathbb{E}X_n \ge c\mathbb{P}(X_n \ge c)$ . By (1), this implies  $\sup_n \mathbb{P}(X_n \ge c) \le c^{-1} \sup_n \mathbb{E}X_n \to 0$  as  $c \to \infty$  or, equivalently, for any  $\delta > 0$ , there is  $c > 0$  such that  $\sup_n \mathbb{P}(X_n \ge c) < \delta$ . By Remark 4.14 and the assumption of (2), this implies that, for any  $\epsilon > 0$ , there exists  $c > 0$  such that  $\sup_n \mathbb{E}(X_n \mathbf{1}_{\{X_n \geq c\}}) < \epsilon$ , which proves the uniform integrability of  $(X_n)_{n=1}^{\infty}$ .  $\sum_{n=1}^{\infty}$ .

**Exercise 4.8.** Let  $(X_n)_{n=1}^{\infty}$  be a sequence of random variables. Prove that  $(X_n)_{n=1}^{\infty}$  is uniformly integrable if and only if  $\mathbb{E}|X_n| < \infty$  and

$$
\limsup_{n\to\infty}\int_{\{|X_n|>c\}}|X_n|d\mathbb{P}\to 0,\quad \text{as }c\to\infty.
$$

**Exercise 4.9.** Let  $(X_n)_{n=1}^{\infty}$  be a sequence of random variable and *G* be a non-negative increasing function defined on  $[0, \infty)$ . Suppose  $\mathbb{E}|X_n| < \infty$  and

$$
\lim_{t \to \infty} \frac{G(t)}{t} = \infty, \quad \sup_{n \ge 1} \mathbb{E} G(|X_n|) < \infty.
$$

Show that  $(X_n)_{n=1}^{\infty}$  is uniformly integrable.

**Exercise 4.10.** Let  $(X_n)_{n=1}^{\infty}$  be a sequence of random variables. Show that if  $\mathbb{E}|X_n| < \infty$ ,  $\mathbb{E}|X| < \infty$  and  $\mathbb{E}|X_n - X| \to 0$ , then  $(X_n)_{n=1}^{\infty}$  is uniformly integrable.

**Theorem 4.20.** *Let*  $(X_n)_{n=1}^{\infty}$  *be uniformly integrable. Then,* 

- (1)  $\mathbb{E} \liminf_n X_n \leq \liminf_n \mathbb{E} X_n$  and  $\limsup_n \mathbb{E} X_n \leq \mathbb{E} \limsup_n X_n$ .
- (2) *If*  $X_n \to X$  *a.s., then X is integrable and*  $\mathbb{E}|X_n X| \to 0$ .

*Proof.* For (1), let  $\epsilon > 0$ . Since  $(X_n)_{n=1}^{\infty}$  is uniformly integrable, we may choose  $c > 0$  such that  $\mathbb{E}(|X_n|\mathbf{1}_{\{|X_n|>c\}})<\epsilon$  for all  $n\in\mathbb{N}$ . This implies  $\mathbb{E}(|X_n|\mathbf{1}_{\{X_n<-c\}})<\epsilon$ . By Fatou's lemma, one has

$$
\mathbb{E} \liminf_{n \to \infty} (X_n \mathbf{1}_{\{X_n \ge -c\}}) \le \liminf_{n \to \infty} \mathbb{E} (X_n \mathbf{1}_{\{X_n \ge -c\}}).
$$

Since  $X_n \leq X_n \mathbf{1}_{\{X_n \geq -c\}}$ , the above inequality implies

$$
\mathbb{E} \liminf_{n \to \infty} X_n \leq \mathbb{E} \liminf_{n \to \infty} (X_n \mathbf{1}_{\{X_n \geq -c\}}) \leq \liminf_{n \to \infty} \mathbb{E} (X_n \mathbf{1}_{\{X_n \geq -c\}}) \leq \liminf_{n \to \infty} \mathbb{E} X_n + \epsilon.
$$

Letting  $\epsilon \to 0$  gives the desired result. The other inequality can be proved using the uniform integrability of  $(-X_n)_{n=1}^{\infty}$ .

For (2), as a result of (1) and Lemma 4.18, it remains to show that *X* is integrable. Note that, for  $c > 0$ ,  $\{|X| > c\} \subset \liminf_{n} \{|X_n| > c\}$  almost surely. By Fatou's lemma, this implies

$$
\int_{\{|X|>c\}} |X|d\mathbb{P} \le \liminf_{n\to\infty} \int_{\{|X_n|>c\}} |X_n|d\mathbb{P} \le \sup_{n\ge 1} \mathbb{E}|X_n| < \infty.
$$

**Theorem 4.21.** *Let*  $X_n, X$  *be random variables. Suppose*  $X_n \geq 0$ ,  $\mathbb{E}X_n < \infty$  *and*  $X_n \to X$ *almost surely. Then, the following are equivalent.*

- (1)  $\mathbb{E}X_n \to \mathbb{E}X$  *with*  $\mathbb{E}X < \infty$ .
- (2)  $(X_n)_{n=1}^{\infty}$  *is uniformly integrable.*

*Proof.* (2) $\Rightarrow$ (1) is immediate from Theorem 4.20. Assume that (1) holds and let *C* be set of continuous points of  $F_X$ , the distribution function of X. It is clear that  $\mathbb{R} \setminus \mathcal{C}$  is finite or countable. Note that, for  $c \in \mathcal{C}$ ,  $X_n \mathbf{1}_{\{X_n < c\}} \to X \mathbf{1}_{\{X < c\}}$  almost surely. By the Lebesgue dominated convergence theorem, this implies  $\mathbb{E}(X_n \mathbf{1}_{\{X_n < c\}}) \to \mathbb{E}(X \mathbf{1}_{\{X < c\}})$ . Since  $\mathbb{P}(X =$  $c) = 0$  for  $x \in C$ , we have  $\mathbb{E}(X_n \mathbf{1}_{\{X_n \ge c\}}) \to \mathbb{E}(X \mathbf{1}_{\{X > c\}})$  for all  $c \in C$ .

For  $\epsilon > 0$ , choose  $c_0 \in \mathcal{C}$  such that  $\mathbb{E}(X \mathbf{1}_{\{X > c_0\}}) < \epsilon/2$ . Next, we may select  $N \in \mathbb{N}$  such that  $\mathbb{E}(X_n \mathbf{1}_{\{X_n \ge c_0\}}) < \mathbb{E}(X \mathbf{1}_{\{X > c_0\}}) + \epsilon/2$  for  $n \ge N$ . This implies, for  $c \ge c_0$  and  $n \ge N$ ,

$$
\mathbb{E}(X_n\mathbf{1}_{\{X_n>c\}}) \leq \mathbb{E}(X_n\mathbf{1}_{\{X_n \geq c_0\}}) < \epsilon.
$$

Since  $\mathbb{E}X_n < \infty$ , we may select  $c_1 > c_0$  such that  $\mathbb{E}(X_n \mathbf{1}_{\{X_n > c_1\}}) < \epsilon$  for  $1 \leq n \leq N$ . Consequently, this leads to  $\sup_n \mathbb{E}(X_n \mathbf{1}_{\{X_n > c\}}) \leq \epsilon$  for  $c \geq c_1$ , as desired.

As a consequence of Theorems 4.20 and 4.21, we obtain the following corollary.

**Corollary 4.22.** *Assume that*  $X_n \to X$  *almost surely. Then, the following are equivalent.* 

- (1)  $(X_n)_{n=1}^{\infty}$  *is uniformly integrable.*
- $(2)$   $\mathbb{E}[X] < \infty$  and  $\mathbb{E}[X_n X] \to 0$ .
- $(3)$   $\mathbb{E}[X] < \infty$  and  $\mathbb{E}[X_n] \to \mathbb{E}[X]$ .

**Exercise 4.11.** Show that the assumption in Corollary 4.22 can be replaced by convergence in probability.