4. RANDOM VARIABLES AND CONCEPTS OF CONVERGENCE

4.1. Random variables.

Definition 4.1. Let (2, F) and (R, B) be o-fields. A function X : Q — R is called a (F/B)
random element if X is F-measurable, i.e. {X € B} € F for all B € B. If R = R and
B = B(R), then X is called a random variable. If R = R"™ and B = B(R"), then X is called
an n-dimensional random vector.

Remark 4.1. Let X be a map from Q to R and set F(X) = {X~}(B)|B € B} and B(X) =
{B Cc R|IX~YB) € F}. Then, F(X),B(X) are o-fields over Q, R, and X is F-measurable iff
F(X) C Fiff B(X) D B. In particular, if X is a random element, then X is F (X )-measurable.

Lemma 4.1. Let F,B be o-fields over Q, R and X be a mapping from Q to R. Set B(X) =
{B C RIX~YB) € F}. Let C C B be such that o(C) = B. Then, X is F-measurable if and
only if C C B(X).

Corollary 4.2. Let (2, F) be a o-field and X be a real-valued function defined on Q. Then,
X is a random variable if and only if {X < c} € F for all c € R.

Remark 4.2. Let R = RU {00} and B(R) = o(B(R) U {{oc},{—00}}). Clearly, B(R) =
o({[~o0,c]lc € R}). A function X taking values on the extended real field R is called an
extended random variable if {X € B} € F for B € B(R). By Lemma 4.1, Corollary 4.2 also
applies for extended random variables.

Proposition 4.3. Let X, Y be random variables and a,b € R. Then, aX +bY, XY, max{X,Y'}
are random variables. Furthermore, if X, is an extended random variable for all n € N, then
sup,, Xp, inf,, X,,, limsup,, X,, and liminf, X, are extended random variables. In particular,
if X, converges to X, then X is a random variable.

Proposition 4.4. For any extended random variable X defined on €2, there is a sequence
of random variables, say X, satisfying | X,| < | Xn11], Xn(Q) is a finite set and X,, — X,
where, in the case X (w) = 00, X, (w) = X(w) means that X, (w) diverges to infinity.

Exercise 4.1. Let () be a metric space and F be the o-field generated by the open sets in €.

Prove that if X : 2 — R is upper semicontinuous, i.e. limsup,_,, X(x) < X(y) for all y € Q,
then X is a random variable.

Proposition 4.5. Let X : (Q,F) — (R, B) be a random element and f : (R,B) — (R, B(R))
be a random variable. Then, f(X) is a random variable.

Exercise 4.2. Let X : (2, F) — (R, B) be a random element and g be a F(X)-measurable
random variable. Prove that there is a B-measurable random variable f such that g = f(X).
Lemma 4.6. For1 <i <n, let F; be a o-field over ; and set Q = [[1_ Q and F = Q;-_, Fi.
Consider the projection mapping P; : Q — Q; defined by P;(w1,...,wn) = w;. Then, P; is a
F | Fi random element for 1 <i <n.

Proposition 4.7. Let X : Q — R" and write X = (X1, ..., Xp,). Then, X is an n-dimensional
random vector if and only if X1, ..., X,, are random variables.

Definition 4.2. Let T be a subset of R and (€2, F) be a o-field. A stochastic process
X :Q — RT is a (F/B(RT)) random element. The process is of discrete time if T is a
countable set, e.g. {0,1,...} and is of continuous time if T is an interval, e.g. [0, 1], [0, c0),
R. For any w € , (X¢(w))ter is called a realization corresponding to w.

Proposition 4.8. Let (2, F) be a o-field, T C R and X = (X;)ier : @ = RT. Then, X is a
stochastic process if and only if X; is a random variable for allt € T.
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Proposition 4.9. Let T be a set and, forty,..,t, € T, Fy, . 1, be a n-dimensional distribution
function satisfying the consistency property. Then, there is a stochastic process (Xi)ier such
that P(Xy, < x;,V1<i<n)=F, 4 (x1,....,2,) forti,...,t, €T and n € N.

Proof. By Theorem 3.7, there is a probability P on (RT, B(RT)) such that

n

P(D(t1, ... tn, [ [(—00, 2:]) = Fiyp, (@1, s 7).

i=1
The desired process is then given by (X;)ier : RT — R, where X;(w) = w; for all w = (w)ser €
RT. O
Example 4.1. Let Eq, Eo, ... be mutually disjoint non-empty sets satisfying £1 U Ea U--- =

and F be the o-field generated by (E,)2 ;. Note that F consists of (), €, finite unions of
(Ep)22, and complements of finite unions of (E,)5 ;. This implies that any F-measurable
random variable X is constant on E,, for all n. Hence, there is a sequence (ay)22; such that
X =52 aylg,.

Exercise 4.3. Let X,Y be F-measurable random variables. Suppose that X (Q2) = Y (Q) =
{1,2,..., N} and F(X) = F(Y). Show that there is a permutation o of {1,2,..., N} such that
{X=i}={Y =0(i)} for 1 <i<N.

In the end of this subsection, we introduce a useful technique. For any family @) of real-
valued functions defined on Q, let F(Q) be the o-field over Q generated by ), which is
defined to be the smallest o-field over € such that each function in ) is measurable. Then,
F(Q) =c({fY(B): f €@ B c BR)}). A sequence of functions X,, is said to converge
boundedly to X if X, converges to X and X, is uniformly bounded. A family of real-valued
functions on 2 is called a multiplicative system if it is closed under multiplication.

Theorem 4.10 (Multiplicative system theorem). Let H be a linear space of bounded func-
tions on £ which contains 1o and is closed under bounded convergence. If H contains a
multiplicative system @, then it contains all bounded F(Q)-measurable functions.

Proof. Let L be the class containing subsets A C €2 for which 14 € H. Let P be the class of
subsets of the following form

(4.1) {we: Xi(w) e ,..,Xn(w) €I}

where X1,...,X,, € Q, I,...,1I, are open intervals and n € N. It is obvious that P is a =-
system and, by the assumption that H is linear and closed under bounded convergence, L is
a A-system.

Next, we prove that P C L. Note that the indicator function of the set in (4.1) is equal to

1 (X1)1p,(X2) -+ 17, (X5).

For 1 < k < n, one may choose a sequence of continuous functions ( fr(,f ))fn":l that converges
boundedly to 17,. Set ¢ = sup{|Xp(w)| : w € 2,1 < k < n}. By the Stone-Weierstrass

theorem, we may choose, for each k, m, a polynomial ggi) such that
1
g (1) = F (1) < =, for [t] <e.
m

This implies that, for 1 < k < n, gﬁ,’f) (X%) — 17, (X)) boundedly as m — oco. Since @ is a
multiplicative system and H is a linear space, we have

gV (X1) 9P (Xa) - g (X,) € H, Ym > 1.
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By the bounded convergence of H, the indicating function of the set in (4.1) belongs to H,
which implies P C £. As a result of the 7 — X lemma, £ D o(P) = F(Q). Now let X be a
bounded o(P)-measurable function and set, for n > 1,

k
D DL Ty
k

It is easy to see that X,, € H for n > 1 and X,, converges boundedly to X and, hence,
X eH. O

4.2. Expectations.

Definition 4.3. Let (2, F,P) be a probability space and X be a random variable on (2, F).
The expectation of X is defined by

EX = / X (w)dP(w),
Q
provided the right side is well-defined.

Remark 4.3. In the case P(X > ¢) = 1 for some ¢ € R, if [, X (w)dP(w) does not exist, we
write EX = oo. Similarly, when P(X < ¢) = 1 and the expectation of X does not exist, we
write EX = —oo.

Definition 4.4. Let (2, F,P) be a probability space. Two random variables X, Y are said to
be equal a.s. (almost surely) if P(X # Y) = 0. A sequence of random variables (X;,)5°; is
said to converge to a function X a.s. if P(X,, —» X) = 1.

Remark 4.4. Note that {w € Q|X,(w) converges} € F. This implies that if P is complete and
X, converges almost surely to X, then X is a random variable.

Proposition 4.11. Let X,Y be random variables on a probability space (2, F,P). Suppose
that E|X| < oo and E|Y| < co. Then,

(1) If X > Y a.s, then EX > EY. In particular, if X > ¢ a.s., then EX > c.

(2) If X =Y a.s., then EX =EY.

(3) Fora,beR, ElaX +bY| < 0o and E(aX +bY) = aEX + DEY .

Remark 4.5. Referring to the setting in Proposition 4.11, one has that X > Y a.s. (resp.
X =Y as.) ifand only if E(X14) > E(Y14) (resp. E(X14) =E(Y1,)) for all A € F.

Theorem 4.12 (Monotone convergence theorem). Let (2, F,P) be a probability space and
X, X,, be nonnegative random variables defined on 2. Suppose that X, T X a.s.. Then,
EX, TEX.

Theorem 4.13 (Lebesgue’s dominated convergence theorem). Let X,,, X,Y be random vari-
ables on (2, F,P). Suppose that |X,| < Y as., EY < oo and X,, — X a.s.. Then,
EX, - EX.

Theorem 4.14 (Fatou’s lemma). Forn > 1, let X,, be a non-negative random variable defined
on a probability space (2, F,P). Then, E(liminf, X,) < liminf, EX,,.

Remark 4.6. The monotone convergence theorem, dominated convergence theorem and Fatou’s
lemma are equivalent.

Definition 4.5. Let (2, F,P) be a probability space and X : (2, F) — (R, B) be a random
element. The distribution of X is the probability Px on (R, B) induced by X, i.e. Px(B) =
P(X € B) for B € B. In the case of (R,B) = (R,B(R)), the distribution function of X is
defined by Fx(a) := Px((—o00,al) for a € R.
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Remark 4.7. If R = R™, then Py is characterized by its n-dimensional distribution. If R = R”
then Px is characterized by its finite dimensional distributions. There is no confusion to called
the n-dimensional and finite dimensional distribution functions as the distribution functions
of X.

Theorem 4.15. Let X = (Xi)ier be a stochastic process on (Q, F,P) and Px be the distri-
bution of X. Let f : RT — R be a B(RT)-measurable random variable. Then,

(12) | 1)) = [ f@dpxia)
in the sense that if either side is well-defined.

Proof. Let H be the class of bounded B(RT)-measurable functions f such that (4.2) holds.
Then, by Proposition 4.11, H is a linear space containing constant function 1 and, by
Lebesgue’s dominated convergent theorem, H is closed under bounded convergence. Set
Q = {1p5|B € BRT)}. Tt is obvious that @ is a multiplicative system contained in H.
Note that F(Q) = B(RT). By the multiplicative systems theorem, (4.2) holds for all bounded
B(RT)-measurable functions.

Next, let f be any B(R”)-measurable function and set f, = f - Lga:|f(z)|<n}- Clearly,
|fn] <|f] and f,, — f. Since f, is bounded and B(RT)-measurable,

/ (X (@) dPw) = | fulx)dPx (z).
Q RT

By the Lebesgue dominated convergence theorem, (4.2) holds when f is integrable under
Px. O

Corollary 4.16. Let (Q,F,P) and (', F',P') be probability spaces and X : Q — RT and
X' : QY — RT be stochastic processes. If Px = Px, then

/ fX)ap = [ f(X)dP,
Q Q

for any B(RT)-measurable random variable f satisfying [ |f|dPx < oo.

Exercise 4.4. Let f be a real-valued function defined on an interval I C R and X be a
random variable taking values on I. Prove that if f is convex, E|X| < co and E|f(X)| < oo,
then Ef(X) > f(EX).

4.3. Convergence concepts.

Definition 4.6. Let (22, F,P) be a probability space and X, X,, be random variables on 2.
A sequence (X,,)° ; converges to X
(1) almost surely or with probability 1 if P(X,, - X) = 1.
(2) in probability if P(| X, — X| > ¢€) — 0 for all e > 0.
(3) in the rth norm if E|X,, — X|" — 0 for r € [1,00) and || X,, — X|lcc — 0 for r = oo,
where ||Y | := inf{c|P(|Y] < ¢) = 1}.
(4) in distribution if the distribution functions of X,, and X, say F,, and F, satisfy

ILm F.(x)=F(z), VYzeC,

where C is the set of all continuous points of F'.
(5) almost uniformly if, for any € > 0, there is E. € F such that P(ES) < € and X,
converges uniformly to X on E..

Remark 4.8. Tt is obvious that both the a.s. convergence and the convergence in the rth mean
with » > 1 imply the convergence in probability.
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Remark 4.9. For 1 <r < s < o0, if X;, =& X in the sth norm, then X,, — X in the rth norm.

Remark 4.10. Note that X,, — X a.s. if and only if X,, — X a.u.. (The direction a.s. = a.u.
is a special case of Egorov’s theorem.)

Exercise 4.5. Prove that X, converges to X in probability if and only if, any subsequence
of (X,)5%; has a further subsequence that converges to X a.s. Give an example that X,
converges to X in probability but not a.s.

Definition 4.7. A sequence of random variables (X,,)7° ; is Cauchy a.s., Cauchy in probability
and Cauchy in the rth mean if X,, — X,,, — 0 as n, m — oo in the sense of Definition 4.6(1)-(3).

Proposition 4.17. If (X,,)5%, is a sequence of random variables that are Cauchy a.s. (resp.
in probability and in the rth mean), then there exists a random variable X such that X,
converges to X a.s (resp. in probability and in the rth mean).

Proof. The proof for a.s. convergence is given by Exercise 4.6, while the others are left as
exercises. 0

Exercise 4.6. Let X,, be a sequence of random variables on (€2, F) and set
Ey ={we Q: X, (w) is a Cauchy sequence}
and
Ey={weQ: X,(w) >0}, E3={we:X,(w)— —o0}.
Prove that E1, Ey, E3 are contained in F.

Remark 4.11. It follows immediately from Exercise 4.6 that
{w € Q: lim X, (w) does not exist} € F.
n—oo

Exercise 4.7. Let X,,,Y,, be random variables on (Q, F,P), (', F',P"). Suppose Px = Py,
where X = (X,,)02; and Y = (¥,,)2%,. Prove that if X, converges a.s. (resp. in probability
and in the rth mean) to X, then there exists another random variable Y defined on €’ such
that Y,, converges to Y as (resp. in probability and in the rth mean).

We end this section by introducing the concept of uniform integrability.

Definition 4.8. A sequence of random variables (X,,)5; defined on a probability space
(Q, F,P) is uniformly integrable if

sup/ | Xp|dP — 0, asc— oo.
{IXn|>c}

n>1
Remark 4.12. If (X,,)02 is uniformly integrable, then sup,, E|X,| < oc.
Remark 4.13. Note that if | X,,| < X and E|X| < oo, then (X,)o°

oo 1 is uniformly integrable.

Lemma 4.18. If (X,,);2, and (Y5,)52, are uniformly integrable, then (a.Xy)o>, for any a € R,
(max{X,,0})5; and (X,, + Y,) are uniformly integrable.

n=1

Proof. The uniform integrability of the first two sequences are clear. For the last one, note
that
/ \Xn—i—Yn|d]P’§2/ | X, |dP
{Xn+Yn|>c|Xn|>[Val} {IXn|>c/2}
and
/ | Xy, + Y, |dP < 2/ Y, |dP.
{[Xn+Yn[>c,| Xn|<|Vn|} {I¥Yn]>c/2}
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This implies that, when ¢ — oo,

sup/ | X + Yy |dP < 2 sup/ ]Xn\d]P’—i—sup/ |Y,,|dP » — 0.
n21 J{|Xpn+Yn|>c} n21J{|Xn|>c/2} nz1J{|Yn|>c/2}

O

Theorem 4.19. Let (X,)°,; be a sequence of random variables defined on (2, F). Then,
(Xn)o2, is uniformly integrable if and only if the following holds.
(1) sup, E|X,| < co.
(2) For any sequence of events (Ay,)oe_, in F satisfying P(A,,) — 0, sup,, E(|X,|14,,) — 0
as m— oo.

Remark 4.14. An equivalent statement of (2) says that, for any € > 0, there is § > 0 such that
sup,, E(|X,|14) < € for all A € F satisfying P(A) < 4.

Proof of Theorem 4.19. Tt loses no generality to assume that X, > 0. First, assume that
(Xpn)p2 is uniformly integrable. Note that, for A € F and ¢ > 0,

sup E(X;,14) < supE(Xnlix,>c)) + cP(A).

n>1 n>1
Setting A = Q and choosing ¢ large enough gives (1), while (2) is provided by replacing A
with A, and passing m to the infinity and then ¢ to the infinity.

Next, assume that (1) and (2) hold. Note that, for ¢ > 0, EX,, > ¢P(X,, > ¢). By (1), this
implies sup,, P(X,, > ¢) < ¢ !'sup, EX,, — 0 as ¢ — oo or, equivalently, for any 6 > 0, there is
¢ > 0 such that sup,, P(X,, > ¢) < J. By Remark 4.14 and the assumption of (2), this implies
that, for any € > 0, there exists ¢ > 0 such that sup,, E(X,1;x,>¢) < €, which proves the
uniform integrability of (X,,)> ;. U

[e.e]

Exercise 4.8. Let (X,,)°2, be a sequence of random variables. Prove that (X,)5 ; is uni-

formly integrable if and only if E|X,,| < oo and

limsup/ | Xpn|dP — 0, asc— oo.
n—oo  J{|X|>c}
Exercise 4.9. Let (X,)22; be a sequence of random variable and G' be a non-negative in-
creasing function defined on [0, 00). Suppose E|X,,| < co and
G(t
lim Ki0) =00, supEG(|X,|) < oo.
n>1

t—oo ¢
Show that (X,,)>2; is uniformly integrable.

Exercise 4.10. Let (X,,)?2; be a sequence of random variables. Show that if E|X,| < oo,
E|X| < oo and E|X,, — X| — 0, then (X,,)7%, is uniformly integrable.

Theorem 4.20. Let (X,,)72, be uniformly integrable. Then,
(1) Eliminf,, X,, <liminf, EX,, and limsup, EX, < Elimsup,, X,.
(2) If X,, — X a.s., then X is integrable and E|X,, — X| — 0.

Proof. For (1), let € > 0. Since (X,,)>%, is uniformly integrable, we may choose ¢ > 0 such
that E(|X,|1fx,|>¢}) < € for all n € N. This implies E(|Xn|1{x,<—}) < € By Fatou’s
lemma, one has

Elinrgioréf(an{XnZ_c}) < lggio%fE(an{XnZ—C})'
Since X, < X, 1¢x,>_}, the above inequality implies
Eliminf X, <Elminf(X,1(x,>_) < Iminf E(X,1x,>_) < liminf EX,, + €.

n—00 n— n—00 n—00
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Letting € — 0 gives the desired result. The other inequality can be proved using the uniform
integrability of (—X,)22 ;.
For (2), as a result of (1) and Lemma 4.18, it remains to show that X is integrable. Note
that, for ¢ > 0, {|X| > ¢} C liminf, {|X,| > ¢} almost surely. By Fatou’s lemma, this implies
/ | X |dP < liminf/ | X |dP < supE|X,,| < 0.
{[X[>c} {|Xn|>c} n>1

n—oo

O

Theorem 4.21. Let X,,, X be random variables. Suppose X,, > 0, EX,, < co and X,, > X
almost surely. Then, the following are equivalent.

(1) EX,, » EX with EX < 0.

(2) (Xn)22y is uniformly integrable.

Proof. (2)=(1) is immediate from Theorem 4.20. Assume that (1) holds and let C be set of
continuous points of Fly, the distribution function of X. It is clear that R\ C is finite or
countable. Note that, for ¢ € C, X, 11y, <y = X1{x< almost surely. By the Lebesgue
dominated convergence theorem, this implies E(X,1{x,<c}) — E(X1ix<). Since P(X =
c) =0 for v € C, we have E(Xp1(x,>¢) = E(X1{x5y) for all c € C.

For € > 0, choose cg € C such that E(X1x~.}) < €/2. Next, we may select N € N such
that E(X,1{x,>c¢1) < E(X1{xse}) +¢€/2 for n > N. This implies, for ¢ > ¢g and n > N,

E<Xn1{Xn>c}) < E(an{XnZCO}) <€

Since EX,, < oo, we may select ¢; > ¢y such that E(XTL]-{Xn>01}) < eforl <n < N.
Consequently, this leads to sup,, E(X,1(x,5¢}) < € for ¢ > c1, as desired. O

As a consequence of Theorems 4.20 and 4.21, we obtain the following corollary.

Corollary 4.22. Assume that X, — X almost surely. Then, the following are equivalent.
(1) (Xn)92, is uniformly integrable.
(2) E|X| < 00 and E|X,, — X| — 0.
(3) E|X| < o0 and E|X,,| — E|X].
Exercise 4.11. Show that the assumption in Corollary 4.22 can be replaced by convergence
in probability.
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