4. RANDOM VARIABLES AND CONCEPTS OF CONVERGENCE

4.1. Random variables.

Definition 4.1. Let (Ω, \mathcal{F}) and (R, \mathcal{B}) be σ -fields. A function $X : \Omega \to R$ is called a $(\mathcal{F}/\mathcal{B})$ random element if X is \mathcal{F} -measurable, i.e. $\{X \in B\} \in \mathcal{F}$ for all $B \in \mathcal{B}$. If $R = \mathbb{R}$ and $\mathcal{B} = \mathcal{B}(\mathbb{R})$, then X is called a random variable. If $R = \mathbb{R}^n$ and $\mathcal{B} = \mathcal{B}(\mathbb{R}^n)$, then X is called an *n*-dimensional random vector.

Remark 4.1. Let X be a map from Ω to R and set $\mathcal{F}(X) = \{X^{-1}(B) | B \in \mathcal{B}\}$ and $\mathcal{B}(X) = \{B \subset R | X^{-1}(B) \in \mathcal{F}\}$. Then, $\mathcal{F}(X), \mathcal{B}(X)$ are σ -fields over Ω, R , and X is \mathcal{F} -measurable iff $\mathcal{F}(X) \subset \mathcal{F}$ iff $\mathcal{B}(X) \supset \mathcal{B}$. In particular, if X is a random element, then X is $\mathcal{F}(X)$ -measurable.

Lemma 4.1. Let \mathcal{F}, \mathcal{B} be σ -fields over Ω, R and X be a mapping from Ω to R. Set $\mathcal{B}(X) = \{B \subset R | X^{-1}(B) \in \mathcal{F}\}$. Let $\mathcal{C} \subset \mathcal{B}$ be such that $\sigma(\mathcal{C}) = \mathcal{B}$. Then, X is \mathcal{F} -measurable if and only if $\mathcal{C} \subset \mathcal{B}(X)$.

Corollary 4.2. Let (Ω, \mathcal{F}) be a σ -field and X be a real-valued function defined on Ω . Then, X is a random variable if and only if $\{X \leq c\} \in \mathcal{F}$ for all $c \in \mathbb{R}$.

Remark 4.2. Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ and $\mathcal{B}(\overline{\mathbb{R}}) = \sigma(\mathcal{B}(\mathbb{R}) \cup \{\{\infty\}, \{-\infty\}\})$. Clearly, $\mathcal{B}(\overline{\mathbb{R}}) = \sigma(\{[-\infty, c] | c \in \mathbb{R}\})$. A function X taking values on the extended real field $\overline{\mathbb{R}}$ is called an extended random variable if $\{X \in B\} \in \mathcal{F}$ for $B \in \mathcal{B}(\overline{\mathbb{R}})$. By Lemma 4.1, Corollary 4.2 also applies for extended random variables.

Proposition 4.3. Let X, Y be random variables and $a, b \in \mathbb{R}$. Then, $aX+bY, XY, \max\{X, Y\}$ are random variables. Furthermore, if X_n is an extended random variable for all $n \in \mathbb{N}$, then $\sup_n X_n$, $\inf_n X_n$, $\limsup_n X_n$ and $\liminf_n X_n$ are extended random variables. In particular, if X_n converges to X, then X is a random variable.

Proposition 4.4. For any extended random variable X defined on Ω , there is a sequence of random variables, say X_n , satisfying $|X_n| \leq |X_{n+1}|$, $X_n(\Omega)$ is a finite set and $X_n \to X$, where, in the case $X(\omega) = \infty$, $X_n(\omega) \to X(\omega)$ means that $X_n(\omega)$ diverges to infinity.

Exercise 4.1. Let Ω be a metric space and \mathcal{F} be the σ -field generated by the open sets in Ω . Prove that if $X : \Omega \to \mathbb{R}$ is upper semicontinuous, i.e. $\limsup_{x \to y} X(x) \leq X(y)$ for all $y \in \Omega$, then X is a random variable.

Proposition 4.5. Let $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random element and $f : (R, \mathcal{B}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ be a random variable. Then, f(X) is a random variable.

Exercise 4.2. Let $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random element and g be a $\mathcal{F}(X)$ -measurable random variable. Prove that there is a \mathcal{B} -measurable random variable f such that g = f(X).

Lemma 4.6. For $1 \leq i \leq n$, let \mathcal{F}_i be a σ -field over Ω_i and set $\Omega = \prod_{i=1}^n \Omega_i$ and $\mathcal{F} = \bigotimes_{i=1}^n \mathcal{F}_i$. Consider the projection mapping $P_i : \Omega \to \Omega_i$ defined by $P_i(\omega_1, ..., \omega_n) = \omega_i$. Then, P_i is a $\mathcal{F}/\mathcal{F}_i$ random element for $1 \leq i \leq n$.

Proposition 4.7. Let $X : \Omega \to \mathbb{R}^n$ and write $X = (X_1, ..., X_n)$. Then, X is an n-dimensional random vector if and only if $X_1, ..., X_n$ are random variables.

Definition 4.2. Let T be a subset of \mathbb{R} and (Ω, \mathcal{F}) be a σ -field. A stochastic process $X : \Omega \to \mathbb{R}^T$ is a $(\mathcal{F}/\mathcal{B}(\mathbb{R}^T))$ random element. The process is of discrete time if T is a countable set, e.g. $\{0, 1, ...\}$ and is of continuous time if T is an interval, e.g. $[0, 1], [0, \infty), \mathbb{R}$. For any $\omega \in \Omega, (X_t(\omega))_{t \in T}$ is called a **realization** corresponding to ω .

Proposition 4.8. Let (Ω, \mathcal{F}) be a σ -field, $T \subset \mathbb{R}$ and $X = (X_t)_{t \in T} : \Omega \to \mathbb{R}^T$. Then, X is a stochastic process if and only if X_t is a random variable for all $t \in T$.

Proposition 4.9. Let T be a set and, for $t_1, ..., t_n \in T$, $F_{t_1,...,t_n}$ be a n-dimensional distribution function satisfying the consistency property. Then, there is a stochastic process $(X_t)_{t\in T}$ such that $\mathbb{P}(X_{t_i} \leq x_i, \forall 1 \leq i \leq n) = F_{t_1,...,t_n}(x_1,...,x_n)$ for $t_1,...,t_n \in T$ and $n \in \mathbb{N}$.

Proof. By Theorem 3.7, there is a probability \mathbb{P} on $(\mathbb{R}^T, \mathcal{B}(\mathbb{R}^T))$ such that

$$\mathbb{P}(\mathcal{D}(t_1, ..., t_n, \prod_{i=1}^n (-\infty, x_i]) = F_{t_1, ..., t_n}(x_1, ..., x_n).$$

The desired process is then given by $(X_t)_{t\in T} : \mathbb{R}^T \to \mathbb{R}$, where $X_t(\omega) = \omega_t$ for all $\omega = (\omega_t)_{t\in T} \in \mathbb{R}^T$.

Example 4.1. Let $E_1, E_2, ...$ be mutually disjoint non-empty sets satisfying $E_1 \cup E_2 \cup \cdots = \Omega$ and \mathcal{F} be the σ -field generated by $(E_n)_{n=1}^{\infty}$. Note that \mathcal{F} consists of \emptyset , Ω , finite unions of $(E_n)_{n=1}^{\infty}$ and complements of finite unions of $(E_n)_{n=1}^{\infty}$. This implies that any \mathcal{F} -measurable random variable X is constant on E_n for all n. Hence, there is a sequence $(a_n)_{n=1}^{\infty}$ such that $X = \sum_{n=1}^{\infty} a_n \mathbf{1}_{E_n}$.

Exercise 4.3. Let X, Y be \mathcal{F} -measurable random variables. Suppose that $X(\Omega) = Y(\Omega) = \{1, 2, ..., N\}$ and $\mathcal{F}(X) = \mathcal{F}(Y)$. Show that there is a permutation σ of $\{1, 2, ..., N\}$ such that $\{X = i\} = \{Y = \sigma(i)\}$ for $1 \le i \le N$.

In the end of this subsection, we introduce a useful technique. For any family Q of realvalued functions defined on Ω , let $\mathcal{F}(Q)$ be the σ -field over Ω generated by Q, which is defined to be the smallest σ -field over Ω such that each function in Q is measurable. Then, $\mathcal{F}(Q) = \sigma(\{f^{-1}(B) : f \in Q, B \in \mathcal{B}(\mathbb{R})\})$. A sequence of functions X_n is said to **converge boundedly** to X if X_n converges to X and X_n is uniformly bounded. A family of real-valued functions on Ω is called a **multiplicative system** if it is closed under multiplication.

Theorem 4.10 (Multiplicative system theorem). Let H be a linear space of bounded functions on Ω which contains $\mathbf{1}_{\Omega}$ and is closed under bounded convergence. If H contains a multiplicative system Q, then it contains all bounded $\mathcal{F}(Q)$ -measurable functions.

Proof. Let \mathcal{L} be the class containing subsets $A \subset \Omega$ for which $\mathbf{1}_A \in H$. Let \mathcal{P} be the class of subsets of the following form

(4.1)
$$\{\omega \in \Omega : X_1(\omega) \in I_1, ..., X_n(\omega) \in I_n\}$$

where $X_1, ..., X_n \in Q$, $I_1, ..., I_n$ are open intervals and $n \in \mathbb{N}$. It is obvious that \mathcal{P} is a π -system and, by the assumption that H is linear and closed under bounded convergence, \mathcal{L} is a λ -system.

Next, we prove that $\mathcal{P} \subset \mathcal{L}$. Note that the indicator function of the set in (4.1) is equal to

$$\mathbf{1}_{I_1}(X_1)\mathbf{1}_{I_2}(X_2)\cdots\mathbf{1}_{I_n}(X_n).$$

For $1 \leq k \leq n$, one may choose a sequence of continuous functions $(f_m^{(k)})_{m=1}^{\infty}$ that converges boundedly to $\mathbf{1}_{I_k}$. Set $c = \sup\{|X_k(\omega)| : \omega \in \Omega, 1 \leq k \leq n\}$. By the Stone-Weierstrass theorem, we may choose, for each k, m, a polynomial $g_m^{(k)}$ such that

$$|g_m^{(k)}(t) - f_m^{(k)}(t)| \le \frac{1}{m}, \quad \text{for } |t| \le c.$$

This implies that, for $1 \leq k \leq n$, $g_m^{(k)}(X_k) \to \mathbf{1}_{I_k}(X_k)$ boundedly as $m \to \infty$. Since Q is a multiplicative system and H is a linear space, we have

$$g_m^{(1)}(X_1)g_m^{(2)}(X_2)\cdots g_m^{(n)}(X_n) \in H, \quad \forall m \ge 1.$$

By the bounded convergence of H, the indicating function of the set in (4.1) belongs to H, which implies $\mathcal{P} \subset \mathcal{L}$. As a result of the $\pi - \lambda$ lemma, $\mathcal{L} \supset \sigma(\mathcal{P}) = \mathcal{F}(Q)$. Now let X be a bounded $\sigma(\mathcal{P})$ -measurable function and set, for $n \geq 1$,

$$X_n = \sum_k \frac{k}{n} \mathbf{1}_{\{\frac{k}{n} < X \le \frac{k+1}{n}\}}.$$

It is easy to see that $X_n \in H$ for $n \ge 1$ and X_n converges boundedly to X and, hence, $X \in H$.

4.2. Expectations.

Definition 4.3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X be a random variable on (Ω, \mathcal{F}) . The expectation of X is defined by

$$\mathbb{E} X := \int_{\Omega} X(\omega) d\mathbb{P}(\omega),$$

provided the right side is well-defined.

Remark 4.3. In the case $\mathbb{P}(X \ge c) = 1$ for some $c \in \mathbb{R}$, if $\int_{\Omega} X(\omega) d\mathbb{P}(\omega)$ does not exist, we write $\mathbb{E}X = \infty$. Similarly, when $\mathbb{P}(X \le c) = 1$ and the expectation of X does not exist, we write $\mathbb{E}X = -\infty$.

Definition 4.4. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Two random variables X, Y are said to be equal a.s. (almost surely) if $\mathbb{P}(X \neq Y) = 0$. A sequence of random variables $(X_n)_{n=1}^{\infty}$ is said to converge to a function X a.s. if $\mathbb{P}(X_n \to X) = 1$.

Remark 4.4. Note that $\{\omega \in \Omega | X_n(\omega) \text{ converges}\} \in \mathcal{F}$. This implies that if \mathbb{P} is complete and X_n converges almost surely to X, then X is a random variable.

Proposition 4.11. Let X, Y be random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $\mathbb{E}|X| < \infty$ and $\mathbb{E}|Y| < \infty$. Then,

- (1) If $X \ge Y$ a.s., then $\mathbb{E}X \ge \mathbb{E}Y$. In particular, if $X \ge c$ a.s., then $\mathbb{E}X \ge c$.
- (2) If X = Y a.s., then $\mathbb{E}X = \mathbb{E}Y$.
- (3) For $a, b \in \mathbb{R}$, $\mathbb{E}|aX + bY| < \infty$ and $\mathbb{E}(aX + bY) = a\mathbb{E}X + b\mathbb{E}Y$.

Remark 4.5. Referring to the setting in Proposition 4.11, one has that $X \ge Y$ a.s. (resp. X = Y a.s.) if and only if $\mathbb{E}(X\mathbf{1}_A) \ge \mathbb{E}(Y\mathbf{1}_A)$ (resp. $\mathbb{E}(X\mathbf{1}_A) = \mathbb{E}(Y\mathbf{1}_A)$) for all $A \in \mathcal{F}$.

Theorem 4.12 (Monotone convergence theorem). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X, X_n be nonnegative random variables defined on Ω . Suppose that $X_n \uparrow X$ a.s.. Then, $\mathbb{E}X_n \uparrow \mathbb{E}X$.

Theorem 4.13 (Lebesgue's dominated convergence theorem). Let X_n, X, Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Suppose that $|X_n| \leq Y$ a.s., $\mathbb{E}Y < \infty$ and $X_n \to X$ a.s.. Then, $\mathbb{E}X_n \to \mathbb{E}X$.

Theorem 4.14 (Fatou's lemma). For $n \ge 1$, let X_n be a non-negative random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Then, $\mathbb{E}(\liminf_n X_n) \le \liminf_n \mathbb{E}X_n$.

Remark 4.6. The monotone convergence theorem, dominated convergence theorem and Fatou's lemma are equivalent.

Definition 4.5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X : (\Omega, \mathcal{F}) \to (R, \mathcal{B})$ be a random element. The **distribution** of X is the probability \mathbb{P}_X on (R, \mathcal{B}) induced by X, i.e. $\mathbb{P}_X(B) = \mathbb{P}(X \in B)$ for $B \in \mathcal{B}$. In the case of $(R, \mathcal{B}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, the distribution function of X is defined by $F_X(a) := \mathbb{P}_X((-\infty, a])$ for $a \in \mathbb{R}$.

Remark 4.7. If $R = \mathbb{R}^n$, then \mathbb{P}_X is characterized by its *n*-dimensional distribution. If $R = \mathbb{R}^T$, then \mathbb{P}_X is characterized by its finite dimensional distributions. There is no confusion to called the *n*-dimensional and finite dimensional distribution functions as the distribution functions of X.

Theorem 4.15. Let $X = (X_t)_{t \in T}$ be a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ and \mathbb{P}_X be the distribution of X. Let $f : \mathbb{R}^T \to \mathbb{R}$ be a $\mathcal{B}(\mathbb{R}^T)$ -measurable random variable. Then,

(4.2)
$$\int_{\Omega} f(X(\omega))d\mathbb{P}(\omega) = \int_{\mathbb{R}^T} f(x)d\mathbb{P}_X(x)$$

in the sense that if either side is well-defined.

Proof. Let H be the class of bounded $\mathcal{B}(\mathbb{R}^T)$ -measurable functions f such that (4.2) holds. Then, by Proposition 4.11, H is a linear space containing constant function 1 and, by Lebesgue's dominated convergent theorem, H is closed under bounded convergence. Set $Q := \{\mathbf{1}_B | B \in \mathcal{B}(\mathbb{R}^T)\}$. It is obvious that Q is a multiplicative system contained in H. Note that $\mathcal{F}(Q) = \mathcal{B}(\mathbb{R}^T)$. By the multiplicative systems theorem, (4.2) holds for all bounded $\mathcal{B}(\mathbb{R}^T)$ -measurable functions.

Next, let f be any $\mathcal{B}(\mathbb{R}^T)$ -measurable function and set $f_n = f \cdot \mathbf{1}_{\{x:|f(x)| \leq n\}}$. Clearly, $|f_n| \leq |f|$ and $f_n \to f$. Since f_n is bounded and $\mathcal{B}(\mathbb{R}^T)$ -measurable,

$$\int_{\Omega} f_n(X(\omega)) d\mathbb{P}(\omega) = \int_{\mathbb{R}^T} f_n(x) d\mathbb{P}_X(x) d\mathbb{P}_X($$

By the Lebesgue dominated convergence theorem, (4.2) holds when f is integrable under \mathbb{P}_X . \square

Corollary 4.16. Let $(\Omega, \mathcal{F}, \mathbb{P})$ and $(\Omega', \mathcal{F}', \mathbb{P}')$ be probability spaces and $X : \Omega \to \mathbb{R}^T$ and $X': \Omega' \to \mathbb{R}^T$ be stochastic processes. If $\mathbb{P}_X = \mathbb{P}_{X'}$, then

$$\int_{\Omega} f(X) d\mathbb{P} = \int_{\Omega'} f(X') d\mathbb{P}'$$

for any $\mathcal{B}(\mathbb{R}^T)$ -measurable random variable f satisfying $\int |f| d\mathbb{P}_X < \infty$.

Exercise 4.4. Let f be a real-valued function defined on an interval $I \subset \mathbb{R}$ and X be a random variable taking values on I. Prove that if f is convex, $\mathbb{E}|X| < \infty$ and $\mathbb{E}|f(X)| < \infty$, then $\mathbb{E}f(X) \ge f(\mathbb{E}X)$.

4.3. Convergence concepts.

Definition 4.6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and X, X_n be random variables on Ω . A sequence $(X_n)_{n=1}^{\infty}$ converges to X

- (1) almost surely or with probability 1 if $\mathbb{P}(X_n \to X) = 1$.
- (2) in probability if $\mathbb{P}(|X_n X| > \epsilon) \to 0$ for all $\epsilon > 0$. (3) in the *r*th norm if $\mathbb{E}|X_n X|^r \to 0$ for $r \in [1, \infty)$ and $||X_n X||_{\infty} \to 0$ for $r = \infty$, where $||Y||_{\infty} := \inf\{c | \mathbb{P}(|Y| \le c) = 1\}.$
- (4) in distribution if the distribution functions of X_n and X, say F_n and F, satisfy

$$\lim_{n \to \infty} F_n(x) = F(x), \quad \forall x \in \mathcal{C},$$

where \mathcal{C} is the set of all continuous points of F.

(5) almost uniformly if, for any $\epsilon > 0$, there is $E_{\epsilon} \in \mathcal{F}$ such that $\mathbb{P}(E_{\epsilon}^{c}) < \epsilon$ and X_{n} converges uniformly to X on E_{ϵ} .

Remark 4.8. It is obvious that both the a.s. convergence and the convergence in the rth mean with $r \geq 1$ imply the convergence in probability.

Remark 4.9. For $1 \le r < s \le \infty$, if $X_n \to X$ in the sth norm, then $X_n \to X$ in the rth norm. Remark 4.10. Note that $X_n \to X$ a.s. if and only if $X_n \to X$ a.u. (The direction a.s. \Rightarrow a.u.

Exercise 4.5. Prove that X_n converges to X in probability if and only if, any subsequence of $(X_n)_{n=1}^{\infty}$ has a further subsequence that converges to X a.s. Give an example that X_n converges to X in probability but not a.s.

Definition 4.7. A sequence of random variables $(X_n)_{n=1}^{\infty}$ is Cauchy a.s., Cauchy in probability and Cauchy in the *r*th mean if $X_n - X_m \to 0$ as $n, m \to \infty$ in the sense of Definition 4.6(1)-(3).

Proposition 4.17. If $(X_n)_{n=1}^{\infty}$ is a sequence of random variables that are Cauchy a.s. (resp. in probability and in the rth mean), then there exists a random variable X such that X_n converges to X a.s (resp. in probability and in the rth mean).

Proof. The proof for a.s. convergence is given by Exercise 4.6, while the others are left as exercises. \Box

Exercise 4.6. Let X_n be a sequence of random variables on (Ω, \mathcal{F}) and set

 $E_1 = \{ \omega \in \Omega : X_n(\omega) \text{ is a Cauchy sequence} \}$

and

$$E_2 = \{\omega \in \Omega : X_n(\omega) \to \infty\}, \quad E_3 = \{\omega \in \Omega : X_n(\omega) \to -\infty\}.$$

Prove that E_1, E_2, E_3 are contained in \mathcal{F} .

is a special case of Egorov's theorem.)

Remark 4.11. It follows immediately from Exercise 4.6 that

$$\left\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) \text{ does not exist}\right\} \in \mathcal{F}.$$

Exercise 4.7. Let X_n, Y_n be random variables on $(\Omega, \mathcal{F}, \mathbb{P}), (\Omega', \mathcal{F}', \mathbb{P}')$. Suppose $\mathbb{P}_X = \mathbb{P}_Y$, where $X = (X_n)_{n=1}^{\infty}$ and $Y = (Y_n)_{n=1}^{\infty}$. Prove that if X_n converges a.s. (resp. in probability and in the *r*th mean) to \widetilde{X} , then there exists another random variable \widetilde{Y} defined on Ω' such that Y_n converges to \widetilde{Y} a.s (resp. in probability and in the *r*th mean).

We end this section by introducing the concept of uniform integrability.

Definition 4.8. A sequence of random variables $(X_n)_{n=1}^{\infty}$ defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is **uniformly integrable** if

$$\sup_{n\geq 1} \int_{\{|X_n|>c\}} |X_n| d\mathbb{P} \to 0, \quad \text{as } c \to \infty.$$

Remark 4.12. If $(X_n)_{n=1}^{\infty}$ is uniformly integrable, then $\sup_n \mathbb{E}|X_n| < \infty$.

Remark 4.13. Note that if $|X_n| \leq X$ and $\mathbb{E}|X| < \infty$, then $(X_n)_{n=1}^{\infty}$ is uniformly integrable.

Lemma 4.18. If $(X_n)_{n=1}^{\infty}$ and $(Y_n)_{n=1}^{\infty}$ are uniformly integrable, then $(aX_n)_{n=1}^{\infty}$ for any $a \in \mathbb{R}$, $(\max\{X_n, 0\})_{n=1}^{\infty}$ and $(X_n + Y_n)_{n=1}^{\infty}$ are uniformly integrable.

Proof. The uniform integrability of the first two sequences are clear. For the last one, note that

$$\int_{\{|X_n+Y_n|>c,|X_n|\ge|Y_n|\}} |X_n+Y_n|d\mathbb{P} \le 2\int_{\{|X_n|>c/2\}} |X_n|d\mathbb{P}$$
$$\int_{\{|X_n+Y_n|>c,|X_n|<|Y_n|\}} |X_n+Y_n|d\mathbb{P} \le 2\int_{\{|Y_n|>c/2\}} |Y_n|d\mathbb{P}.$$

and

This implies that, when $c \to \infty$,

$$\sup_{n \ge 1} \int_{\{|X_n + Y_n| > c\}} |X_n + Y_n| d\mathbb{P} \le 2 \left\{ \sup_{n \ge 1} \int_{\{|X_n| > c/2\}} |X_n| d\mathbb{P} + \sup_{n \ge 1} \int_{\{|Y_n| > c/2\}} |Y_n| d\mathbb{P} \right\} \to 0.$$

Theorem 4.19. Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variables defined on (Ω, \mathcal{F}) . Then, $(X_n)_{n=1}^{\infty}$ is uniformly integrable if and only if the following holds.

- (1) $\sup_n \mathbb{E}|X_n| < \infty.$
- (2) For any sequence of events $(A_m)_{m=1}^{\infty}$ in \mathcal{F} satisfying $\mathbb{P}(A_m) \to 0$, $\sup_n \mathbb{E}(|X_n|\mathbf{1}_{A_m}) \to 0$ as $m \to \infty$.

Remark 4.14. An equivalent statement of (2) says that, for any $\epsilon > 0$, there is $\delta > 0$ such that $\sup_{n} \mathbb{E}(|X_{n}|\mathbf{1}_{A}) < \epsilon$ for all $A \in \mathcal{F}$ satisfying $\mathbb{P}(A) < \delta$.

Proof of Theorem 4.19. It loses no generality to assume that $X_n \ge 0$. First, assume that $(X_n)_{n=1}^{\infty}$ is uniformly integrable. Note that, for $A \in \mathcal{F}$ and c > 0,

$$\sup_{n\geq 1} \mathbb{E}(X_n \mathbf{1}_A) \leq \sup_{n\geq 1} \mathbb{E}(X_n \mathbf{1}_{\{X_n\geq c\}}) + c\mathbb{P}(A)$$

Setting $A = \Omega$ and choosing c large enough gives (1), while (2) is provided by replacing A with A_m and passing m to the infinity and then c to the infinity.

Next, assume that (1) and (2) hold. Note that, for c > 0, $\mathbb{E}X_n \ge c\mathbb{P}(X_n \ge c)$. By (1), this implies $\sup_n \mathbb{P}(X_n \ge c) \le c^{-1} \sup_n \mathbb{E}X_n \to 0$ as $c \to \infty$ or, equivalently, for any $\delta > 0$, there is c > 0 such that $\sup_n \mathbb{P}(X_n \ge c) < \delta$. By Remark 4.14 and the assumption of (2), this implies that, for any $\epsilon > 0$, there exists c > 0 such that $\sup_n \mathbb{E}(X_n \mathbf{1}_{\{X_n \ge c\}}) < \epsilon$, which proves the uniform integrability of $(X_n)_{n=1}^{\infty}$.

Exercise 4.8. Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variables. Prove that $(X_n)_{n=1}^{\infty}$ is uniformly integrable if and only if $\mathbb{E}|X_n| < \infty$ and

$$\limsup_{n \to \infty} \int_{\{|X_n| > c\}} |X_n| d\mathbb{P} \to 0, \quad \text{as } c \to \infty.$$

Exercise 4.9. Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variable and G be a non-negative increasing function defined on $[0, \infty)$. Suppose $\mathbb{E}|X_n| < \infty$ and

$$\lim_{t \to \infty} \frac{G(t)}{t} = \infty, \quad \sup_{n \ge 1} \mathbb{E}G(|X_n|) < \infty.$$

Show that $(X_n)_{n=1}^{\infty}$ is uniformly integrable.

Exercise 4.10. Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variables. Show that if $\mathbb{E}|X_n| < \infty$, $\mathbb{E}|X| < \infty$ and $\mathbb{E}|X_n - X| \to 0$, then $(X_n)_{n=1}^{\infty}$ is uniformly integrable.

Theorem 4.20. Let $(X_n)_{n=1}^{\infty}$ be uniformly integrable. Then,

- (1) $\mathbb{E} \liminf_{n \to \infty} X_n \leq \liminf_{n \to \infty} \mathbb{E} X_n$ and $\limsup_{n \to \infty} \mathbb{E} X_n \leq \mathbb{E} \limsup_{n \to \infty} X_n$.
- (2) If $X_n \to X$ a.s., then X is integrable and $\mathbb{E}|X_n X| \to 0$.

Proof. For (1), let $\epsilon > 0$. Since $(X_n)_{n=1}^{\infty}$ is uniformly integrable, we may choose c > 0 such that $\mathbb{E}(|X_n|\mathbf{1}_{\{|X_n|>c\}}) < \epsilon$ for all $n \in \mathbb{N}$. This implies $\mathbb{E}(|X_n|\mathbf{1}_{\{X_n<-c\}}) < \epsilon$. By Fatou's lemma, one has

$$\mathbb{E}\liminf_{n\to\infty}(X_n\mathbf{1}_{\{X_n\geq -c\}})\leq \liminf_{n\to\infty}\mathbb{E}(X_n\mathbf{1}_{\{X_n\geq -c\}}).$$

Since $X_n \leq X_n \mathbf{1}_{\{X_n \geq -c\}}$, the above inequality implies

$$\mathbb{E}\liminf_{n\to\infty} X_n \le \mathbb{E}\liminf_{n\to\infty} (X_n \mathbf{1}_{\{X_n \ge -c\}}) \le \liminf_{n\to\infty} \mathbb{E}(X_n \mathbf{1}_{\{X_n \ge -c\}}) \le \liminf_{n\to\infty} \mathbb{E}X_n + \epsilon.$$

Letting $\epsilon \to 0$ gives the desired result. The other inequality can be proved using the uniform integrability of $(-X_n)_{n=1}^{\infty}$.

For (2), as a result of (1) and Lemma 4.18, it remains to show that X is integrable. Note that, for c > 0, $\{|X| > c\} \subset \liminf_n \{|X_n| > c\}$ almost surely. By Fatou's lemma, this implies

$$\int_{\{|X|>c\}} |X| d\mathbb{P} \le \liminf_{n \to \infty} \int_{\{|X_n|>c\}} |X_n| d\mathbb{P} \le \sup_{n \ge 1} \mathbb{E}|X_n| < \infty.$$

Theorem 4.21. Let X_n, X be random variables. Suppose $X_n \ge 0$, $\mathbb{E}X_n < \infty$ and $X_n \to X$ almost surely. Then, the following are equivalent.

- (1) $\mathbb{E}X_n \to \mathbb{E}X$ with $\mathbb{E}X < \infty$.
- (2) $(X_n)_{n=1}^{\infty}$ is uniformly integrable.

Proof. (2) \Rightarrow (1) is immediate from Theorem 4.20. Assume that (1) holds and let \mathcal{C} be set of continuous points of F_X , the distribution function of X. It is clear that $\mathbb{R} \setminus \mathcal{C}$ is finite or countable. Note that, for $c \in \mathcal{C}$, $X_n \mathbf{1}_{\{X_n < c\}} \rightarrow X \mathbf{1}_{\{X < c\}}$ almost surely. By the Lebesgue dominated convergence theorem, this implies $\mathbb{E}(X_n \mathbf{1}_{\{X_n < c\}}) \rightarrow \mathbb{E}(X \mathbf{1}_{\{X < c\}})$. Since $\mathbb{P}(X = c) = 0$ for $x \in \mathcal{C}$, we have $\mathbb{E}(X_n \mathbf{1}_{\{X_n \geq c\}}) \rightarrow \mathbb{E}(X \mathbf{1}_{\{X > c\}})$ for all $c \in \mathcal{C}$.

For $\epsilon > 0$, choose $c_0 \in \mathcal{C}$ such that $\mathbb{E}(X\mathbf{1}_{\{X > c_0\}}) < \epsilon/2$. Next, we may select $N \in \mathbb{N}$ such that $\mathbb{E}(X_n\mathbf{1}_{\{X_n \ge c_0\}}) < \mathbb{E}(X\mathbf{1}_{\{X > c_0\}}) + \epsilon/2$ for $n \ge N$. This implies, for $c \ge c_0$ and $n \ge N$,

$$\mathbb{E}(X_n \mathbf{1}_{\{X_n > c\}}) \le \mathbb{E}(X_n \mathbf{1}_{\{X_n \ge c_0\}}) < \epsilon.$$

Since $\mathbb{E}X_n < \infty$, we may select $c_1 > c_0$ such that $\mathbb{E}(X_n \mathbf{1}_{\{X_n > c_1\}}) < \epsilon$ for $1 \le n \le N$. Consequently, this leads to $\sup_n \mathbb{E}(X_n \mathbf{1}_{\{X_n > c\}}) \le \epsilon$ for $c \ge c_1$, as desired.

As a consequence of Theorems 4.20 and 4.21, we obtain the following corollary.

Corollary 4.22. Assume that $X_n \to X$ almost surely. Then, the following are equivalent.

- (1) $(X_n)_{n=1}^{\infty}$ is uniformly integrable.
- (2) $\mathbb{E}|X| < \infty$ and $\mathbb{E}|X_n X| \to 0$.
- (3) $\mathbb{E}|X| < \infty$ and $\mathbb{E}|X_n| \to \mathbb{E}|X|$.

Exercise 4.11. Show that the assumption in Corollary 4.22 can be replaced by convergence in probability.