
4. Random variables and concepts of convergence

4.1. Random variables.

Definition 4.1. Let (Ω,F) and (R,B) be σ-fields. A function X : Ω → R is called a (F/B)
random element if X is F-measurable, i.e. {X ∈ B} ∈ F for all B ∈ B. If R = R and
B = B(R), then X is called a random variable. If R = Rn and B = B(Rn), then X is called
an n-dimensional random vector.

Remark 4.1. Let X be a map from Ω to R and set F(X) = {X−1(B)|B ∈ B} and B(X) =
{B ⊂ R|X−1(B) ∈ F}. Then, F(X),B(X) are σ-fields over Ω, R, and X is F-measurable iff
F(X) ⊂ F iff B(X) ⊃ B. In particular, if X is a random element, then X is F(X)-measurable.

Lemma 4.1. Let F ,B be σ-fields over Ω, R and X be a mapping from Ω to R. Set B(X) =
{B ⊂ R|X−1(B) ∈ F}. Let C ⊂ B be such that σ(C) = B. Then, X is F-measurable if and
only if C ⊂ B(X).

Corollary 4.2. Let (Ω,F) be a σ-field and X be a real-valued function defined on Ω. Then,
X is a random variable if and only if {X ≤ c} ∈ F for all c ∈ R.

Remark 4.2. Let R = R ∪ {±∞} and B(R) = σ(B(R) ∪ {{∞}, {−∞}}). Clearly, B(R) =
σ({[−∞, c]|c ∈ R}). A function X taking values on the extended real field R is called an
extended random variable if {X ∈ B} ∈ F for B ∈ B(R). By Lemma 4.1, Corollary 4.2 also
applies for extended random variables.

Proposition 4.3. Let X,Y be random variables and a, b ∈ R. Then, aX+bY,XY,max{X,Y }
are random variables. Furthermore, if Xn is an extended random variable for all n ∈ N, then
supnXn, infnXn, lim supnXn and lim infnXn are extended random variables. In particular,
if Xn converges to X, then X is a random variable.

Proposition 4.4. For any extended random variable X defined on Ω, there is a sequence
of random variables, say Xn, satisfying |Xn| ≤ |Xn+1|, Xn(Ω) is a finite set and Xn → X,
where, in the case X(ω) = ∞, Xn(ω) → X(ω) means that Xn(ω) diverges to infinity.

Exercise 4.1. Let Ω be a metric space and F be the σ-field generated by the open sets in Ω.
Prove that if X : Ω → R is upper semicontinuous, i.e. lim supx→yX(x) ≤ X(y) for all y ∈ Ω,
then X is a random variable.

Proposition 4.5. Let X : (Ω,F) → (R,B) be a random element and f : (R,B) → (R,B(R))
be a random variable. Then, f(X) is a random variable.

Exercise 4.2. Let X : (Ω,F) → (R,B) be a random element and g be a F(X)-measurable
random variable. Prove that there is a B-measurable random variable f such that g = f(X).

Lemma 4.6. For 1 ≤ i ≤ n, let Fi be a σ-field over Ωi and set Ω =
∏n
i=1Ωi and F =

⊗n
i=1Fi.

Consider the projection mapping Pi : Ω → Ωi defined by Pi(ω1, ..., ωn) = ωi. Then, Pi is a
F/Fi random element for 1 ≤ i ≤ n.

Proposition 4.7. Let X : Ω → Rn and write X = (X1, ..., Xn). Then, X is an n-dimensional
random vector if and only if X1, ..., Xn are random variables.

Definition 4.2. Let T be a subset of R and (Ω,F) be a σ-field. A stochastic process
X : Ω → RT is a (F/B(RT )) random element. The process is of discrete time if T is a
countable set, e.g. {0, 1, ...} and is of continuous time if T is an interval, e.g. [0, 1], [0,∞),
R. For any ω ∈ Ω, (Xt(ω))t∈T is called a realization corresponding to ω.

Proposition 4.8. Let (Ω,F) be a σ-field, T ⊂ R and X = (Xt)t∈T : Ω → RT . Then, X is a
stochastic process if and only if Xt is a random variable for all t ∈ T .
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Proposition 4.9. Let T be a set and, for t1, .., tn ∈ T , Ft1,...,tn be a n-dimensional distribution
function satisfying the consistency property. Then, there is a stochastic process (Xt)t∈T such
that P(Xti ≤ xi, ∀1 ≤ i ≤ n) = Ft1,...,tn(x1, ..., xn) for t1, ..., tn ∈ T and n ∈ N.

Proof. By Theorem 3.7, there is a probability P on (RT ,B(RT )) such that

P(D(t1, ..., tn,

n∏
i=1

(−∞, xi]) = Ft1,...,tn(x1, ..., xn).

The desired process is then given by (Xt)t∈T : RT → R, whereXt(ω) = ωt for all ω = (ωt)t∈T ∈
RT . �

Example 4.1. Let E1, E2, ... be mutually disjoint non-empty sets satisfying E1 ∪E2 ∪ · · · = Ω
and F be the σ-field generated by (En)

∞
n=1. Note that F consists of ∅, Ω, finite unions of

(En)
∞
n=1 and complements of finite unions of (En)

∞
n=1. This implies that any F-measurable

random variable X is constant on En for all n. Hence, there is a sequence (an)
∞
n=1 such that

X =
∑∞

n=1 an1En .

Exercise 4.3. Let X,Y be F-measurable random variables. Suppose that X(Ω) = Y (Ω) =
{1, 2, ..., N} and F(X) = F(Y ). Show that there is a permutation σ of {1, 2, ..., N} such that
{X = i} = {Y = σ(i)} for 1 ≤ i ≤ N .

In the end of this subsection, we introduce a useful technique. For any family Q of real-
valued functions defined on Ω, let F(Q) be the σ-field over Ω generated by Q, which is
defined to be the smallest σ-field over Ω such that each function in Q is measurable. Then,
F(Q) = σ({f−1(B) : f ∈ Q,B ∈ B(R)}). A sequence of functions Xn is said to converge
boundedly to X if Xn converges to X and Xn is uniformly bounded. A family of real-valued
functions on Ω is called a multiplicative system if it is closed under multiplication.

Theorem 4.10 (Multiplicative system theorem). Let H be a linear space of bounded func-
tions on Ω which contains 1Ω and is closed under bounded convergence. If H contains a
multiplicative system Q, then it contains all bounded F(Q)-measurable functions.

Proof. Let L be the class containing subsets A ⊂ Ω for which 1A ∈ H. Let P be the class of
subsets of the following form

(4.1) {ω ∈ Ω : X1(ω) ∈ I1, ..., Xn(ω) ∈ In}

where X1, ..., Xn ∈ Q, I1, ..., In are open intervals and n ∈ N. It is obvious that P is a π-
system and, by the assumption that H is linear and closed under bounded convergence, L is
a λ-system.

Next, we prove that P ⊂ L. Note that the indicator function of the set in (4.1) is equal to

1I1(X1)1I2(X2) · · ·1In(Xn).

For 1 ≤ k ≤ n, one may choose a sequence of continuous functions (f
(k)
m )∞m=1 that converges

boundedly to 1Ik . Set c = sup{|Xk(ω)| : ω ∈ Ω, 1 ≤ k ≤ n}. By the Stone-Weierstrass

theorem, we may choose, for each k,m, a polynomial g
(k)
m such that

|g(k)m (t)− f (k)m (t)| ≤ 1

m
, for |t| ≤ c.

This implies that, for 1 ≤ k ≤ n, g
(k)
m (Xk) → 1Ik(Xk) boundedly as m → ∞. Since Q is a

multiplicative system and H is a linear space, we have

g(1)m (X1)g
(2)
m (X2) · · · g(n)m (Xn) ∈ H, ∀m ≥ 1.
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By the bounded convergence of H, the indicating function of the set in (4.1) belongs to H,
which implies P ⊂ L. As a result of the π − λ lemma, L ⊃ σ(P) = F(Q). Now let X be a
bounded σ(P)-measurable function and set, for n ≥ 1,

Xn =
∑
k

k

n
1{ k

n
<X≤ k+1

n
}.

It is easy to see that Xn ∈ H for n ≥ 1 and Xn converges boundedly to X and, hence,
X ∈ H. �
4.2. Expectations.

Definition 4.3. Let (Ω,F ,P) be a probability space and X be a random variable on (Ω,F).
The expectation of X is defined by

EX :=

∫
Ω
X(ω)dP(ω),

provided the right side is well-defined.

Remark 4.3. In the case P(X ≥ c) = 1 for some c ∈ R, if
∫
ΩX(ω)dP(ω) does not exist, we

write EX = ∞. Similarly, when P(X ≤ c) = 1 and the expectation of X does not exist, we
write EX = −∞.

Definition 4.4. Let (Ω,F ,P) be a probability space. Two random variables X,Y are said to
be equal a.s. (almost surely) if P(X 6= Y ) = 0. A sequence of random variables (Xn)

∞
n=1 is

said to converge to a function X a.s. if P (Xn → X) = 1.

Remark 4.4. Note that {ω ∈ Ω|Xn(ω) converges} ∈ F . This implies that if P is complete and
Xn converges almost surely to X, then X is a random variable.

Proposition 4.11. Let X,Y be random variables on a probability space (Ω,F ,P). Suppose
that E|X| <∞ and E|Y | <∞. Then,

(1) If X ≥ Y a.s, then EX ≥ EY . In particular, if X ≥ c a.s., then EX ≥ c.
(2) If X = Y a.s., then EX = EY .
(3) For a, b ∈ R, E|aX + bY | <∞ and E(aX + bY ) = aEX + bEY .

Remark 4.5. Referring to the setting in Proposition 4.11, one has that X ≥ Y a.s. (resp.
X = Y a.s.) if and only if E(X1A) ≥ E(Y 1A) (resp. E(X1A) = E(Y 1A)) for all A ∈ F .

Theorem 4.12 (Monotone convergence theorem). Let (Ω,F ,P) be a probability space and
X,Xn be nonnegative random variables defined on Ω. Suppose that Xn ↑ X a.s.. Then,
EXn ↑ EX.

Theorem 4.13 (Lebesgue’s dominated convergence theorem). Let Xn, X, Y be random vari-
ables on (Ω,F ,P). Suppose that |Xn| ≤ Y a.s., EY < ∞ and Xn → X a.s.. Then,
EXn → EX.

Theorem 4.14 (Fatou’s lemma). For n ≥ 1, let Xn be a non-negative random variable defined
on a probability space (Ω,F ,P). Then, E(lim infnXn) ≤ lim infn EXn.

Remark 4.6. The monotone convergence theorem, dominated convergence theorem and Fatou’s
lemma are equivalent.

Definition 4.5. Let (Ω,F ,P) be a probability space and X : (Ω,F) → (R,B) be a random
element. The distribution of X is the probability PX on (R,B) induced by X, i.e. PX(B) =
P(X ∈ B) for B ∈ B. In the case of (R,B) = (R,B(R)), the distribution function of X is
defined by FX(a) := PX((−∞, a]) for a ∈ R.
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Remark 4.7. If R = Rn, then PX is characterized by its n-dimensional distribution. If R = RT ,
then PX is characterized by its finite dimensional distributions. There is no confusion to called
the n-dimensional and finite dimensional distribution functions as the distribution functions
of X.

Theorem 4.15. Let X = (Xt)t∈T be a stochastic process on (Ω,F ,P) and PX be the distri-
bution of X. Let f : RT → R be a B(RT )-measurable random variable. Then,

(4.2)

∫
Ω
f(X(ω))dP(ω) =

∫
RT
f(x)dPX(x)

in the sense that if either side is well-defined.

Proof. Let H be the class of bounded B(RT )-measurable functions f such that (4.2) holds.
Then, by Proposition 4.11, H is a linear space containing constant function 1 and, by
Lebesgue’s dominated convergent theorem, H is closed under bounded convergence. Set
Q := {1B|B ∈ B(RT )}. It is obvious that Q is a multiplicative system contained in H.
Note that F(Q) = B(RT ). By the multiplicative systems theorem, (4.2) holds for all bounded
B(RT )-measurable functions.

Next, let f be any B(RT )-measurable function and set fn = f · 1{x:|f(x)|≤n}. Clearly,

|fn| ≤ |f | and fn → f . Since fn is bounded and B(RT )-measurable,∫
Ω
fn(X(ω))dP(ω) =

∫
RT
fn(x)dPX(x).

By the Lebesgue dominated convergence theorem, (4.2) holds when f is integrable under
PX . �
Corollary 4.16. Let (Ω,F ,P) and (Ω′,F ′,P′) be probability spaces and X : Ω → RT and
X ′ : Ω′ → RT be stochastic processes. If PX = PX′, then∫

Ω
f(X)dP =

∫
Ω′
f(X ′)dP′,

for any B(RT )-measurable random variable f satisfying
∫
|f |dPX <∞.

Exercise 4.4. Let f be a real-valued function defined on an interval I ⊂ R and X be a
random variable taking values on I. Prove that if f is convex, E|X| < ∞ and E|f(X)| < ∞,
then Ef(X) ≥ f(EX).

4.3. Convergence concepts.

Definition 4.6. Let (Ω,F ,P) be a probability space and X,Xn be random variables on Ω.
A sequence (Xn)

∞
n=1 converges to X

(1) almost surely or with probability 1 if P(Xn → X) = 1.
(2) in probability if P(|Xn −X| > ϵ) → 0 for all ϵ > 0.
(3) in the rth norm if E|Xn − X|r → 0 for r ∈ [1,∞) and ‖Xn − X‖∞ → 0 for r = ∞,

where ‖Y ‖∞ := inf{c|P(|Y | ≤ c) = 1}.
(4) in distribution if the distribution functions of Xn and X, say Fn and F , satisfy

lim
n→∞

Fn(x) = F (x), ∀x ∈ C,

where C is the set of all continuous points of F .
(5) almost uniformly if, for any ϵ > 0, there is Eϵ ∈ F such that P(Ecϵ ) < ϵ and Xn

converges uniformly to X on Eϵ.

Remark 4.8. It is obvious that both the a.s. convergence and the convergence in the rth mean
with r ≥ 1 imply the convergence in probability.
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Remark 4.9. For 1 ≤ r < s ≤ ∞, if Xn → X in the sth norm, then Xn → X in the rth norm.

Remark 4.10. Note that Xn → X a.s. if and only if Xn → X a.u.. (The direction a.s. ⇒ a.u.
is a special case of Egorov’s theorem.)

Exercise 4.5. Prove that Xn converges to X in probability if and only if, any subsequence
of (Xn)

∞
n=1 has a further subsequence that converges to X a.s. Give an example that Xn

converges to X in probability but not a.s.

Definition 4.7. A sequence of random variables (Xn)
∞
n=1 is Cauchy a.s., Cauchy in probability

and Cauchy in the rth mean if Xn−Xm → 0 as n,m→ ∞ in the sense of Definition 4.6(1)-(3).

Proposition 4.17. If (Xn)
∞
n=1 is a sequence of random variables that are Cauchy a.s. (resp.

in probability and in the rth mean), then there exists a random variable X such that Xn

converges to X a.s (resp. in probability and in the rth mean).

Proof. The proof for a.s. convergence is given by Exercise 4.6, while the others are left as
exercises. �
Exercise 4.6. Let Xn be a sequence of random variables on (Ω,F) and set

E1 = {ω ∈ Ω : Xn(ω) is a Cauchy sequence}
and

E2 = {ω ∈ Ω : Xn(ω) → ∞}, E3 = {ω ∈ Ω : Xn(ω) → −∞}.
Prove that E1, E2, E3 are contained in F .

Remark 4.11. It follows immediately from Exercise 4.6 that{
ω ∈ Ω : lim

n→∞
Xn(ω) does not exist

}
∈ F .

Exercise 4.7. Let Xn, Yn be random variables on (Ω,F ,P), (Ω′,F ′,P′). Suppose PX = PY ,
where X = (Xn)

∞
n=1 and Y = (Yn)

∞
n=1. Prove that if Xn converges a.s. (resp. in probability

and in the rth mean) to X̃, then there exists another random variable Ỹ defined on Ω′ such

that Yn converges to Ỹ a.s (resp. in probability and in the rth mean).

We end this section by introducing the concept of uniform integrability.

Definition 4.8. A sequence of random variables (Xn)
∞
n=1 defined on a probability space

(Ω,F ,P) is uniformly integrable if

sup
n≥1

∫
{|Xn|>c}

|Xn|dP → 0, as c→ ∞.

Remark 4.12. If (Xn)
∞
n=1 is uniformly integrable, then supn E|Xn| <∞.

Remark 4.13. Note that if |Xn| ≤ X and E|X| <∞, then (Xn)
∞
n=1 is uniformly integrable.

Lemma 4.18. If (Xn)
∞
n=1 and (Yn)

∞
n=1 are uniformly integrable, then (aXn)

∞
n=1 for any a ∈ R,

(max{Xn, 0})∞n=1 and (Xn + Yn)
∞
n=1 are uniformly integrable.

Proof. The uniform integrability of the first two sequences are clear. For the last one, note
that ∫

{|Xn+Yn|>c,|Xn|≥|Yn|}
|Xn + Yn|dP ≤ 2

∫
{|Xn|>c/2}

|Xn|dP

and ∫
{|Xn+Yn|>c,|Xn|<|Yn|}

|Xn + Yn|dP ≤ 2

∫
{|Yn|>c/2}

|Yn|dP.
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This implies that, when c→ ∞,

sup
n≥1

∫
{|Xn+Yn|>c}

|Xn + Yn|dP ≤ 2

{
sup
n≥1

∫
{|Xn|>c/2}

|Xn|dP+ sup
n≥1

∫
{|Yn|>c/2}

|Yn|dP

}
→ 0.

�
Theorem 4.19. Let (Xn)

∞
n=1 be a sequence of random variables defined on (Ω,F). Then,

(Xn)
∞
n=1 is uniformly integrable if and only if the following holds.

(1) supn E|Xn| <∞.
(2) For any sequence of events (Am)

∞
m=1 in F satisfying P(Am) → 0, supn E(|Xn|1Am) → 0

as m→ ∞.

Remark 4.14. An equivalent statement of (2) says that, for any ϵ > 0, there is δ > 0 such that
supn E(|Xn|1A) < ϵ for all A ∈ F satisfying P(A) < δ.

Proof of Theorem 4.19. It loses no generality to assume that Xn ≥ 0. First, assume that
(Xn)

∞
n=1 is uniformly integrable. Note that, for A ∈ F and c > 0,

sup
n≥1

E(Xn1A) ≤ sup
n≥1

E(Xn1{Xn≥c}) + cP(A).

Setting A = Ω and choosing c large enough gives (1), while (2) is provided by replacing A
with Am and passing m to the infinity and then c to the infinity.

Next, assume that (1) and (2) hold. Note that, for c > 0, EXn ≥ cP(Xn ≥ c). By (1), this
implies supn P(Xn ≥ c) ≤ c−1 supn EXn → 0 as c→ ∞ or, equivalently, for any δ > 0, there is
c > 0 such that supn P(Xn ≥ c) < δ. By Remark 4.14 and the assumption of (2), this implies
that, for any ϵ > 0, there exists c > 0 such that supn E(Xn1{Xn≥c}) < ϵ, which proves the
uniform integrability of (Xn)

∞
n=1. �

Exercise 4.8. Let (Xn)
∞
n=1 be a sequence of random variables. Prove that (Xn)

∞
n=1 is uni-

formly integrable if and only if E|Xn| <∞ and

lim sup
n→∞

∫
{|Xn|>c}

|Xn|dP → 0, as c→ ∞.

Exercise 4.9. Let (Xn)
∞
n=1 be a sequence of random variable and G be a non-negative in-

creasing function defined on [0,∞). Suppose E|Xn| <∞ and

lim
t→∞

G(t)

t
= ∞, sup

n≥1
EG(|Xn|) <∞.

Show that (Xn)
∞
n=1 is uniformly integrable.

Exercise 4.10. Let (Xn)
∞
n=1 be a sequence of random variables. Show that if E|Xn| < ∞,

E|X| <∞ and E|Xn −X| → 0, then (Xn)
∞
n=1 is uniformly integrable.

Theorem 4.20. Let (Xn)
∞
n=1 be uniformly integrable. Then,

(1) E lim infnXn ≤ lim infn EXn and lim supn EXn ≤ E lim supnXn.
(2) If Xn → X a.s., then X is integrable and E|Xn −X| → 0.

Proof. For (1), let ϵ > 0. Since (Xn)
∞
n=1 is uniformly integrable, we may choose c > 0 such

that E(|Xn|1{|Xn|>c}) < ϵ for all n ∈ N. This implies E(|Xn|1{Xn<−c}) < ϵ. By Fatou’s
lemma, one has

E lim inf
n→∞

(Xn1{Xn≥−c}) ≤ lim inf
n→∞

E(Xn1{Xn≥−c}).

Since Xn ≤ Xn1{Xn≥−c}, the above inequality implies

E lim inf
n→∞

Xn ≤ E lim inf
n→∞

(Xn1{Xn≥−c}) ≤ lim inf
n→∞

E(Xn1{Xn≥−c}) ≤ lim inf
n→∞

EXn + ϵ.

25



Letting ϵ→ 0 gives the desired result. The other inequality can be proved using the uniform
integrability of (−Xn)

∞
n=1.

For (2), as a result of (1) and Lemma 4.18, it remains to show that X is integrable. Note
that, for c > 0, {|X| > c} ⊂ lim infn{|Xn| > c} almost surely. By Fatou’s lemma, this implies∫

{|X|>c}
|X|dP ≤ lim inf

n→∞

∫
{|Xn|>c}

|Xn|dP ≤ sup
n≥1

E|Xn| <∞.

�
Theorem 4.21. Let Xn, X be random variables. Suppose Xn ≥ 0, EXn < ∞ and Xn → X
almost surely. Then, the following are equivalent.

(1) EXn → EX with EX <∞.
(2) (Xn)

∞
n=1 is uniformly integrable.

Proof. (2)⇒(1) is immediate from Theorem 4.20. Assume that (1) holds and let C be set of
continuous points of FX , the distribution function of X. It is clear that R \ C is finite or
countable. Note that, for c ∈ C, Xn1{Xn<c} → X1{X<c} almost surely. By the Lebesgue
dominated convergence theorem, this implies E(Xn1{Xn<c}) → E(X1{X<c}). Since P(X =
c) = 0 for x ∈ C, we have E(Xn1{Xn≥c}) → E(X1{X>c}) for all c ∈ C.

For ϵ > 0, choose c0 ∈ C such that E(X1{X>c0}) < ϵ/2. Next, we may select N ∈ N such
that E(Xn1{Xn≥c0}) < E(X1{X>c0}) + ϵ/2 for n ≥ N . This implies, for c ≥ c0 and n ≥ N ,

E(Xn1{Xn>c}) ≤ E(Xn1{Xn≥c0}) < ϵ.

Since EXn < ∞, we may select c1 > c0 such that E(Xn1{Xn>c1}) < ϵ for 1 ≤ n ≤ N .
Consequently, this leads to supn E(Xn1{Xn>c}) ≤ ϵ for c ≥ c1, as desired. �

As a consequence of Theorems 4.20 and 4.21, we obtain the following corollary.

Corollary 4.22. Assume that Xn → X almost surely. Then, the following are equivalent.

(1) (Xn)
∞
n=1 is uniformly integrable.

(2) E|X| <∞ and E|Xn −X| → 0.
(3) E|X| <∞ and E|Xn| → E|X|.

Exercise 4.11. Show that the assumption in Corollary 4.22 can be replaced by convergence
in probability.
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