5. INDEPENDENCE AND ZERO-ONE LAWS

5.1. Independence. Let (2, F,[P) be a probability space. Recall that events Ay, ..., A, € F
are called independent if

k
P(Ay N0 Ay) = [[P(As)
j=1
for all iy, ...,7, € {1,2,...,n} and 1 < k < n. This is equivalent to say that

P(FiN---NF,) = [[P(F),

i=1
where F; € {A;, AS} for 1 <i < n. Note that any event in F is independent of 2 and ). This
leads to the fact that, A4, ..., A, are independent if and only if

P(FyN---NF,) =[[P(F), VFe{DQA,A} 1<i<n
i=1
Definition 5.1. Let (2, F,P) be a probability space.
(1) The o-fields Fi, ..., F, contained in F are independent if

P(A1NAzN---NA,) =][[P(A), VAL € Fi .y Ay € Fo.
=1

(2) The random elements X7, ..., X,, defined on Q are independent if F(X;),..., F(X,)
are independent.

(3) A sequence of o-fields (F,)2%, contained in F are independent if Fi,..., F, are
independent for all n > 2.

(4) A sequence of random elements (X,,)0° ; defined on 2 are independent if (F(X,,))>%
are independent.

The following proposition is immediate from the above definition.

Proposition 5.1. Let (Q, F,P) be a probability space and Fi,Fa,... are independent o-fields
contained in F. Then, for n > 1 and A, € F,,

(1) - T

Proposition 5.2. Let (2, F,P) be a probability space and Fi,Fa,.. be independent o-fields
contained in F. Assume that I = {iy,1i2,...} and J = {j1, Jo,...} are disjoint subsets of positive
integers. Then the following o-fields

.sza(D]:in), ./—"J:O'([j./—"'n>
n=1 n=1

are independent. In particular, if X1, Xs,... are independent and I,J are mutually disjoint
subsets of N, then (X;)ier and (Xj)jey are independent.
Proof. Let
Pr={A1Nn---NA,|Ax € Fi,, V1 <k <n,n € N}
and

Py={B1N---NBy|B, € F,

ins V1 <k <m,m e N}
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Clearly, P; and Pz are w-system and o(P;) = F; and o(Py) = F;. For A € P1, we set
Ly={BeF:P(AnB)=P(A)P(B)}.

It is clear that L4 is a A-system for any A. By the independency of {Fi, Fa, ...}, Po C L4 for
all A € P;. By the m — A lemma, L4 = F; for all A € Py.
Next, set
L:={AeF:P(ANnB)=P(A)P(B), VB € F;}.
What is proved in the previous paragraph implies P; C L. Since L is a A-system, £ = Fy.
Thus, for A € F; and B € F;, P(AN B) =P(A)P(B). O

Corollary 5.3. Forn € N, let X,, : (0, F) — (Rn,By) be a random element. Let (ky)5
be an increasing sequence in N and fp be (By, ,4+1 ® - -+ ® By, )-measurable random element
with ko = 0. If (X,,)02 is a sequence of independent random variables, then fi(Xi,..., Xk, ),

fo(Xky+1y ooy Xky), - are independent.
Recall that, for any random variable X, we write F'x as the distribution function of X.

Theorem 5.4. Let X1, Xo,... be random variables. Then, X1, Xo, ... are independent if and
only if Fx,, . x,(x1,22,....2n) = [} Fx, ().

Proof. The necessary condition for the independency is obvious. For the sufficient condition,
let P = {(—00,c] : ¢ € R}. Clearly, P is a m-system and o(P) = B(R). Fix z1,...,zp,—1 € R
and let £ be the class of subsets B € B(R) such that

P(Xl <x1y 0 X1 Spq, Xy € B) = IP)()(1 <z, Xpo1 < xn—l)P(Xn € B)

It is easy to see from the definition that £ is a A-system that contains P. By the m — A lemma,
L = B(R). Inductively, one can prove the independency of X1, ..., X,,. O

Remark 5.1. Let T be a set and, for ¢t € T, let F} be a distribution function taking values on
R. For 7 = (t1,...,tn) € S(T), define Fr(x1,...,xn) = [[1nq Fr,(z;). It is easy to see that the
family F = {F;|7 € S(T), 7 is finite} satisfying the consistency property of (3.4)-(3.5). By
Proposition 4.9, there is a stochastic process (X¢);er with finite-dimensional distribution func-
tions F. It follows immediately from Theorem 5.4 that (X,)5 ; is a sequence of independent
random elements for any (¢,)72; € S(T).

Theorem 5.5. Let X and Y be independent random elements taking values on (R,B) and
(S,C). If f and g are respectively B-measurable and C-measurable random variables satisfying
E|f(X)| < 0o and E|g(Y)| < oo, then E|f(X)g(Y)| < 0o and

(5.1) E[f(X)g(Y)] = E[f(X)]E[g(Y)].

Proof. First, fix B € B and let f =1 and Q1 = {1¢ : C € C}. Obviously, F(Q1) = C. Let
Hj be the space of all bounded C-measurable random variables g such that (5.1) holds. Then
H, is a linear space containing 1g and, by the Lebesgue dominated convergence theorem, H;
is closed under the bounded convergence. Observe that, for C' € C,

E[15(X)1c(Y)] =P(X € B,Y € C) =P(X € B)P(Y € C) = E[15(X)|E[1c(Y)].

This implies Q1 C H;. By the multiplicative system theorem, H; contains all bounded C-
measurable functions.
Let Q2 = {15 : B € B} and Hj be the space of all bounded B-measurable random variables
f such that (5.1) holds for all ¢ € H;. What has been proved in the previous paragraph
says that Q2 C Hy. As before, one can show that Hs is a linear space containing 1 and
is closed under bounded convergence. The multiplicative system theorem implies that Ho
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contains all bounded B-measurable random variables. That is, (5.1) holds for all bounded
random variables f,g.

Next, let f,g be random variables satisfying E|f(X)| < oo and E|g(Y')| < co. By Proposi-
tion 4.4, one may choose sequences of bounded random variables f,, g, satisfying |f,| T |f],
lgn| T 19| and f, — f, gn — g. Since fy, g, are bounded, one has

E[l fn(X)gn (V)] = E[fn(X)|E|gn(Y)]
and
E[fn(X)gn(Y)] = Efn(X)Egn(Y).

By the monotone convergence theorem, the first identity implies E|f(X)g(Y)| < oo. By
the Lebesgue dominated convergence theorem, the second identity implies E[f(X)g(Y)] =
Ef(X)Eg(Y). O
Exercise 5.1. Let X,Y be independent random variables. Show that, for B € B(R),

(1) the mapping y — P(X € B — y) is a random variable,

(2) P(X+Y € B) = [ P(X € B—y)Py(dy).

5.2. The Kolmogorov zero-one law.

Definition 5.2. Let X;, Xy, ... be a stochastic process. A set E € F(Xi, Xo,...) is called a
tail event if £ € F(X,,, Xy,+1,...) for all n > 1, or equivalently, £ € T where

T =) F(Xn, Xns1,...).

n=1

T is called the tail o-field of (X,,)5° ;.
Example 5.1. Let ¢ € R and consider the following event

FE = {w: X1(w) + Xo(w) + -+ + Xn(w) —>c}.

n

It is obvious that

E:{M:X’“(w)+"'+X"(w) —>c} Vi > 1.

n
This implies F € F(X, Xg+1,...) for all k and, hence, E € T. Also,

{w : Xi(w) + Xo(w) + -+ + Xp(w)

n

—r‘->C}€T.

Definition 5.3. Let (Q,F) be a o-field. For n € N, let A, € F and X,, : @ — R, be a
random element, where R, is equipped with o-field B,,.

(1) The event that A, occurs infinitely often is defined by {A,, i.0.} := limsup,, Ay,.
(2) For B, € B,, the event that X,, takes values on B, infinitely often is defined by
{X, € By, i.0.} :=limsup,{X, € B,}.

Lemma 5.6. Let (X)), be a stochastic process and By, € B(R*). Then,
lim sup{(X,, Xpn+1,...) € B,} €T, linginf{(Xn,XnH, ..)EB}ET.
n—oo

n—oo
In particular, for Cy,, € B(R), limsup, {X, € C,} € T and liminf, {X,, € C,} € T.
Proof. For n > 1, let A,, = {(Xy, Xn41,...) € By}. Clearly, A,, € F(X,, Xn+1,...). Note that
limsup A, = () | 4r € F(X¢, Xoga,.0.), V0> 1,
n—oo n>0k>n

This implies limsup,, A, € T and, then, liminf,, A, = (limsup,, A%) € T. O
29



The next proposition is an application of Exercise 3.7 with F = (J;2 | F(X1, X2, ..., X)
and o(F) = F(X1, Xo, ...).

Proposition 5.7. Let X1, Xo,... be a sequence of random elements defined on (Q, F, P). For
A e F(X1,Xo,...) and € > 0, there are n € N and B € F(X1,..., X)) such that P(AAB) < e

Theorem 5.8 (Kolmogorov zero-one law). Let X1, Xo, ... be a sequence of independent random
elements and T be the tail o-field of (X,)2 ;. Then, P(A) € {0,1} for A€ T.

n=1

Proof. Let A € T C F(X1,Xa,...). By Proposition 5.7, we may choose A, € F(Xi,..., X,)
such that P(AAA,,) — 0. This implies

P(A) = lim P(A,) = lim P(ANA,).
n—oo n—o0
Observe that A € F(Xp+1, Xnt2,...) for n > 1. Since X1, Xo, ... are independent, by Proposi-

tion 5.2, A and A,, are independent, that is, P(AN A4,) = P(A)P(4,). Letting n — oo yields
P(A) = P(A)? and, hence, P(A) € {0,1}. O

Corollary 5.9. Let (X)), be a sequence of independent random variables and E = {w :
Y Xn(w) converges}. Then P(E) € {0,1}.

5.3. The Borel-Cantelli lemma.

Theorem 5.10 (Borel-Cantelli lemma). Let Aj, Ao, ... be a sequence of events in a probability
space (2, F,P).

(1) If 02 P(Ay) < 00, then P(A,, i.0.) = 0.

(2) If Ay, As, ... are independent and Y .- | P(A,) = oo, then P(A, i.0.) = 1.

Proof. For (1), note that {A, i.0.} =lim, |J;2, Ai. Then, by the continuity of P,

P(A, i.o. _11113;0@(UA> <T}LHQOZP

For (2), since Ay, Ap+1, ... are independent,

(ﬂ Ac> =[]0 -Pa)], vm<n.

i=m

Using the fact that log(1 — z) < —x for z € (0,1), one has

1ogp<(n],4§) Zlogl— ZIP’

i=m

Letting n — oo implies P (N2, AS) =0 for all m € N. This ylelds

P(Anlo)_1—n1§1mp<ﬂf1>_1

=m

The following are applications of the Borel-Cantelli Lemma.

Proposition 5.11. Let X1, Xs,... be a sequence of independent Bernoulli random variables
with common parameter p € (0,1). Fiz k € N, s = (s1,...,55) € {0,1}* and let

A, = {(Xn>Xn+17 '~-7Xn+k—1) = 5}7 Vn > 1.

Then P(A,, i.0.) = 1.
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Proof. For n > 1, set B, = App_1)41 and [s| = s1 + -+ + s,. It is clear that P(B,) =
pll(1 — p)k=Isl for n > 1 and this implies >0 P(By) = oo. By Corollary 5.3, By, Ba, ...
are independent and, by the Borel-Cantelli lemma, P(B,, i.0.) = 1. This leads to the desired
identity since {B,, i.0.} C {4, i.0.}. O
Proposition 5.12. Let X1, Xo, ... be a sequence of independent Bernoulli(p) random variables
and set Y, =2X, —1and Z, =Y1+ Yo+ ---+Y,. Let A, ={Z, =0}. Then

(1) If p #1/2, then P(A, i.0.) =0.

(2) If p=1/2, then P(A, i.0.) = 1.

Proof. For (1), observe that P(Ag,11) = 0 and P(Agy) = (2kk)pk(1 —p)*. By Stirling’s formula,

()= it oty miooe

Hence, we may choose a constant C' > 0 such that

o o 001
P(A,) =) P(Ay) <CY ——[4p(1—p)* < o0
7; ;Zk ;Mpp

where the last inequality uses the fact p # 1/2.
For (2), observe that, for k € N

k—1
P(|Zn| < k)= P(|Z] =j) =0 asn— .
§=0
Fix a € (0,1). For k£ > 1, one may choose ¢(k) in N such that P(|Z,)| < k) < a. Let ny = 1.

For k > 1, let my, = ny + ¢(ng) and ng1 = my + p(my). For k > 1, let Cy be the following
event

Crh={Ynr1+-+ Y, <—ng, Yoo+ + Yo > my}
By the independency and the symmetry of Y,

1
P(Cy) = ZP(!Ynml o Yo | = ) P([ Vo1 + -+ Yoy | > mg)

(1—a)?
Y

Clearly, C1,Cy, ... are independent and, by the Borel-Cantelli lemma, P(C}, i.0.) = 1. Accord-
ing to the definition of Cj, one has Cy C {Z, = 0 for some ny < n < ng41}, which leads to
P(A, i.0.) > P(Cy i.0.) = 1. O

1
= JPIYi o+ Yot | 2 m)P(Yi o+ Vo | > ) >

Definition 5.4. Let (X,,)72; be a sequence of random variables.
(1) (X,)92 is called identically distributed if X,, has the same distribution for all n.

n=1
(2) (Xpn)p2, is called i.i.d. if (X,,) is independent and identically distributed.
Exercise 5.2. Let Xi, Xo,... be i.i.d. random variables. Show that E|X;| < oo if and only if
P(|X,| > nio0.) =0.
5.4. Kolmogorov’s inequality and three series theorem.

Lemma 5.13. Let X1, Xo,... be independent random variables with mean 0 and set S, =
X1+ Xo+ -+ Xy Then, for k <n and A € F, = F(X1, ..., Xi),

/%w</$m
A A
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Proof. Observe that
S = 57 + 25k(Sn — Sk) + (Sn — Sk)*.
Since 145, and S,, — S are independent,
E[145k(Sn — Sk)] = E(LaSk)E(S, — Sk) =0
This implies
E[1452] = E[1457] + E[14(Sn — Si)*] > E[14S7].
O

Theorem 5.14 (Kolmogorov’s inequality). Let X1, Xo, ... be independent with mean 0 and let
Sn:X1+X2+"'+Xn, then

> < —= = — E - \v .
P <121]?<Xn |Sk’ 6> 2 ]ESn 2 . 1 EXZ , e>0

Proof. Let A = {maxj<i<y, |Sk| > €} and write A = A U---U A, where
A = {|S1| < €.y |Sk_1| < €, |S/€’ > 6}.
Obviously, Ay, ..., A, are mutually disjoint. This implies that > ;_; 14, <1 and, then,

ESy > E[1452] =Y E[14,52] > > E[14,57] > € > P(A) = P(A).
k=1 k=1 k=1

O

Theorem 5.15. Let X, X», ... be independent random variables with mean 0. If )" EX2 <
00, then . X, is convergent a.s.

Ezample 5.2. Let X, Xa,... be independent random variables satisfying P(X,, = 1/n) =
P(X, = —1/n) = 1/2. Does X; + X2 + --- converge? By the Kolmogorov zero-one law, the
probability that the series converges is either 0 or 1.

Note that if P(X,, = 1/n) = P(X,, = —1/n) = 1/2, then EX,, = 0 and EX2 = 1/n?. By
the above theorem, since Y, 1/n% < oo, Y, X,, converges a.s..
Proof of Theorem 5.15. Let S, = X1 + -+ + X,, and set Ry = sup{|S, — S| : n >m > N}.
Observe that ) X, converges iff S, converges iff Ry — 0. For n,r € N, set Qn, =
maxi<i<r |Snti — Sn| and Qp = sup;sq|Sn+i — Sp|. Clearly, the triangle inequality implies
%RN < Q@n < Ry. Note that Q. T Qy as 7 — oco. This implies {Q,, > €} = lim,{Qp, > €}
and, then,

: 1 &
P(Qn> ) = lim P(Qur > < 5 > EXE,
k=n+1
where the last inequality is given by Kolmogorov’s inequality, i.e.

1 1
P(Qn,y >€) < §E|Sn+r - Sn|2 = &2 ZEXTQLH
=1

As a result, @, converges to 0 in probability and we may select a subsequence, say (k,)2 ;,
such that @), converges to 0 almost surely. Since Ry is non-increasing in N, this implies
0 <limsup Ry =limsup Rg, <2 lim Qk, =0 a.s.
N—c0 n—00 n—o0

It is worthwhile to remark that this yields @, — 0 a.s. U

Corollary 5.16. If X1, Xo, ... are independent and ), EX,, and ), Var(X,) converge, then
> 0 Xn converges a.s.
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Corollary 5.17 (Kolmogorov’s three series theorem). Let X1, Xo, ... be independent random
variables. If there is ¢ > 0 such that the following series

D OP(Xal >0, Y EXalyx,<e)s D Var(Xalqx,i<c)
n=1 n=1 n=1

converge, then ) X, converges a.s..

Proof. By the Borel-Cantelli lemma, the first convergence yields P(|X,| > ¢ i.0.) = 0. This
implies that ) X, converges a.s. if and only if ) | X, 14x,|<¢} converges a.s.. By Corollary
5.16, the convergence of the second and third series implies that ) X, 1y x,|<c converges
a.s..
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