
5. Independence and zero-one laws

5.1. Independence. Let (Ω,F ,P) be a probability space. Recall that events A1, ..., An ∈ F
are called independent if

P(Ai1 ∩ · · · ∩Aik) =
k∏
j=1

P(Aij )

for all i1, ..., ik ∈ {1, 2, ..., n} and 1 ≤ k ≤ n. This is equivalent to say that

P(F1 ∩ · · · ∩ Fn) =
n∏
i=1

P(Fi),

where Fi ∈ {Ai, Aci} for 1 ≤ i ≤ n. Note that any event in F is independent of Ω and ∅. This
leads to the fact that, A1, ..., An are independent if and only if

P(F1 ∩ · · · ∩ Fn) =
n∏
i=1

P(Fi), ∀Fi ∈ {∅,Ω, Ai, Aci}, 1 ≤ i ≤ n.

Definition 5.1. Let (Ω,F ,P) be a probability space.

(1) The σ-fields F1, ...,Fn contained in F are independent if

P(A1 ∩A2 ∩ · · · ∩An) =
n∏
i=1

P(Ai), ∀A1 ∈ F1, ..., An ∈ Fn.

(2) The random elements X1, ..., Xn defined on Ω are independent if F(X1), ...,F(Xn)
are independent.

(3) A sequence of σ-fields (Fn)∞n=1 contained in F are independent if F1, ...,Fn are
independent for all n ≥ 2.

(4) A sequence of random elements (Xn)
∞
n=1 defined on Ω are independent if (F(Xn))

∞
n=1

are independent.

The following proposition is immediate from the above definition.

Proposition 5.1. Let (Ω,F ,P) be a probability space and F1,F2, ... are independent σ-fields
contained in F . Then, for n ≥ 1 and An ∈ Fn,

P

( ∞⋂
n=1

An

)
=

∞∏
n=1

P(An).

Proposition 5.2. Let (Ω,F ,P) be a probability space and F1,F2, .. be independent σ-fields
contained in F . Assume that I = {i1, i2, ...} and J = {j1, j2, ...} are disjoint subsets of positive
integers. Then the following σ-fields

FI = σ

( ∞⋃
n=1

Fin

)
, FJ = σ

( ∞⋃
n=1

Fjn

)
are independent. In particular, if X1, X2, ... are independent and I, J are mutually disjoint
subsets of N, then (Xi)i∈I and (Xj)j∈J are independent.

Proof. Let

P1 = {A1 ∩ · · · ∩An|Ak ∈ Fik , ∀1 ≤ k ≤ n, n ∈ N}
and

P2 = {B1 ∩ · · · ∩Bm|Bk ∈ Fjk ,∀1 ≤ k ≤ m,m ∈ N}.
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Clearly, P1 and P2 are π-system and σ(P1) = FI and σ(P2) = FJ . For A ∈ P1, we set

LA = {B ∈ F2 : P(A ∩B) = P(A)P(B)}.

It is clear that LA is a λ-system for any A. By the independency of {F1,F2, ...}, P2 ⊂ LA for
all A ∈ P1. By the π − λ lemma, LA = FJ for all A ∈ P1.

Next, set

L := {A ∈ FI : P(A ∩B) = P(A)P(B), ∀B ∈ FJ}.
What is proved in the previous paragraph implies P1 ⊂ L. Since L is a λ-system, L = FI .
Thus, for A ∈ FI and B ∈ FJ , P(A ∩B) = P(A)P(B). �

Corollary 5.3. For n ∈ N, let Xn : (Ω,F) → (Rn,Bn) be a random element. Let (kn)
∞
n=1

be an increasing sequence in N and fn be (Bkn−1+1 ⊗ · · · ⊗ Bkn)-measurable random element
with k0 = 0. If (Xn)

∞
n=1 is a sequence of independent random variables, then f1(X1, ..., Xk1),

f2(Xk1+1, ..., Xk2), ... are independent.

Recall that, for any random variable X, we write FX as the distribution function of X.

Theorem 5.4. Let X1, X2, ... be random variables. Then, X1, X2, ... are independent if and
only if FX1,...,Xn(x1, x2, ..., xn) =

∏n
i=1 FXi(xi).

Proof. The necessary condition for the independency is obvious. For the sufficient condition,
let P = {(−∞, c] : c ∈ R}. Clearly, P is a π-system and σ(P) = B(R). Fix x1, ..., xn−1 ∈ R
and let L be the class of subsets B ∈ B(R) such that

P(X1 ≤ x1, ..., Xn−1 ≤ xn−1, Xn ∈ B) = P(X1 ≤ x1, ..., Xn−1 ≤ xn−1)P(Xn ∈ B).

It is easy to see from the definition that L is a λ-system that contains P. By the π−λ lemma,
L = B(R). Inductively, one can prove the independency of X1, ..., Xn. �

Remark 5.1. Let T be a set and, for t ∈ T , let Ft be a distribution function taking values on
R. For τ = (t1, ..., tn) ∈ S(T ), define Fτ (x1, ..., xn) =

∏n
i=1 Fti(xi). It is easy to see that the

family F = {Fτ |τ ∈ S(T ), τ is finite} satisfying the consistency property of (3.4)-(3.5). By
Proposition 4.9, there is a stochastic process (Xt)t∈T with finite-dimensional distribution func-
tions F . It follows immediately from Theorem 5.4 that (Xtn)

∞
n=1 is a sequence of independent

random elements for any (tn)
∞
n=1 ∈ S(T ).

Theorem 5.5. Let X and Y be independent random elements taking values on (R,B) and
(S, C). If f and g are respectively B-measurable and C-measurable random variables satisfying
E|f(X)| <∞ and E|g(Y )| <∞, then E|f(X)g(Y )| <∞ and

(5.1) E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Proof. First, fix B ∈ B and let f = 1B and Q1 = {1C : C ∈ C}. Obviously, F(Q1) = C. Let
H1 be the space of all bounded C-measurable random variables g such that (5.1) holds. Then
H1 is a linear space containing 1S and, by the Lebesgue dominated convergence theorem, H1

is closed under the bounded convergence. Observe that, for C ∈ C,

E[1B(X)1C(Y )] = P(X ∈ B, Y ∈ C) = P(X ∈ B)P(Y ∈ C) = E[1B(X)]E[1C(Y )].

This implies Q1 ⊂ H1. By the multiplicative system theorem, H1 contains all bounded C-
measurable functions.

Let Q2 = {1B : B ∈ B} and H2 be the space of all bounded B-measurable random variables
f such that (5.1) holds for all g ∈ H1. What has been proved in the previous paragraph
says that Q2 ⊂ H2. As before, one can show that H2 is a linear space containing 1R and
is closed under bounded convergence. The multiplicative system theorem implies that H2
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contains all bounded B-measurable random variables. That is, (5.1) holds for all bounded
random variables f, g.

Next, let f, g be random variables satisfying E|f(X)| < ∞ and E|g(Y )| < ∞. By Proposi-
tion 4.4, one may choose sequences of bounded random variables fn, gn satisfying |fn| ↑ |f |,
|gn| ↑ |g| and fn → f , gn → g. Since fn, gn are bounded, one has

E[|fn(X)gn(Y )|] = E|fn(X)|E|gn(Y )|
and

E[fn(X)gn(Y )] = Efn(X)Egn(Y ).

By the monotone convergence theorem, the first identity implies E|f(X)g(Y )| < ∞. By
the Lebesgue dominated convergence theorem, the second identity implies E[f(X)g(Y )] =
Ef(X)Eg(Y ). �
Exercise 5.1. Let X,Y be independent random variables. Show that, for B ∈ B(R),

(1) the mapping y 7→ P(X ∈ B − y) is a random variable,
(2) P(X + Y ∈ B) =

∫
R P(X ∈ B − y)PY (dy).

5.2. The Kolmogorov zero-one law.

Definition 5.2. Let X1, X2, ... be a stochastic process. A set E ∈ F(X1, X2, ...) is called a
tail event if E ∈ F(Xn, Xn+1, ...) for all n ≥ 1, or equivalently, E ∈ T where

T =

∞⋂
n=1

F(Xn, Xn+1, ...).

T is called the tail σ-field of (Xn)
∞
n=1.

Example 5.1. Let c ∈ R and consider the following event

E =

{
ω :

X1(ω) +X2(ω) + · · ·+Xn(ω)

n
→ c

}
.

It is obvious that

E =

{
ω :

Xk(ω) + · · ·+Xn(ω)

n
→ c

}
∀k ≥ 1.

This implies E ∈ F(Xk, Xk+1, ...) for all k and, hence, E ∈ T . Also,{
ω :

X1(ω) +X2(ω) + · · ·+Xn(ω)

n
9 c

}
∈ T .

Definition 5.3. Let (Ω,F) be a σ-field. For n ∈ N, let An ∈ F and Xn : Ω → Rn be a
random element, where Rn is equipped with σ-field Bn.

(1) The event that An occurs infinitely often is defined by {An i.o.} := lim supnAn.
(2) For Bn ∈ Bn, the event that Xn takes values on Bn infinitely often is defined by

{Xn ∈ Bn i.o.} := lim supn{Xn ∈ Bn}.

Lemma 5.6. Let (Xn)
∞
n=1 be a stochastic process and Bn ∈ B(R∞). Then,

lim sup
n→∞

{(Xn, Xn+1, ...) ∈ Bn} ∈ T , lim inf
n→∞

{(Xn, Xn+1, ...) ∈ Bn} ∈ T .

In particular, for Cn ∈ B(R), lim supn{Xn ∈ Cn} ∈ T and lim infn{Xn ∈ Cn} ∈ T .

Proof. For n ≥ 1, let An = {(Xn, Xn+1, ...) ∈ Bn}. Clearly, An ∈ F(Xn, Xn+1, ...). Note that

lim sup
n→∞

An =
⋂
n≥ℓ

⋃
k≥n

Ak ∈ F(Xℓ, Xℓ+1, ...), ∀ℓ ≥ 1.

This implies lim supnAn ∈ T and, then, lim infnAn = (lim supnA
c
n)
c ∈ T . �
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The next proposition is an application of Exercise 3.7 with F =
⋃∞
n=1F(X1, X2, ..., Xn)

and σ(F) = F(X1, X2, ...).

Proposition 5.7. Let X1, X2, ... be a sequence of random elements defined on (Ω,F , P ). For
A ∈ F(X1, X2, ...) and ϵ > 0, there are n ∈ N and B ∈ F(X1, ..., Xn) such that P(A∆B) < ϵ.

Theorem 5.8 (Kolmogorov zero-one law). Let X1, X2, ... be a sequence of independent random
elements and T be the tail σ-field of (Xn)

∞
n=1. Then, P(A) ∈ {0, 1} for A ∈ T .

Proof. Let A ∈ T ⊂ F(X1, X2, ...). By Proposition 5.7, we may choose An ∈ F(X1, ..., Xn)
such that P(A∆An) → 0. This implies

P(A) = lim
n→∞

P(An) = lim
n→∞

P(A ∩An).

Observe that A ∈ F(Xn+1, Xn+2, ...) for n ≥ 1. Since X1, X2, ... are independent, by Proposi-
tion 5.2, A and An are independent, that is, P(A ∩ An) = P(A)P(An). Letting n → ∞ yields
P(A) = P(A)2 and, hence, P(A) ∈ {0, 1}. �
Corollary 5.9. Let (Xn)

∞
n=1 be a sequence of independent random variables and E = {ω :∑

nXn(ω) converges}. Then P(E) ∈ {0, 1}.

5.3. The Borel-Cantelli lemma.

Theorem 5.10 (Borel-Cantelli lemma). Let A1, A2, ... be a sequence of events in a probability
space (Ω,F ,P).

(1) If
∑∞

n=1 P(An) <∞, then P(An i.o.) = 0.
(2) If A1, A2, ... are independent and

∑∞
n=1 P(An) = ∞, then P(An i.o.) = 1.

Proof. For (1), note that {An i.o.} = limn
⋃∞
i=nAi. Then, by the continuity of P,

P(An i.o.) = lim
n→∞

P

( ∞⋃
i=n

Ai

)
≤ lim

n→∞

∞∑
i=n

P(Ai) = 0.

For (2), since An, An+1, ... are independent,

P

(
n⋂

i=m

Aci

)
=

n∏
i=m

[1− P(Ai)], ∀m < n.

Using the fact that log(1− x) ≤ −x for x ∈ (0, 1), one has

logP

(
n⋂

i=m

Aci

)
=

n∑
i=m

log(1− P(Ai)) ≤ −
n∑

i=m

P(Ai).

Letting n→ ∞ implies P (
⋂∞
i=mA

c
i ) = 0 for all m ∈ N. This yields

P(An i.o.) = 1− lim
m→∞

P

( ∞⋂
i=m

Aci

)
= 1.

�
The following are applications of the Borel-Cantelli Lemma.

Proposition 5.11. Let X1, X2, ... be a sequence of independent Bernoulli random variables
with common parameter p ∈ (0, 1). Fix k ∈ N, s = (s1, ..., sk) ∈ {0, 1}k and let

An = {(Xn, Xn+1, ..., Xn+k−1) = s}, ∀n ≥ 1.

Then P(An i.o.) = 1.
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Proof. For n ≥ 1, set Bn = Ak(n−1)+1 and |s| = s1 + · · · + sn. It is clear that P(Bn) =

p|s|(1 − p)k−|s| for n ≥ 1 and this implies
∑∞

n=1 P(Bn) = ∞. By Corollary 5.3, B1, B2, ...
are independent and, by the Borel-Cantelli lemma, P(Bn i.o.) = 1. This leads to the desired
identity since {Bn i.o.} ⊂ {An i.o.}. �

Proposition 5.12. Let X1, X2, ... be a sequence of independent Bernoulli(p) random variables
and set Yn = 2Xn − 1 and Zn = Y1 + Y2 + · · ·+ Yn. Let An = {Zn = 0}. Then

(1) If p 6= 1/2, then P(An i.o.) = 0.
(2) If p = 1/2, then P(An i.o.) = 1.

Proof. For (1), observe that P(A2k+1) = 0 and P(A2k) =
(
2k
k

)
pk(1−p)k. By Stirling’s formula,(

2k

k

)
=

22k√
kπ

(1 + o(1)) as k → ∞.

Hence, we may choose a constant C > 0 such that
∞∑
n=1

P(An) =
∞∑
k=1

P(A2k) ≤ C
∞∑
k=1

1√
kπ

[4p(1− p)]k <∞

where the last inequality uses the fact p 6= 1/2.
For (2), observe that, for k ∈ N

P(|Zn| < k) =
k−1∑
j=0

P(|Zn| = j) → 0 as n→ ∞.

Fix α ∈ (0, 1). For k ≥ 1, one may choose φ(k) in N such that P(|Zφ(k)| < k) < α. Let n1 = 1.
For k > 1, let mk = nk + φ(nk) and nk+1 = mk + φ(mk). For k ≥ 1, let Ck be the following
event

Ck = {Ynk+1 + · · ·+ Ymk ≤ −nk, Ymk+1 + · · ·+ Ynk+1
≥ mk}.

By the independency and the symmetry of Yn,

P(Ck) =
1

4
P(|Ynk+1 + · · ·+ Ymk | ≥ nk)P(|Ymk+1 + · · ·+ Ynk+1

| ≥ mk)

=
1

4
P(|Y1 + · · ·+ Yφ(nk)| ≥ nk)P(|Y1 + · · ·+ Yφ(mk)| ≥ mk) ≥

(1− α)2

4
.

Clearly, C1, C2, ... are independent and, by the Borel-Cantelli lemma, P(Ck i.o.) = 1. Accord-
ing to the definition of Ck, one has Ck ⊂ {Zn = 0 for some nk < n ≤ nk+1}, which leads to
P(An i.o.) ≥ P(Ck i.o.) = 1. �

Definition 5.4. Let (Xn)
∞
n=1 be a sequence of random variables.

(1) (Xn)
∞
n=1 is called identically distributed if Xn has the same distribution for all n.

(2) (Xn)
∞
n=1 is called i.i.d. if (Xn) is independent and identically distributed.

Exercise 5.2. Let X1, X2, ... be i.i.d. random variables. Show that E|X1| <∞ if and only if
P(|Xn| > n i.o.) = 0.

5.4. Kolmogorov’s inequality and three series theorem.

Lemma 5.13. Let X1, X2, ... be independent random variables with mean 0 and set Sn =
X1 +X2 + · · ·+Xn. Then, for k ≤ n and A ∈ Fk = F(X1, ..., Xk),∫

A
S2
kdP ≤

∫
A
S2
ndP.
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Proof. Observe that
S2
n = S2

k + 2Sk(Sn − Sk) + (Sn − Sk)
2.

Since 1ASk and Sn − Sk are independent,

E[1ASk(Sn − Sk)] = E(1ASk)E(Sn − Sk) = 0

This implies
E[1AS2

n] = E[1AS2
k ] + E[1A(Sn − Sk)

2] ≥ E[1AS2
k ].

�
Theorem 5.14 (Kolmogorov’s inequality). Let X1, X2, ... be independent with mean 0 and let
Sn = X1 +X2 + · · ·+Xn, then

P
(

max
1≤k≤n

|Sk| ≥ ϵ

)
≤ 1

ϵ2
ES2

n =
1

ϵ2

n∑
i=1

EX2
i , ∀ϵ > 0.

Proof. Let A = {max1≤k≤n |Sk| ≥ ϵ} and write A = A1 ∪ · · · ∪An, where
Ak = {|S1| < ϵ, ..., |Sk−1| < ϵ, |Sk| ≥ ϵ}.

Obviously, A1, ..., An are mutually disjoint. This implies that
∑n

k=1 1Ak ≤ 1 and, then,

ES2
n ≥ E[1AS2

n] =

n∑
k=1

E[1AkS
2
n] ≥

n∑
k=1

E[1AkS
2
k ] ≥ ϵ2

n∑
k=1

P(Ak) = ϵ2P(A).

�
Theorem 5.15. Let X1, X2, ... be independent random variables with mean 0. If

∑
n EX2

n <
∞, then

∑
nXn is convergent a.s.

Example 5.2. Let X1, X2, ... be independent random variables satisfying P(Xn = 1/n) =
P(Xn = −1/n) = 1/2. Does X1 +X2 + · · · converge? By the Kolmogorov zero-one law, the
probability that the series converges is either 0 or 1.

Note that if P(Xn = 1/n) = P(Xn = −1/n) = 1/2, then EXn = 0 and EX2
n = 1/n2. By

the above theorem, since
∑

n 1/n
2 <∞,

∑
nXn converges a.s..

Proof of Theorem 5.15. Let Sn = X1 + · · ·+Xn and set RN = sup{|Sn − Sm| : n ≥ m ≥ N}.
Observe that

∑
nXn converges iff Sn converges iff RN → 0. For n, r ∈ N, set Qn,r =

max1≤i≤r |Sn+i − Sn| and Qn = supi>0 |Sn+i − Sn|. Clearly, the triangle inequality implies
1
2RN ≤ QN ≤ RN . Note that Qn,r ↑ Qn as r → ∞. This implies {Qn > ϵ} = limr{Qn,r > ϵ}
and, then,

P(Qn > ϵ) = lim
r→∞

P(Qn,r > ϵ) ≤ 1

ϵ2

∞∑
k=n+1

EX2
k ,

where the last inequality is given by Kolmogorov’s inequality, i.e.

P(Qn,r ≥ ϵ) ≤ 1

ϵ2
E|Sn+r − Sn|2 =

1

ϵ2

r∑
i=1

EX2
n+i

As a result, Qn converges to 0 in probability and we may select a subsequence, say (kn)
∞
n=1,

such that Qkn converges to 0 almost surely. Since RN is non-increasing in N , this implies

0 ≤ lim sup
N→∞

RN = lim sup
n→∞

Rkn ≤ 2 lim
n→∞

Qkn = 0 a.s.

It is worthwhile to remark that this yields Qn → 0 a.s. �
Corollary 5.16. If X1, X2, ... are independent and

∑
n EXn and

∑
nVar(Xn) converge, then∑

nXn converges a.s.
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Corollary 5.17 (Kolmogorov’s three series theorem). Let X1, X2, ... be independent random
variables. If there is c > 0 such that the following series

∞∑
n=1

P(|Xn| > c),
∞∑
n=1

E(Xn1{|Xn|≤c}),
∞∑
n=1

Var(Xn1{|Xn|≤c})

converge, then
∑

nXn converges a.s..

Proof. By the Borel-Cantelli lemma, the first convergence yields P(|Xn| > c i.o.) = 0. This
implies that

∑
nXn converges a.s. if and only if

∑
nXn1{|Xn|≤c} converges a.s.. By Corollary

5.16, the convergence of the second and third series implies that
∑

nXn1{|Xn|≤c} converges
a.s.. �
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