
6. Laws of large numbers

6.1. Strong law of large numbers. Consider a sequence of random variables with the same
expectation, say µ. The strong law of large numbers, or briefly SLLN, means

X1 +X2 + · · ·+Xn

n
→ µ a.s.

Theorem 6.1 (Kolmogorov’s SLLN). If (Xn)
∞
n=1 are independent and

∑∞
n=1Var(Xn)/n

2 <
∞, then the strong law of large numbers holds.

Proof. It loses no generality to assume that µ = 0. For n ≥ 1, set Sn = X1 + · · ·+Xn and let
bn = Var(Xn) = EX2

n. Note that

Sn
n

→ 0 a.s. ⇔ P
(
|Sn|
n

> ϵ i.o.

)
= 0, ∀ϵ > 0 ⇔ P(Ak(ϵ) i.o.) = 0, ∀ϵ > 0

where

Ak(ϵ) = {|Sn| ≥ ϵn for some n ∈ [2k, 2k+1]}.
By the Borel-Cantelli lemma, it suffices to show that

∑
k P(Ak(ϵ)) < ∞ for all ϵ > 0. To see

this, observe that

Ak(ϵ) ⊂ {|Sn| ≥ ϵ2k for some n ≤ 2k+1} =

{
max

1≤n≤2k+1
|Sn| ≥ ϵ2k

}
By Kolmogorov’s inequality, this implies

P(Ak(ϵ)) ≤
1

ϵ222k
ES2

2k+1 =
1

ϵ222k

2k+1∑
n=1

bn.

Thus, we have

ϵ2
∞∑
k=1

P(Ak(ϵ)) ≤
∞∑
k=1

2k+1∑
n=1

bn2
−2k =

∞∑
k=1

∞∑
n=1

bn2
−2k1[1,2k+1](n)

=
∞∑
n=1

bn

∞∑
k=1

2−2k1[log2 n−1,∞)(k) ≤
∞∑
n=1

bn ×
n−222

1− 1/4
<∞

�

Exercise 6.1. Let X1, X2, ... be independent random variables satisfying

P(Xn = n) = P(Xn = −n) = pn
2
, P(Xn = 0) = 1− pn.

Prove that the SLLN holds if and only if
∑∞

n=1 EX2
n/n

2 <∞.

Corollary 6.2. Let X1, X2, ... be independent random variables with µn = EXn. If the se-

quence 1
n(µ1+µ2+ · · ·+µn) converges to µ and

∑∞
n=1

Var(Xn)
n2 <∞, then 1

n

∑n
i=1Xn converges

to µ a.s..

Corollary 6.3. Let X1, X2, ... be independent with the same mean. If Var(Xn) is bounded,
then the SLLN holds.

Theorem 6.4 (Khinchin’s SLLN). If X1, X2, ... are i.i.d. with E|X1| < ∞, then the SLLN
holds.
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Proof. For n ≥ 1, let Yn = Xn1{|Xn|≤n} and set

Sn =

n∑
i=1

Xi, S′
n =

n∑
i=1

Yn.

Consider the following two steps.
Step 1: 1

n(Sn − S′
n) → 0 a.s. To see this, observe that

∞∑
n=1

P(Xn 6= Yn) =
∞∑
n=1

E1{|X1|>n} = E

( ∞∑
n=1

1{|X1|>n}

)
≤ E|X1| <∞

By the Borel-Cantelli lemma, P(Xn 6= Yn i.o.) = 0 and this implies (Sn − S′
n)/n → 0 almost

surely.
Step 2: We will prove in the following that

∑∞
n=1Var(Yn)/n

2 <∞. Note that

∞∑
n=1

Var(Yn)

n2
≤

∞∑
n=1

1

n2
E[X2

n1{|Xn|≤n}] =
∞∑
n=1

1

n2
E[X2

11{|X1|≤n}] = E

(
X2

1

∞∑
n=1

1{|X1|≤n}

n2

)
Further, if X1(ω) 6= 0, then

∞∑
n=1

1{|X1|≤n}(ω)

n2
=

∞∑
n=⌈|X1(ω)|⌉

1

n2
≤ 2

|X1(ω)|
.

This leads to
∞∑
n=1

1

n2
Var(Yn) ≤ 2E|X1| <∞.

Note that EYn → EX1. By Corollary 6.2, S′
n/n converges almost surely to EX1. By Step 1,

Sn/n→ EX1 a.s.. �
Exercise 6.2. Let Xn ≥ 0 be i.i.d. random variables with EX1 = ∞. Prove that

X1 +X2 + · · ·+Xn

n
→ ∞ a.s.

Example 6.1. Let Ω = [0, 1) and P be the Lebesgue measure on Ω. For ω ∈ Ω, consider the
binary expression of ω, 0.ω1ω2..., with infinitely many 0. For n ∈ N, let Xn : Ω → {0, 1} be
defined by Xn(ω) = ωn. Note that, for n ∈ N and x1, ..., xn ∈ {0, 1},

{Xi = xi,∀1 ≤ i ≤ n} = {ω|0.x1x2...xn ≤ ω < 0.x1x2...xn + 2−n}.
This implies that (Xn)

∞
n=1 are random variables with P(Xi = xi, ∀1 ≤ i ≤ n) = 2−n and,

hence, are i.i.d. Bernoulli random variables with parameter 1/2. By the strong law of large
numbers, we have

P

(
ω :

1

n

n∑
i=1

ωi →
1

2

)
= 1.

6.2. Weak law of large numbers. Recall that a sequence of random variables (Xn)
∞
n=1

defined on (Ω,F ,P) is said to converges to X in probability if

lim
n→∞

P(|Xn −X| > ϵ) = 0 ∀ϵ > 0.

Theorem 6.5 (The weak law of large numbers). Let X1, X2, ... be a sequence of independent
random variables with EXn = an. Assume that 1

n2

∑n
i=1Var(Xi) → 0. Then,

X1 + · · ·+Xn

n
− a1 + · · ·+ an

n
→ 0 in probability.
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Proof. By setting Yk = Xk − ak and Sn = Y1 + · · ·+ Yn, one has

E
(
S2
n

n2

)
=

1

n2

n∑
k=1

Var(Xk) → 0.

This implies that Sn/n converges to 0 in L2(P) and, hence, in probability. �
Example 6.2. Consider Bernstein’s polynomials.

Bn(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k ∀x ∈ (0, 1).

It is obvious that Bn(0) = f(0) and Bn(1) = f(1) for n ≥ 1. We shall prove in the following
that Bn(x) → f(x) for x ∈ (0, 1).

Let X1, X2, ... be independent Bernoulli random variables with parameters p ∈ (0, 1). Ob-
serve that EXn = p and

1

n2

n∑
k=1

Var(Xk) =
p(1− p)

n
→ 0 as n→ ∞.

Set Sn = X1 + · · · + Xn. By the WLLN, Sn/n → p in probability. This implies that if f is
continuous on [0, 1], then

f

(
Sn
n

)
→ f(p) in probability.

Note that

Bn(p) =

n∑
k=0

f

(
k

n

)
P(Sn = k) = E

[
f

(
Sn
n

)]
For ϵ > 0 and n ≥ 1, one has

|Bn(p)− f(p)| ≤ E
∣∣∣∣f (Snn

)
− f(p)

∣∣∣∣ ≤ 2cP
(∣∣∣∣f (Snn

)
− f(p)

∣∣∣∣ > ϵ

)
+ ϵ,

where c = max{|f(x)| : 0 ≤ x ≤ 1}. This implies Bn(p) → f(p) for all p ∈ (0, 1).

Exercise 6.3. Prove that maxx∈[0,1] |Bn(x) − f(x)| → 0 as n → ∞. (Hint: The chebyshev
inequality.)

Theorem 6.6 (The WLLN for arrays). For each n, let Xn,k with 1 ≤ k ≤ n be independent

random variables. Let bn > 0 satisfying bn → ∞ and set Xn,k = Xn,k1{|Xn,k|≤bn}. Suppose
that

(1)
∑n

k=1 P(|Xn,k| > bn) → 0,

(2) b−2
n

∑n
k=1 EX

2
n,k → 0 as n→ ∞.

Set Sn = Xn,1 + · · ·+Xn,n and sn =
∑n

k=1 EXn,k. Then,

Sn − sn
bn

→ 0 in probability.

Proof. Let Sn = Xn,1 + · · ·+Xn,n. Note that

P
(∣∣∣∣Sn − sn

bn

∣∣∣∣ > ϵ

)
≤ P(Sn 6= Sn) + P

(∣∣∣∣Sn − sn
bn

∣∣∣∣ > ϵ

)
.

The first term of the right side is bounded by

P(Sn 6= Sn) ≤ P

(
n⋃
k=1

{Xn,k 6= Xn,k}

)
≤

n∑
k=1

P(|Xn,k| > bn) → 0.
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By Chebyshev’s inequality, the second terms is bounded by

P
(∣∣∣∣Sn − sn

bn

∣∣∣∣ > ϵ

)
≤ ϵ−2E

∣∣∣∣Sn − sn
bn

∣∣∣∣2 = 1

ϵ2b2n

n∑
k=1

Var(Xn,k) ≤
1

ϵ2b2n

n∑
k=1

E|Xn,k|2 → 0

�
Corollary 6.7. Let X1, X2, ... be i.i.d. random variables satisfying

(6.1) xP(|X1| > x) → 0 as x→ ∞.

Let Sn = X1 + · · · + Xn and µn = E(X11{|X1|≤n}). Then Sn/n − µn → 0 in probability.
In particular, if X1, X2, ... are i.i.d. with E|X1| < ∞, then (X1 + · · · + Xn)/n → EX1 in
probability.

Proof. Observe that for x ≥ 1 with x ∈ [n, n+ 1],

nP(|X1| > n+ 1) ≤ xP(|X1| > x) ≤ (n+ 1)P(|X1| > n).

By (6.1), one has nP(|X1| > n) → 0. Let Xn,k = Xk for 1 ≤ k ≤ n and n ≥ 1. For such an
array, we have

n∑
k=1

P(|Xn,k| > n) = nP(|X1| > n) → 0

and

1

n2

n∑
k=1

E
(
X2
n,k1{|Xn,k|≤n}

)
=

E(X2
11{|X1|≤n})

n
≤ 1

n

∫ n2

0
P(X2

1 > y)dy

=
2

n

∫ n

0
zP(|X1| > z)dz =

2

n

(∫ ϵn

0
zP(|X1| > z)dz +

∫ n

ϵn
zP(|X1| > z)dz

)
≤2(cϵ+ nP(|X1| > ϵn)),

where c = sup{xP(|X1| > x) : x > 0}. Letting n → ∞ and then ϵ → 0 implies the desired
property. �

37


