7. CONVERGENCE IN DISTRIBUTION

7.1. Compactness of distribution functions. Recall that a distribution is a non-decreasing
right-continuous function F': R — [0, 1] satisfying

F(—o00) = wli}r_nooF(x) =0, F(oc0)= lim F(x)=1.

T—>00
Throughout this section, we use M to denote the set of all non-decreasing right-continuous
functions F' satisfying F'(—o0) > 0 and F'(c0) < 1.

Definition 7.1. Let f, f,, be functions defined on R. f,, is said to converge in distribution
(or D-converge) to f if
folz) = f(z) Vo eC(f)

where C(f) is the set of continuous points of f.

Remark 7.1. If f,, — f and f,, — ¢ in distribution and f, g are monotonic and right-continuous,
then f =g.
Lemma 7.1. Let f,, f be functions defined on R. Then, the following are equivalent.

(1) fn converges to f in distribution.

(2) For any subsequence (fn, )32, of (fn)oe1, fn, converges to f in distribution.

(3) For any subsequence (fn, )72 of (fn)pe1, there is a further subsequence (fm, )3, such
that fy,, converges to f in distribution.

Lemma 7.2. The set M is sequentially compact under D-convergence.

Proof. Let (fn)s2; be a sequence in M and Q be the set of all rational numbers. For z € Q,
since { fn(x) : n =1,2,...} is bounded, one may choose a convergent subsequence. By Cantor’s
diagonalization method, we may choose a subsequence (fy,, )52, of (fn)s2; such that f,,
converges on Q. Set, for z € Q,

f(.’L') = klggo fnk(x)
and define, by the monotonicity of f on Q,
f@)=lmf(y) vy eR\Q.

Clearly, f is non-decreasing in R. Let C(f) be the set of continuous points of f and x € C(f).
Since f is continuous at x, we may choose, for each € > 0, y, 2z € QQ such that y < x < z and

f(@) —e/2 < f(y) < f(2) < f(z) +¢€/2.
Since fy, (y) = f(y) and fy, (2) = f(2), we may choose an integer K = K(¢€) such that

frW) > fy) —€/2, fai(2) < f(2) +€/2 VEZK.
This implies
f(x) =€ < fr () < fr (@) < fop(2) < fz) +6, VEZ=K,
which proves that f,, converges to f in distribution. By setting ¢ as a right-continuous version

of f,one has g € M, f =g onC(f) and C(g) = C(f). Thus, f, converges to g in distribution.
U

Remark 7.2. The set of all distribution functions is not sequentially compact. Consider the
following sequence of functions

Fo(z) = 0 forz<n
" )1 forz>n

F,, — 0 in distribution.
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For any F' € M, let F(B), B € By, be the measure induced by F.
Definition 7.2. Let A be the set of all distribution functions. A set A C N is

(1) mass-preserving if, for all € > 0, there exists a finite interval I such that F(I¢) < e
for all F' € A.

(2) conditionally compact in N under D-convergence if any sequence (f,)>2; in A
contains a subsequence that D-converges to a distribution function in N.

Lemma 7.3. A set A C N is conditionally compact under D-convergence if and only if A is
Mass-preserving.

Proof. Assume first that A is mass-preserving and let (F,)>°; be a sequence of distribution
functions in A. By Lemma 7.2, there exists a subsequence (F},, )72, and F' € M such that
F,, converges to F' in distribution. We will show in the following that F' € N and it remains
to prove F'(—oo) =0 and F(o0) = 1.

Let € > 0 and choose an interval I such that f(I¢) < e for all f € A. Let a,b € C(F) be
such that I C (a,b]. This implies

Fp (b) — Fp, (a) = Fo ((a,b]) > 1—¢ Yk > 1,

and, then,
F((a,]) = F(8) = F(a) = lim [F, () = Fo ()] > 1—c.

Letting a — —oo and b — oo yields 1 > F(00) — F(—o00) > 1 — € for all € > 0. As it is known
that F(—o0) > 0 and F(o0) <1, we have F' € N.

For the converse, assume that A is conditionally compact and assume the inverse that A
is not mass-preserving. Equivalently, the latter means that there is € > 0 such that, for any
finite interval I, one may select F' € A such that F'(I) <1—e. Forn > 1, let F;, € A be such
that F,([—n,n]) < 1 —e. Since A is conditionally compact, we may choose a subsequence
(Fn,)?2, and F € N such that

F,, — F in distribution.
This implies that, for a,b € C(F),
F((a,b]) = lim F,, ((a,b]) < lim F,, ([-ng,ne]) <1—e
k—o00 k—o0

Letting a — —oo and b — oo yields F'(oc0) — F(—o0) < 1 — e < 1. This contradicts the fact
FeN. a

Proposition 7.4. Suppose F,, € N converges to F in distribution. Then, F € N if and only
if {Fnln =1,2,...} is mass-preserving.

Proof. First, assume that ' € N and set A = {F,|n > 1} C N. Let (f,)22; be a sequence
in A and write f, = Fy,. Set T = {l,|n > 1}. If |Z| < oo, then there is M € Z and
a subsequence (my)72, of N such that f,,, = Fy for all £ > 1. Clearly, f,,, converges to
Fy € NV in distribution. When |Z| = oo, we may choose a subsequence (m},)32; of N such that
(ﬁm;c )72, is increasing. This implies that fm; converges to F' in distribution. Consequently,
A is conditionally compact and, by Lemma 7.3, A is mass-preserving.

Next, assume that (F,)>2; is mass-preserving. By Lemma 7.3, there is a subsequence
(Fnp)?2, and G € N such that F,,, — G in distribution. Since F,, — F, by Remark 7.1,
F=aG. (]

Exercise 7.1. For a < b, show that the set of all distribution functions F' satisfying F'(b) = 1
and F'(a —€) = 0 for all € > 0 is sequentially compact.
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Exercise 7.2. Let F,,, F € N and assume that F,, — F in distribution. Prove that, if B C R
is closed and F,,(B) =1 for all n > 1, then F'(B) = 1. Find an example that F,,(B) = 1 for
n>1but F(B) < 1.

Exercise 7.3. Let g : R — R be a random variable satisfying |g(x)| — oo as |z| — oo and
A C N be a set satistying suppc 4 [ |g(2)|dF (z) < co. Show that A is mass-preserving.

Remark 7.3. For n > 1, let X, be a random variable with distribution function F,. By the
above exercise, if limsup,, E|X,,|" < oo for some 7 > 0, then {F),|n € N} is mass-preserving.

7.2. Preserving the integrations. In this subsection, we consider the following question.
Suppose F,, € N converges to F' € N in distribution. Under what assumption does the limit
| fdF, — [ fdF hold? For n > 1, let F, be defined by

0 forz<—1
F, = n
n(®) {1 for z > —%

Then, F,, — F in distribution, where

F(x) =

0 forxz<O
1 forxz>0

Let f be a function defined by f(z) =1 for x < 0 and f(z) = 0 for z > 0. Clearly, one may
compute that [ fdF, =1 and [ fdF = 0.

Proposition 7.5. Let X and X,, with n,> 1 be random variables with distribution functions
F and F,,. Then, the following are equivalent.
(1) F,, — F in distribution.
(2) Ep(Xy) = Eo(X) for any bounded continuous function ¢.
(3) E¢(X,) = Ep(X) for any bounded B(R)-measurable function ¢ satisfying F(C(¢)) =
1

(4) There are Yy, and Y such that X, 4 Y, X LY and Y, =Y.
Remark 7.4. For any B(R)-measurable function ¢, C(¢) € B(R).
Proof of Proposition 7.5. For (4)=(3), let Y, 2 X, and Y £ X be random variables on

(Q, F, P) such that Y;, — Y. By Theorem 4.15, we have

E¢(Xn) =Eo(Yn), E¢(X)=Ee(Y).
Set A ={Y € C(¢)}. Note that P(A) = F(C(¢)) = 1 and ¢(Y,,) converges to ¢(Y) on A. By
the Lebesgue dominant convergence theorem, E¢(Y,,) — E¢(Y), as desired.
(3)=(2) is clear. For (2)=(1), let x € C(F') and, for € > 0, set

1 fort <x
—t
o) =4 T o <i<adte
€
0 fort >x+e€

It is easy to see that E¢(X,,) > F,(x) and this implies
limsup Fy,(z) < Ep(X) < F(z +¢€).

n—oo

Similarly, one may use ¢(t) = ¢(t + €) to derive
Iirginf F.(z) > F(z —¢).

By the continuity of F' at x, letting € — 0 implies F,,(x) — F(x).
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For (1)=(4), we define, for n > 1,
fu(t) = inf{z|F,(x) >t} = min{z|F,(x) > t}, Vte (0,1).
In the above setting, f,, is non-decreasing and satisfies
(7.1) ) <z & Fy(x)>t.
To see the left-continuity of f,, observe that
FE,(fa(t) >t, Vte(0,1).

Fix t € (0,1). By the monotonicity of f, and F,,, the above inequality implies

F ( lim fn(S)) > Tim By (fu(s) > 1,

s—1—

which yields
Falt) < Tim fuls) < ful0).

Let f be the function defined by f(t) = inf{x|F(x)
Step 1: f, — f on C(f). Let t € C(f) and = = f(t). Since f is right-continuous at
t, F(xr +¢€) > t for all ¢ > 0, otherwise f(s) > = + € for all s > ¢. This implies that,
for ¢ > 0 and = 4+ € € C(F), one may choose § > 0 such that F(z 4+ ¢€) > t 4+ 20. Since
Fo(x +¢€) — F(x + €), we may choose N € N such that F,,(z +¢€) >t 4+ for n > N. This
implies f,(t) < fu(t+90) < x+e€ = f(t) + € for n > N. Letting n — oo and € — 0 yields
limsup,, f(t) < x.

Next, observe that F'(z —e) < t for € > 0. This implies, for € > 0 and x —e € C(F'), one may
select 0 > 0 such that F'(z —€) <t —2§. Since F,,(x — €¢) — F(z — €), we may choose N’ € N
such that F,(x —€) < ¢t — 6 for n > N'. This implies f,,(t) > fn(t —9) >z —e= f(t) — € for
n > N'. Letting n — oo and € — 0 yields liminf,, f,,(t) > x.

Step 2: Let u be the Lebesgue measure on (0,1). By (7.1), one has

,U'({t € (07 1) fa(t) < :C}) = M({t S (07 1) : Fn(x) > t}) = Fn(x)

> t}.

This implies X L fn and similarly X 4 f- To achieve the pointwise convergence, one only
needs to set Y, = f,14 and Y = f1y4, where A = (0,1) NC(f). O

Definition 7.3. A sequence of random variables (X,)o° ; is said to converge to X in distri-
bution if the distribution of X, D-converges to that of X.

Corollary 7.6. Let X1, Xo, ... be random variables converging in distribution to X. If ¢ is a
nonnegative function satisfying P(X € C(¢)) = 1, then E[¢(X)] < liminf, E[¢(X,,)].

Exercise 7.4. Let F,,,F ¢ N ang suppose F,, — F in distribution. Show that if B € B(R)
satisfies F'(0B) = 0, where 0B = B N B¢ is the boundary of B, then F,(B) — F(B).

Exercise 7.5. Let X1, Xo, ... be a sequence of random variables converging to X in distribu-
tion. Let g, h be continuous functions satisfying

lim |g(e)| =0, lim O

|| o0 x| =00 [g(2)]

Prove that if limsup,, E|g(X,,)| < oo, then E[h(X,,)] = E[h(X)].
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7.3. Classes of functions that separate.

Definition 7.4. Let N be the set of all distribution functions. A class C of bounded continuous
functions defined on R (not necessarily real-valued) is called N -separating if, for any F, G € N,

/f JdF (z /f )dG(z), VfeCc,
implies F' = G.

Proposition 7.7. Let C be an N -separating class. Then, F, € N converges in distribution
to some distribution F € N if and only if (F),)22, is mass-preserving and

lim [ f(x)dF,(x) exists, VfeC.

n—oo R
Proof. By Proposition 7.5, if F,, D-converges to F, then [ fdF, — [ fdF for all f € C.
Conversely, assume that (F},)5° is mass-preserving and [ fdF, converges for all f € C. By
Lemma 7.2 and Proposition 7.4, one may choose a D-convergent subsequence (F),, )72 with
limit F € N and, then, [ fdF, — [ fdF. Let (Fy,, )%, be any subsequence of (F},)32; and
(Fm;g )72, be a further subsequence that is D-convergent with limit G € N. As a result, this

implies
/de = nli_)nolo/den = klirgo/dem% = /fdG, VfecC.
Since C separates N, F' = G. By Lemma 7.1, F,, — F in distribution. O
Proposition 7.8. Let Cy be the set of functions of the following form.
(0 r<a—e

1+%% a—e<w<a
(7.2) flz)y=41 a<z<b

1-— %‘b b<z<b+e

0 r>b+e

\

where a < b and € > 0. Then Cy is N -separating.
Proof. Let F,G € N and a < b with a € C(F)NC(G). Let f be the function defined by (7.2).

Then,
/ f(z)dF(x / f(z)dG(z

((a, b)) /f )dF(z /f )dG(z) < G((a —€,b+€)).

Similarly, one has G((a,b]) < F((a — €,b+ €]). Letting ¢ — 0 yields F((a,b]) = G((a,b]) for
all a € C(F)NC(G) and, then for all @ € R. This proves F' = G. O

Corollary 7.9. Let Cy be the class in Proposition 7.8 and C be a class of bounded continuous
functions on R satisfying the property that, for any f € Cy, there exists a sequence f, € C
such that f, converges to f boundedly. Then C is ./\f—sepamtz'ng

Proof. Let F,G € N and assume that [ f(z)dF(z) = [ f( ) for all f € C. For g € Cy,
let g, € C converge to g boundedly. By the Lebesgue domlnant convergence theorem, we have

/g(m)dF(x) = lim [ gn(z)dF(z) = lim [ g,(z)dG(z) —/g(m)dG(m).
R R

By Proposition 7.8, F = G. (]
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Exercise 7.6. Let C§°(R) be the set of all infinitely differentiable functions on R with compact
support. Prove that C§°(R) is N-separating. (Hint: Let ¢ be a function defined by

o) = {cexp{—llmg} x| <1

0 x| > 1

where c is a constant such that [ ¢(z)dz = 1. For e > 0, set ¢(x) = ¢ '¢(xe!). Consider
the convolution f* ¢ and show that, for any compactly supported function f, f*¢. € C°(R)
and converges to f uniformly as e — 0.)

7.4. Characteristic functions. Let C = {e!"* : n € Z} and C(S') be the set of all continuous
functions f defined on [0, 27| satisfying f(0) = f(27). A trigonometric polynomial is a finite
linear combination of functions in C. The following theorem is a well-known result about the
denseness of trigonometric polynomials in C(S') under the sup-norm.

Theorem 7.10. For f € C(S') and € > 0, there exists a trigonometric polynomial g such
that

sup [ f(z) —g(z)| <e.

0<x<2m
Proof. See Rudin’s “Real and complex analysis” (Chapter 4). O
Theorem 7.11. The class {e™® : u € R} is N-separating.

Proof. Let Cy be the function in Proposition 7.8. We prove this theorem by the following two
steps.

Step 1: Let f € Cy and choose N € N such that f =0 on [-Nm, N7|¢. By Theorem 7.10,
we may select, for each n > N, a trigonometric polynomial f,(z) = Y, cn e such that
SUP|g|<x | fn(2) — f(nx)| < 1/n. By setting g,(x) = fa(z/n) =3, cnke®®/™ this is equivalent
t0 SUP|3|<nr [9n(®) — f(z)| < 1/n, which implies g, — f on R. Furthermore, since f is bounded
and g, is periodic, g, is uniformly bounded. This implies that any function in Cy is the limit
of some boundedly convergent sequence of trigonometric polynomials.

Step 2: Let F,G be two distribution functions satisfying

(7.3) / e (1) = / (G (), Vu R,

R R
Let f € Cy and, by Step 1, let (g,); be a sequence of trlgonometrlc polynomials converging
to f boundedly. By (7. 3) 1t is clear that fR gn dF = [z 9n(x)dG(x) for all n > 1. The
LDCT then implies fR fR U

Definition 7.5. Let F' be a distribution function and X be a random variable.
(1) The characteristic function of F is defined to be the following complex-valued function

Flu) = /R G ().

(2) The characteristic functions of X is defined by

f(u) = E[e™*].
Proposition 7.12. Let F' be a distribution function with characteristic function f. Then,
(1) f(0) =1,
[f(u)] <1,

(2)
(3) f(=u) = f(u),
(4) f is uniformly continuous on R,
43



(5) There ezists a constant A € (0,00) independent of F' such that

F([~1/u, 1/u]°) < ’3/“(1 —Rf(v)dv Yu>0

0
where Ra is the real part of a.

Proof. The proofs of (1)-(3) are clear. For (4), observe that, when h € R,

/ei“”:(eihx —1DdF(x)| < / leth — 1|dF(z).
R R

A(6) :== sup |[f(u+h)— f(u)] < sup/|emm 1|dF(x)
w,|h|<8 h|<6

Since [ [¢/"® — 1|dF(z) — 0 when |h| — 0, we have A(§) — 0 when § — 0.
For (5), note that

i/ouu — R (0))dv = i/ou (/Ru - cos(vx)]dF(x)) o

_ /R (i /O u[l—cos(vx)]dv) AP (z) = /R (1— Siné;‘x)>dF(x)-
This yields

! /Ouu ~Rf@)dv > /lw|>1 (1 - Sm(“‘”)) dF (x) > A™VF ([=1/u,1/u]),

[f(u+h) = fu)] =

This implies that, for § > 0,

u uzx
where A1 :=inf {1 — St . ¢ > 1} > 0. O
The next theorem simplifies the assumption of mass-preservation in Proposition 7.7.

Theorem 7.13 (The continuity theorem). For n > 1, let F,, be a distribution function and
fn be the corresponding characteristic function f,. Then, there exists F € N such that F,
converges in distribution to F if and only if f, converges pointwise to some function f, which
s continuous at 0. Furthermore, f is the characteristic function of F'.

uxT

Proof. By Proposition 7.7, since {e"** : u € R} is N-separating, it remains to prove that if
fn — f and f is continuous at 0, then (F},)5° , is mass-preserving. By Proposition 7.12(5),

n=1
one may choose a universal constant A > 0 such that

A u
Full=1/u 1) <5 [ = Rp (o))

0
By the Lebesgue dominant convergence theorem, we have

A u

limsup F,,([—1/u, 1/u]) < / [1—Rf(v)]dv
n—00 U Jo
Since f is continuous at 0, the above inequality implies
lim lim sup £, ([—1/u, 1/u]¢) = 0.
ul0 n—oo

This is equivalent to say that, for any € > 0, there is u > 0 and N € N such that
Fo([-1/u,1/ul®) <€, VYn > N.
This implies (F,)o° ; is mass-preserving. O
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Lemma 7.14. Let (F,,)2, be a sequence in N with characteristic functions (fn)o>,. If Fp
D-converges to F € N, then, for any € > 0, there is § > 0 such that

|fn(u+h)_fn(u)| <6 V‘h| <%u€eRn>1

Proof. Since F), converges to F' in distribution, (F},)>°; is mass-preserving. For € > 0, we
choose a finite interval I such that F,(I¢) < €/3 for all n > 1. This implies that, for u,h € R,

[fu(uth) = falw)] < /]R | = 1|dFy (z) < /I | — 1|dFy (x) + 2Fn (I°) SA<h>+%,

where A(h) = maxg¢y [e?"® — 1|. Tt is clear that A(h) — 0 as |h| — 0. This implies that one
may choose § > 0 such that A(h) < €/3 when |h| <. O

Theorem 7.15. Forn > 1, let F,, € N and fy(u) = [ e"““dF,(z). Then, there exists F € N'
such that F,, D-converges to F if and only if f, converges uniformly to some function f in
every finite interval.

Proof. By Theorem 7.13, it remains to show that if F,, D-converges to F', then f, converges
uniformly on any finite interval. Let I be a finite interval. By Lemma 7.14, we may choose,
for each € > 0, a positive constant § > 0 such that

|fn(u+h) — fo(u)| <e€/3, V|h|<duecRn>1
and
|[f(u+h)— f(u)] <e€/3, V|h| <dueck.
Let u; < ug < --- < uy be points in I such that I C Ule(ui —d,u; +6). Since fn(u;) = f(u;)
for 1 <4 <k, we may choose N € N such that

N — . > N.
max [ fa(u) — f(ui)| < ¢/3, V>N

This implies that, for v € I with |u — u;| < 4,

[fa(u) = f(u)| < |falw) = falw)] + [fr(ui) = fua)| 4+ |f(us) = f(w)] <e
when n > N. O

Exercise 7.7. A random variable is said to have a symmetric distribution if P(X € B) =
P(—X € B) for all B € B(R). Prove that the characteristic function of X is real if and only
if X has a symmetric distribution.

Exercise 7.8. Show that any characteristic function f is non-negative definite, that is, for
any A, ..., A\p € C and ug,...,u, € R,

Z flug — UE)Ang > 0.

k=1

Exercise 7.9. For n > 1, let b, € R and X,, = b,, a.s. with characteristic function f,,. Prove
that the following are equivalent.

(1) X, B X for some X € N.
(2) by, is Cauchy.
(3) There is € > 0 such that the sequence (f,(u))>2 is Cauchy for all |u| < e.

Corollary 7.16. Let X,, be random variables with characteristic function f,. Then, X, 2o
if and only if f,, = 1 on (—a,a) for some a < co.
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Proof. One direction is obvious from Theorem 7.13. For the other direction, assume that f,
converges to 1 on (—a,a). Let F;, be the distribution of X,,. By Proposition 7.12 (5), there is
A < oo such that

Fo([~1/a,1/a)°) < f/oau —Rfu(0)dv, V> 1.

Since f,, — 1 on (—a,a), the right hand side converges to 0 and, thus, F;, is mass-preserving.

Let (Fj,)pZ; be a subsequence of (Fy)p2, and (F, )32, be a D-convergent further subse-
quence with limit F € N. Let f be the characteristic function of F. Then, f is identically 1
on (—a,a). This implies

F{2m/u:LeZ}) =1, VY0<|u|l<a.

Hence, F({0}) = 1, as desired. O
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