
7. Convergence in distribution

7.1. Compactness of distribution functions. Recall that a distribution is a non-decreasing
right-continuous function F : R → [0, 1] satisfying

F (−∞) = lim
x→−∞

F (x) = 0, F (∞) = lim
x→∞

F (x) = 1.

Throughout this section, we use M to denote the set of all non-decreasing right-continuous
functions F satisfying F (−∞) ≥ 0 and F (∞) ≤ 1.

Definition 7.1. Let f, fn be functions defined on R. fn is said to converge in distribution
(or D-converge) to f if

fn(x) → f(x) ∀x ∈ C(f)
where C(f) is the set of continuous points of f .

Remark 7.1. If fn → f and fn → g in distribution and f, g are monotonic and right-continuous,
then f = g.

Lemma 7.1. Let fn, f be functions defined on R. Then, the following are equivalent.

(1) fn converges to f in distribution.
(2) For any subsequence (fnk)

∞
k=1 of (fn)

∞
n=1, fnk converges to f in distribution.

(3) For any subsequence (fnk)
∞
k=1 of (fn)

∞
n=1, there is a further subsequence (fmk)

∞
k=1 such

that fmk converges to f in distribution.

Lemma 7.2. The set M is sequentially compact under D-convergence.

Proof. Let (fn)
∞
n=1 be a sequence in M and Q be the set of all rational numbers. For x ∈ Q,

since {fn(x) : n = 1, 2, ...} is bounded, one may choose a convergent subsequence. By Cantor’s
diagonalization method, we may choose a subsequence (fnk)

∞
k=1 of (fn)

∞
n=1 such that fnk

converges on Q. Set, for x ∈ Q,
f(x) = lim

k→∞
fnk(x)

and define, by the monotonicity of f on Q,

f(x) = lim
y↓x

f(y) ∀y ∈ R \Q.

Clearly, f is non-decreasing in R. Let C(f) be the set of continuous points of f and x ∈ C(f).
Since f is continuous at x, we may choose, for each ϵ > 0, y, z ∈ Q such that y < x < z and

f(x)− ϵ/2 < f(y) ≤ f(z) < f(x) + ϵ/2.

Since fnk(y) → f(y) and fnk(z) → f(z), we may choose an integer K = K(ϵ) such that

fnk(y) > f(y)− ϵ/2, fnk(z) < f(z) + ϵ/2 ∀k ≥ K.

This implies
f(x)− ϵ < fnk(y) ≤ fnk(x) ≤ fnk(z) < f(x) + ϵ, ∀k ≥ K,

which proves that fn converges to f in distribution. By setting g as a right-continuous version
of f , one has g ∈ M, f = g on C(f) and C(g) = C(f). Thus, fn converges to g in distribution.

�
Remark 7.2. The set of all distribution functions is not sequentially compact. Consider the
following sequence of functions

Fn(x) =

{
0 for x < n

1 for x ≥ n

Fn → 0 in distribution.
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For any F ∈ M, let F (B), B ∈ B1, be the measure induced by F .

Definition 7.2. Let N be the set of all distribution functions. A set A ⊂ N is

(1) mass-preserving if, for all ϵ > 0, there exists a finite interval Iϵ such that F (Icϵ ) < ϵ
for all F ∈ A.

(2) conditionally compact in N under D-convergence if any sequence (fn)
∞
n=1 in A

contains a subsequence that D-converges to a distribution function in N .

Lemma 7.3. A set A ⊂ N is conditionally compact under D-convergence if and only if A is
mass-preserving.

Proof. Assume first that A is mass-preserving and let (Fn)
∞
n=1 be a sequence of distribution

functions in A. By Lemma 7.2, there exists a subsequence (Fnk)
∞
k=1 and F ∈ M such that

Fnk converges to F in distribution. We will show in the following that F ∈ N and it remains
to prove F (−∞) = 0 and F (∞) = 1.

Let ϵ > 0 and choose an interval I such that f(Ic) < ϵ for all f ∈ A. Let a, b ∈ C(F ) be
such that I ⊂ (a, b]. This implies

Fnk(b)− Fnk(a) = Fnk((a, b]) > 1− ϵ ∀k ≥ 1,

and, then,

F ((a, b]) = F (b)− F (a) = lim
k→∞

[Fnk(b)− Fnk(a)] ≥ 1− ϵ.

Letting a→ −∞ and b→ ∞ yields 1 ≥ F (∞)− F (−∞) ≥ 1− ϵ for all ϵ > 0. As it is known
that F (−∞) ≥ 0 and F (∞) ≤ 1, we have F ∈ N .

For the converse, assume that A is conditionally compact and assume the inverse that A
is not mass-preserving. Equivalently, the latter means that there is ϵ > 0 such that, for any
finite interval I, one may select F ∈ A such that F (I) ≤ 1− ϵ. For n ≥ 1, let Fn ∈ A be such
that Fn([−n, n]) ≤ 1 − ϵ. Since A is conditionally compact, we may choose a subsequence
(Fnk)

∞
k=1 and F ∈ N such that

Fnk → F in distribution.

This implies that, for a, b ∈ C(F ),

F ((a, b]) = lim
k→∞

Fnk((a, b]) ≤ lim
k→∞

Fnk([−nk, nk]) ≤ 1− ϵ.

Letting a → −∞ and b → ∞ yields F (∞) − F (−∞) ≤ 1 − ϵ < 1. This contradicts the fact
F ∈ N . �

Proposition 7.4. Suppose Fn ∈ N converges to F in distribution. Then, F ∈ N if and only
if {Fn|n = 1, 2, ...} is mass-preserving.

Proof. First, assume that F ∈ N and set A = {Fn|n ≥ 1} ⊂ N . Let (fn)
∞
n=1 be a sequence

in A and write fn = Fℓn . Set I = {ℓn|n ≥ 1}. If |I| < ∞, then there is M ∈ I and
a subsequence (mk)

∞
k=1 of N such that fmk = FM for all k ≥ 1. Clearly, fmk converges to

FM ∈ N in distribution. When |I| = ∞, we may choose a subsequence (m′
k)

∞
k=1 of N such that

(ℓm′
k
)∞k=1 is increasing. This implies that fm′

k
converges to F in distribution. Consequently,

A is conditionally compact and, by Lemma 7.3, A is mass-preserving.
Next, assume that (Fn)

∞
n=1 is mass-preserving. By Lemma 7.3, there is a subsequence

(Fnk)
∞
k=1 and G ∈ N such that Fnk → G in distribution. Since Fnk → F , by Remark 7.1,

F = G. �

Exercise 7.1. For a < b, show that the set of all distribution functions F satisfying F (b) = 1
and F (a− ϵ) = 0 for all ϵ > 0 is sequentially compact.
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Exercise 7.2. Let Fn, F ∈ N and assume that Fn → F in distribution. Prove that, if B ⊂ R
is closed and Fn(B) = 1 for all n ≥ 1, then F (B) = 1. Find an example that Fn(B) = 1 for
n ≥ 1 but F (B) < 1.

Exercise 7.3. Let g : R → R be a random variable satisfying |g(x)| → ∞ as |x| → ∞ and
A ⊂ N be a set satisfying supF∈A

∫
|g(x)|dF (x) <∞. Show that A is mass-preserving.

Remark 7.3. For n ≥ 1, let Xn be a random variable with distribution function Fn. By the
above exercise, if lim supn E|Xn|r <∞ for some r > 0, then {Fn|n ∈ N} is mass-preserving.

7.2. Preserving the integrations. In this subsection, we consider the following question.
Suppose Fn ∈ N converges to F ∈ N in distribution. Under what assumption does the limit∫
fdFn →

∫
fdF hold? For n ≥ 1, let Fn be defined by

Fn(x) =

{
0 for x < − 1

n

1 for x ≥ − 1
n

Then, Fn → F in distribution, where

F (x) =

{
0 for x < 0

1 for x ≥ 0

Let f be a function defined by f(x) = 1 for x < 0 and f(x) = 0 for x ≥ 0. Clearly, one may
compute that

∫
fdFn = 1 and

∫
fdF = 0.

Proposition 7.5. Let X and Xn with n,≥ 1 be random variables with distribution functions
F and Fn. Then, the following are equivalent.

(1) Fn → F in distribution.
(2) Eϕ(Xn) → Eϕ(X) for any bounded continuous function ϕ.
(3) Eϕ(Xn) → Eϕ(X) for any bounded B(R)-measurable function ϕ satisfying F (C(ϕ)) =

1.

(4) There are Yn and Y such that Xn
d
= Yn, X

d
= Y and Yn → Y .

Remark 7.4. For any B(R)-measurable function ϕ, C(ϕ) ∈ B(R).

Proof of Proposition 7.5. For (4)⇒(3), let Yn
d
= Xn and Y

d
= X be random variables on

(Ω,F , P ) such that Yn → Y . By Theorem 4.15, we have

Eϕ(Xn) = Eϕ(Yn), Eϕ(X) = Eϕ(Y ).

Set A = {Y ∈ C(ϕ)}. Note that P(A) = F (C(ϕ)) = 1 and ϕ(Yn) converges to ϕ(Y ) on A. By
the Lebesgue dominant convergence theorem, Eϕ(Yn) → Eϕ(Y ), as desired.

(3)⇒(2) is clear. For (2)⇒(1), let x ∈ C(F ) and, for ϵ > 0, set

ϕ(t) =


1 for t < x
x+ ϵ− t

ϵ
for x ≤ t ≤ x+ ϵ

0 for t > x+ ϵ

It is easy to see that Eϕ(Xn) ≥ Fn(x) and this implies

lim sup
n→∞

Fn(x) ≤ Eϕ(X) ≤ F (x+ ϵ).

Similarly, one may use φ(t) = ϕ(t+ ϵ) to derive

lim inf
n→∞

Fn(x) ≥ F (x− ϵ).

By the continuity of F at x, letting ϵ→ 0 implies Fn(x) → F (x).
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For (1)⇒(4), we define, for n ≥ 1,

fn(t) = inf{x|Fn(x) ≥ t} = min{x|Fn(x) ≥ t}, ∀t ∈ (0, 1).

In the above setting, fn is non-decreasing and satisfies

(7.1) fn(t) ≤ x ⇔ Fn(x) ≥ t.

To see the left-continuity of fn, observe that

Fn(fn(t)) ≥ t, ∀t ∈ (0, 1).

Fix t ∈ (0, 1). By the monotonicity of fn and Fn, the above inequality implies

Fn

(
lim
s→t−

fn(s)

)
≥ lim

s→t−
Fn (fn(s)) ≥ t,

which yields

fn(t) ≤ lim
s→t−

fn(s) ≤ fn(t).

Let f be the function defined by f(t) = inf{x|F (x) ≥ t}.
Step 1: fn → f on C(f). Let t ∈ C(f) and x = f(t). Since f is right-continuous at
t, F (x + ϵ) > t for all ϵ > 0, otherwise f(s) ≥ x + ϵ for all s > t. This implies that,
for ϵ > 0 and x + ϵ ∈ C(F ), one may choose δ > 0 such that F (x + ϵ) ≥ t + 2δ. Since
Fn(x + ϵ) → F (x + ϵ), we may choose N ∈ N such that Fn(x + ϵ) ≥ t + δ for n ≥ N . This
implies fn(t) ≤ fn(t + δ) ≤ x + ϵ = f(t) + ϵ for n ≥ N . Letting n → ∞ and ϵ → 0 yields
lim supn fn(t) ≤ x.

Next, observe that F (x−ϵ) < t for ϵ > 0. This implies, for ϵ > 0 and x−ϵ ∈ C(F ), one may
select δ > 0 such that F (x− ϵ) < t− 2δ. Since Fn(x− ϵ) → F (x− ϵ), we may choose N ′ ∈ N
such that Fn(x− ϵ) < t− δ for n ≥ N ′. This implies fn(t) ≥ fn(t− δ) > x− ϵ = f(t)− ϵ for
n ≥ N ′. Letting n→ ∞ and ϵ→ 0 yields lim infn fn(t) ≥ x.
Step 2: Let µ be the Lebesgue measure on (0, 1). By (7.1), one has

µ({t ∈ (0, 1) : fn(t) ≤ x}) = µ({t ∈ (0, 1) : Fn(x) ≥ t}) = Fn(x).

This implies Xn
d
= fn and similarly X

d
= f . To achieve the pointwise convergence, one only

needs to set Yn = fn1A and Y = f1A, where A = (0, 1) ∩ C(f). �

Definition 7.3. A sequence of random variables (Xn)
∞
n=1 is said to converge to X in distri-

bution if the distribution of Xn D-converges to that of X.

Corollary 7.6. Let X1, X2, ... be random variables converging in distribution to X. If ϕ is a
nonnegative function satisfying P(X ∈ C(ϕ)) = 1, then E[ϕ(X)] ≤ lim infn E[ϕ(Xn)].

Exercise 7.4. Let Fn, F ∈ N and suppose Fn → F in distribution. Show that if B ∈ B(R)
satisfies F (∂B) = 0, where ∂B = B ∩Bc is the boundary of B, then Fn(B) → F (B).

Exercise 7.5. Let X1, X2, ... be a sequence of random variables converging to X in distribu-
tion. Let g, h be continuous functions satisfying

lim
|x|→∞

|g(x)| = ∞, lim
|x|→∞

|h(x)|
|g(x)|

= 0.

Prove that if lim supn E|g(Xn)| <∞, then E[h(Xn)] → E[h(X)].
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7.3. Classes of functions that separate.

Definition 7.4. LetN be the set of all distribution functions. A class C of bounded continuous
functions defined on R (not necessarily real-valued) is called N -separating if, for any F,G ∈ N ,∫

R
f(x)dF (x) =

∫
R
f(x)dG(x), ∀f ∈ C,

implies F = G.

Proposition 7.7. Let C be an N -separating class. Then, Fn ∈ N converges in distribution
to some distribution F ∈ N if and only if (Fn)

∞
n=1 is mass-preserving and

lim
n→∞

∫
R
f(x)dFn(x) exists, ∀f ∈ C.

Proof. By Proposition 7.5, if Fn D-converges to F , then
∫
fdFn →

∫
fdF for all f ∈ C.

Conversely, assume that (Fn)
∞
n=1 is mass-preserving and

∫
fdFn converges for all f ∈ C. By

Lemma 7.2 and Proposition 7.4, one may choose a D-convergent subsequence (Fnk)
∞
k=1 with

limit F ∈ N and, then,
∫
fdFn →

∫
fdF . Let (Fmk)

∞
k=1 be any subsequence of (Fn)

∞
n=1 and

(Fm′
k
)∞k=1 be a further subsequence that is D-convergent with limit G ∈ N . As a result, this

implies ∫
fdF = lim

n→∞

∫
fdFn = lim

k→∞

∫
fdFm′

k
=

∫
fdG, ∀f ∈ C.

Since C separates N , F = G. By Lemma 7.1, Fn → F in distribution. �
Proposition 7.8. Let C0 be the set of functions of the following form.

(7.2) f(x) =



0 x < a− ϵ

1 + x−a
ϵ a− ϵ ≤ x < a

1 a ≤ x < b

1− x−b
ϵ b ≤ x < b+ ϵ

0 x ≥ b+ ϵ

where a < b and ϵ > 0. Then C0 is N -separating.

Proof. Let F,G ∈ N and a < b with a ∈ C(F )∩ C(G). Let f be the function defined by (7.2).
Then, ∫

R
f(x)dF (x) =

∫
R
f(x)dG(x).

This implies

F ((a, b]) ≤
∫
R
f(x)dF (x) =

∫
R
f(x)dG(x) ≤ G((a− ϵ, b+ ϵ]).

Similarly, one has G((a, b]) ≤ F ((a − ϵ, b + ϵ]). Letting ϵ → 0 yields F ((a, b]) = G((a, b]) for
all a ∈ C(F ) ∩ C(G) and, then, for all a ∈ R. This proves F = G. �
Corollary 7.9. Let C0 be the class in Proposition 7.8 and C be a class of bounded continuous
functions on R satisfying the property that, for any f ∈ C0, there exists a sequence fn ∈ C
such that fn converges to f boundedly. Then C is N -separating.

Proof. Let F,G ∈ N and assume that
∫
R f(x)dF (x) =

∫
R f(x)dG(x) for all f ∈ C. For g ∈ C0,

let gn ∈ C converge to g boundedly. By the Lebesgue dominant convergence theorem, we have∫
R
g(x)dF (x) = lim

n→∞

∫
R
gn(x)dF (x) = lim

n→∞

∫
R
gn(x)dG(x) =

∫
R
g(x)dG(x).

By Proposition 7.8, F = G. �
42



Exercise 7.6. Let C∞
0 (R) be the set of all infinitely differentiable functions on R with compact

support. Prove that C∞
0 (R) is N -separating. (Hint: Let ϕ be a function defined by

ϕ(x) =

{
c exp

{
− 1

1−x2

}
|x| < 1

0 |x| ≥ 1

where c is a constant such that
∫∞
−∞ ϕ(x)dx = 1. For ϵ > 0, set ϕϵ(x) = ϵ−1ϕ(xϵ−1). Consider

the convolution f ∗ϕϵ and show that, for any compactly supported function f , f ∗ϕϵ ∈ C∞
0 (R)

and converges to f uniformly as ϵ→ 0.)

7.4. Characteristic functions. Let C = {einx : n ∈ Z} and C(S1) be the set of all continuous
functions f defined on [0, 2π] satisfying f(0) = f(2π). A trigonometric polynomial is a finite
linear combination of functions in C. The following theorem is a well-known result about the
denseness of trigonometric polynomials in C(S1) under the sup-norm.

Theorem 7.10. For f ∈ C(S1) and ϵ > 0, there exists a trigonometric polynomial g such
that

sup
0≤x≤2π

|f(x)− g(x)| < ϵ.

Proof. See Rudin’s “Real and complex analysis” (Chapter 4). �
Theorem 7.11. The class {eiux : u ∈ R} is N -separating.

Proof. Let C0 be the function in Proposition 7.8. We prove this theorem by the following two
steps.

Step 1: Let f ∈ C0 and choose N ∈ N such that f = 0 on [−Nπ,Nπ]c. By Theorem 7.10,
we may select, for each n ≥ N , a trigonometric polynomial fn(x) =

∑
k cn,ke

ikx such that

sup|x|≤π |fn(x)−f(nx)| < 1/n. By setting gn(x) = fn(x/n) =
∑

k cn,ke
ikx/n, this is equivalent

to sup|x|≤nπ |gn(x)−f(x)| < 1/n, which implies gn → f on R. Furthermore, since f is bounded
and gn is periodic, gn is uniformly bounded. This implies that any function in C0 is the limit
of some boundedly convergent sequence of trigonometric polynomials.

Step 2: Let F,G be two distribution functions satisfying

(7.3)

∫
R
eiuxdF (x) =

∫
R
eiuxdG(x), ∀u ∈ R.

Let f ∈ C0 and, by Step 1, let (gn)
∞
n=1 be a sequence of trigonometric polynomials converging

to f boundedly. By (7.3), it is clear that
∫
R gn(x)dF (x) =

∫
R gn(x)dG(x) for all n ≥ 1. The

LDCT then implies
∫
R f(x)dF (x) =

∫
R f(x)dG(x). �

Definition 7.5. Let F be a distribution function and X be a random variable.

(1) The characteristic function of F is defined to be the following complex-valued function

f(u) =

∫
R
eiuxdF (x).

(2) The characteristic functions of X is defined by

f(u) = E[eiuX ].

Proposition 7.12. Let F be a distribution function with characteristic function f . Then,

(1) f(0) = 1,
(2) |f(u)| ≤ 1,
(3) f(−u) = f(u),
(4) f is uniformly continuous on R,
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(5) There exists a constant A ∈ (0,∞) independent of F such that

F ([−1/u, 1/u]c) ≤ A

u

∫ u

0
(1−<f(v))dv ∀u > 0

where <a is the real part of a.

Proof. The proofs of (1)-(3) are clear. For (4), observe that, when h ∈ R,

|f(u+ h)− f(u)| =
∣∣∣∣∫

R
eiux(eihx − 1)dF (x)

∣∣∣∣ ≤ ∫
R
|eihx − 1|dF (x).

This implies that, for δ > 0,

∆(δ) := sup
u,|h|<δ

|f(u+ h)− f(u)| ≤ sup
|h|≤δ

∫
R
|eihx − 1|dF (x)

Since
∫
R |eihx − 1|dF (x) → 0 when |h| → 0, we have ∆(δ) → 0 when δ → 0.

For (5), note that

1

u

∫ u

0
[1−<f(v)]dv =

1

u

∫ u

0

(∫
R
[1− cos(vx)]dF (x)

)
dv

=

∫
R

(
1

u

∫ u

0
[1− cos(vx)]dv

)
dF (x) =

∫
R

(
1− sin(ux)

ux

)
dF (x).

This yields

1

u

∫ u

0
[1−<f(v)]dv ≥

∫
|ux|>1

(
1− sin(ux)

ux

)
dF (x) ≥ A−1F ([−1/u, 1/u]c) ,

where A−1 := inf
{
1− sin t

t : |t| ≥ 1
}
> 0. �

The next theorem simplifies the assumption of mass-preservation in Proposition 7.7.

Theorem 7.13 (The continuity theorem). For n ≥ 1, let Fn be a distribution function and
fn be the corresponding characteristic function fn. Then, there exists F ∈ N such that Fn
converges in distribution to F if and only if fn converges pointwise to some function f , which
is continuous at 0. Furthermore, f is the characteristic function of F .

Proof. By Proposition 7.7, since {eiux : u ∈ R} is N -separating, it remains to prove that if
fn → f and f is continuous at 0, then (Fn)

∞
n=1 is mass-preserving. By Proposition 7.12(5),

one may choose a universal constant A > 0 such that

Fn([−1/u, 1/u]c) ≤ A

u

∫ u

0
[1−<fn(v)]dv

By the Lebesgue dominant convergence theorem, we have

lim sup
n→∞

Fn([−1/u, 1/u]c) ≤ A

u

∫ u

0
[1−<f(v)]dv.

Since f is continuous at 0, the above inequality implies

lim
u↓0

lim sup
n→∞

Fn([−1/u, 1/u]c) = 0.

This is equivalent to say that, for any ϵ > 0, there is u > 0 and N ∈ N such that

Fn([−1/u, 1/u]c) ≤ ϵ, ∀n ≥ N.

This implies (Fn)
∞
n=1 is mass-preserving. �
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Lemma 7.14. Let (Fn)
∞
n=1 be a sequence in N with characteristic functions (fn)

∞
n=1. If Fn

D-converges to F ∈ N , then, for any ϵ > 0, there is δ > 0 such that

|fn(u+ h)− fn(u)| < ϵ, ∀|h| < δ, u ∈ R, n ≥ 1.

Proof. Since Fn converges to F in distribution, (Fn)
∞
n=1 is mass-preserving. For ϵ > 0, we

choose a finite interval I such that Fn(I
c) < ϵ/3 for all n ≥ 1. This implies that, for u, h ∈ R,

|fn(u+ h)− fn(u)| ≤
∫
R
|eihx − 1|dFn(x) ≤

∫
I
|eihx − 1|dFn(x) + 2Fn(I

c) ≤ ∆(h) +
2ϵ

3
,

where ∆(h) = maxx∈I |eihx − 1|. It is clear that ∆(h) → 0 as |h| → 0. This implies that one
may choose δ > 0 such that ∆(h) < ϵ/3 when |h| < δ. �

Theorem 7.15. For n ≥ 1, let Fn ∈ N and fn(u) =
∫
R e

iuxdFn(x). Then, there exists F ∈ N
such that Fn D-converges to F if and only if fn converges uniformly to some function f in
every finite interval.

Proof. By Theorem 7.13, it remains to show that if Fn D-converges to F , then fn converges
uniformly on any finite interval. Let I be a finite interval. By Lemma 7.14, we may choose,
for each ϵ > 0, a positive constant δ > 0 such that

|fn(u+ h)− fn(u)| < ϵ/3, ∀|h| < δ, u ∈ R, n ≥ 1

and

|f(u+ h)− f(u)| < ϵ/3, ∀|h| < δ, u ∈ R.

Let u1 < u2 < · · · < uk be points in I such that I ⊂
⋃k
i=1(ui− δ, ui+ δ). Since fn(ui) → f(ui)

for 1 ≤ i ≤ k, we may choose N ∈ N such that

max
1≤i≤k

|fn(ui)− f(ui)| < ϵ/3, ∀n ≥ N.

This implies that, for u ∈ I with |u− ui| < δ,

|fn(u)− f(u)| ≤ |fn(u)− fn(ui)|+ |fn(ui)− f(ui)|+ |f(ui)− f(u)| < ϵ.

when n ≥ N . �

Exercise 7.7. A random variable is said to have a symmetric distribution if P(X ∈ B) =
P(−X ∈ B) for all B ∈ B(R). Prove that the characteristic function of X is real if and only
if X has a symmetric distribution.

Exercise 7.8. Show that any characteristic function f is non-negative definite, that is, for
any λ1, ..., λn ∈ C and u1, ..., un ∈ R,

n∑
k,ℓ=1

f(uk − uℓ)λkλℓ ≥ 0.

Exercise 7.9. For n ≥ 1, let bn ∈ R and Xn = bn a.s. with characteristic function fn. Prove
that the following are equivalent.

(1) Xn
D→ X for some X ∈ N .

(2) bn is Cauchy.
(3) There is ϵ > 0 such that the sequence (fn(u))

∞
n=1 is Cauchy for all |u| < ϵ.

Corollary 7.16. Let Xn be random variables with characteristic function fn. Then, Xn
D→ 0

if and only if fn → 1 on (−a, a) for some a <∞.
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Proof. One direction is obvious from Theorem 7.13. For the other direction, assume that fn
converges to 1 on (−a, a). Let Fn be the distribution of Xn. By Proposition 7.12 (5), there is
A <∞ such that

Fn([−1/a, 1/a]c) ≤ A

a

∫ a

0
(1−<fn(v))dv, ∀n ≥ 1.

Since fn → 1 on (−a, a), the right hand side converges to 0 and, thus, Fn is mass-preserving.
Let (Fkn)

∞
n=1 be a subsequence of (Fn)

∞
n=1 and (Fn′

k
)∞k=1 be a D-convergent further subse-

quence with limit F ∈ N . Let f be the characteristic function of F . Then, f is identically 1
on (−a, a). This implies

F ({2ℓπ/u : ℓ ∈ Z}) = 1, ∀0 < |u| < a.

Hence, F ({0}) = 1, as desired. �
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