8. THE CENTRAL LIMIT THEOREMS
8.1. The central limit theorem for i.i.d. sequences. Recall that C§°(R) is N -separating.
Theorem 8.1. Let X1, Xo,... be i.i.d. random variables with EX; = 0 and EX? = 02 €
(0,00). Suppose that there is a random variable X such that
X1+ + X,
Vno
Then, for any i.i.d. random variables Y1,Ys, ... with EY; = 0 and EY{ = §2 € (0, 00),
Vit +Y
\/no

Proof. 1t loses no generality to assume that ¢ = § = 1 and that (X,,)52; and (Y,)°, are
independent. Set

— X in distribution.

— X in distribution.

Sn:)(1_}_..._|_)(n7 Tn:Yl_F.”_*—Yn,

vn vn
Clearly, E(S2) = E(T2) = 1. By Exercise 7.3, (5,)%; and (7,,)S2, are mass-preserving. Note
that Ef(S,,) — Ef(X) for any bounded continuous function f. Since C§°(R) is N-separating,
to prove this theorem, it remains to show that Ef(S,) — Ef(T,) — 0 for all f € C§°(R).
Let f € C°(R). For 0 < k <n, set

Xi+- A X+ Ve -+ Y

Un,k =

vn
and X v
Vi = f(Unie + 55 ) = F(Unp + =5 ).
w= g (o ) =1 (v 1)
Clearly, f(Sn) — f(Tn) = >_f_1 Vo By Taylor’s theorem, there are 6, 0 € [0,1] such that
X —Yi Xl? " X Yk2 " Y
1 =——F - 0— | — =~ 06— | .

Set A¢(h) = max{|f"(z) — f"(y)| : | —y| < h}. Since f” is uniformly continuous, As(h) — 0
as h — 0. Note that Ag(h) < Ay(h+6) < Ay(h)+Ag(6). This implies that Ay is continuous
and, thus, Borel measurable. By (8.1), we obtain

1 ol (35) o (3)

EVk = 5B (X2 = V)" (Un)]
EViil < 5 B [lef <|X1|> N <|Yl|ﬂ |

or, equivalently,

2n
vn vn

Consequently, this yields

(5w - B1()l < 52 | x2a, () vea, (2],

By the Lebesgue dominated convergence theorem, Ef(S,) — Ef(T,) — 0 as n — oo. (|
The next theorem is a simple corollary of Theorems 1.4 and 8.1.

Theorem 8.2 (The central limit theorem). Let X, Xo,... be i.i.d. random variables with
mean p and variance o > 0. Then,

ov/n

— N(0,1) in distribution.
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Remark 8.1. Let X, Xo, ... be i.i.d. random variables with P(X; = 1) =P(X; = —-1) =1/2
and X be a standard normal random variable. Let f,,, f be the characteristic functions of
X,,X. Note that
N —iu
fu(u) = % =cosu, Vn=1,2,..

By the central limit theorem, we have

fu <\;%>n - <cos <\;‘ﬁ>)n = flu) VueR.

Using Taylor’s theorem, one has, for fixed u € R,
2

cos(u/v/m) = <1 - ;‘n> (1+0(n72), asn — oc.

This leads to .
f(u) = lim <1 - “> (1+0(n2)" =e /2

n—o00 2n

8.2. The central limit theorem for non-identical distributions. In this section, we
introduce two famous results related to the central limit theorem given by J. Lindeburg and
W. Feller respectively in 1922 and 1935.

For n > 1, let ,, be a positive integers and Xn1, ..y Xpr, be independent random variables
with mean 0 and variance Var(X, ;) = O'n e Set

Tn

Sn:ZXn,ka 52 = Var(S, Zank
k=1

The triangular array {X,, , : 1 <k <r,,n > 1} is said to possess
(1) the Lindeberg condition (LC) if, for all € > 0,

1 Tn

22/ szkdIP’—>O as n — oo.
S =1 Xkl Zesn}

(2) the uniform asymptotic negligibility (UAN) if
2

o
n,k

max —2—>0 as n — oo.

1<k<rn S2

(3) the central limit theorem (CLT) if

Sn D
Sn

Theorem 8.3 (Lindeberg(1922)). LC' = UAN + CLT.
Theorem 8.4 (Feller(1935)). UAN + CLT = LC.
Remark 8.2. Under UAN, CLT < LC.

N(0,1), asn — oo.

To prove the above theorems, we need the following setting. For n > 1 and € > 0, set

Ap(e) = / X2 dP (LC)
n =1 Y UXnk|>esn}

B (e) = / | X | dP
nk 1 {1 Xn kl<esn}
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and

1 Tn 0.2 :
Cn=— E o, D,= max == (UAN).
s : 1<k<r, s2

" k=1
Forn>1and 1 <k <r,, let f, ; be the characteristic function of X, ; and define

.

~ u —u202 , /(252)

fn,k — ] — € ok "
Sn

En(u) = Z
k=1
Lemma 8.5. In the above setting, we have
(1) Bu(e) <e.
(2) Cp, < Dy.
(3) D, < Ap(e) + €.
(4) Zp(u) < u?A,(€) + [ulPBy(e) + uC,.

Proof. (1) and (2) are obvious. (3) follows immediately from the following inequality.

Tnk 1 2 1 2 2
k< X2, dP+ — X2, dP < Ap(e) + €.
Sn Sh {|Xn,k|>€sn} Sh {1 X0 k| <esn}

To see (4), we need the fact that, for any random variable Y with mean 0 and variance b > 0,
|Ee’Y — e b2 < E|R(Y)| + b,
where R(y) = e® — (14 iy — 1y?). Observe that e=® — 1+ a € [0,a%/2] for a > 0 and
. Y2
R(Y)— (Y —e 2 =72 1 iy + -
Replacing a with b/2 and taking the expectation on both sides gives the desired inequality.
Next, let Y = “2nk  This implies

E

X u40:11
\fn,k<u/sn>—e‘“"i*k/@%SE‘RC k>’+ 3

Sn sk

We will use the inequality |R(y)| < y? Aly|? to bound the first term of the right side. To prove
this inequality, it suffices to consider y > 0, since R(—y) = R(y). Note that

R(y) =ie" —i+y, R'(y)=—e¥+1, R"(y) = —ie".

This implies
R(0) = R'(0) = R"(0) =0, [R'(y)| <2, |[R"(y)| = 1.

Since R, R', R” are continuously differentiable, we have that, for y > 0,

)
R'(y)| < /0 R"(dz=y = |R'(5)|<2ry
R (y)] < / IR ()= < (29) A (12/2)

Ry)| < /0 " IR(2)ldz < 4P A @16) < 4P Ay

Consequently, we obtain

X Xor\?
e ()= S (52
Sn {|Xn,k‘2€5n} Sn {|Xn,k:‘<53n}

and this proves (4). O
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Proof of Theorem 8.3. First, it is clear that LC' is exactly the case A,(e) — 0 for all € > 0
and UAN is equivalent to D,, — 0. By Lemma 8.5(3), LC implies UAN and then ¥,,(u) — 0,
as n — oo, for all u € R.

To show the C' LT, it is equivalent to prove

Tn
u 2
I] fus () IS
S
k=1 n

where f, i is the c.f. of X, ;. Let 21,...,2, and wq, ..., w, be complex numbers with absolute
values at most 1. Note that

n n
[[ == ] w
k=1

k=1

n
< Z |z — wy.
=1

Letting 2, = fnx(u/sn) and wy, = exp{—0c?2 ,u?/(2s2)} implies

H o <U> 2
Sn
k=1

<¥,(u) =0, asn— oo.

O

Definition 8.1. Any triangular array {X,,; : 1 < k < r,,n > 1} with EX,, ; = 0 is said to
have Lyapunov’s condition if

Tn

1
Ln(0) = 555 ZE|XM€|2+6 — 0 for some § > 0.
nook=1

Remark 8.3. Note that, for any random variable X,

/ X2dP < / X2
{|X|>es} {|X|>es}

Lyapunov’s condition = LC.

X

€S

E|X|2+5

4
dP <
- €950

This implies

Corollary 8.6. Lyapunov’s condition implies CLT.
Proof of Theorem 8.4. For n > 1 and 1 <k <1y, let oy, (u) = frr(u) — 1 and

Tn 2 Tn . 2X2

U U ; wXn e U k

= E — § E Xy /50 _ 1 _ n, n,
wn(u) £ Pn,k (Sn> + 5 = € s + 28%

Step 1: An(e) < GRY, (%) To see this, observe that, for 1 < k < r,,

2 2 2 w92
u U 0,k . u?X?,
R “ nk | g | guXos/on _q ,
Pn.k <5n) + 28% [e + 23% ]
2x2 2v2
u u*X
= COS ( n,k) _ ;’ka > / cos <UXn,k> 14 ;,k AP
" 2sn {IXn,k|>esn} Sn 252
1 2 ’LL2 2
n J{|Xn k[>esn}

In the above computations, the first inequality uses the fact

2

" t
cost—1+2:/(s—sins)ds>0, vt >0,
0
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and the second inequality applies coss —1 > —2. Summing up k yields

u

Runl > (% - 2) Ao

The desired inequality is given by choosing u = 4/e.
Step 2: UAN = maxy, |¢n k(u/s,)| — 0 for all u € R. First, observe that, for ¢t > 0,

t
(8.2) et —1= / ie"*ds.
0

This implies |e® — 1| < |¢| A 2. Using this fact, we have

Pn,k <u>‘ < E|eian,k/Sn _ 1| <E [2 A % :|
Sn .
X o
{|Xn,k|<esn} Sn €°s2

Thus, for all € > 0,

< _2
| ax |onk(u/sn)| < 26Dy + €|ul,

which proves the desired property.

Step 3: UAN = [[}m, et ®/sn) — [T, for(u/s,) — 0. Since |f,x(v)] < 1, we have
Ronk(v) = Rfpx(v) — 1 <0 and then |e?+(V)| = exp{Rpn1(v)} < 1. Fix u € R. By Step 2,
there is N > 0 such that |, (u/sp)| < € for 1 <k <r, and n > N. This implies

k=1
Tn

<€ Z ’(Pn,k(u/sn)’27 Vn > N,
k=1

Tn

H ePrk(u/sn) _ ﬁ Frn(u/5n)
k=1

k=1
Tn
k=1

where the last inequality comes from the following fact

S
@ il

k=2
LI tl s 42
S/ ]e”—l|ds§/ / drds = —.
0 o Jo 2

ePnk(u/sn) _ Fon(u/sn)

ePnk(u/sn) _ 1 _ Onk(u/sn)

e —1—al = < |af?el, va e cC.

Moreover, by (8.2), one has, for t € R,

¢
/ i(e" —1)ds
0

e — 1 —it| =

This implies

T r r .
ni(u/sn)|? < e nk(U/sn)| < e Eemxnv’“/s”—l—M
> lenn(u/sn)| n, ;
k=1 k=1 k=1 n
sl gy _ oy
<o 2PN N

This part is proved by the result in Step 2.
Finally, if UAN and CLT hold, then by Step 3,

exp {Z (pnk(u/sn)} eV

k=1
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or equivalently e¥»(®) — 1. This implies
exp{ Ry (u)} = [e¥ W] — 1,
which gives R, (u) — 0. By Step 1, LC follows.

O

8.3. D-Convergence under UAN. Consider the triangular array {X, x|1 <k <r,,n > 1},

where X, 1, ..., X, »,, are independent and
EX,p =0, EXZ, =02, Zak—l

Let f, 1 be the characteristic function of X, ; and set S =30 Xk

Assumption: 5, B L under UAN.
Note that

Tn Tn
D
So=L & fs,=][fr—f & eXP{Zsﬂn,k}%fL
k=1

k=1

where ¢, . = fnr — 1 and the second equivalence comes from step 3 in the proof of Theorem

8.4. Observe that,

(8.3) - nk(w) = [ (€™ —1 —juz)dF,(x)
;so k /R

where F,, = Z’,;"Zl F, 1 and F, is the distribution function of X, ;. For n > 1, set

dvp(z) = 22dF,(z ) Clearly, v,({0}) = 0 and v, is absolutely continuous w.r.t.

Radon derivative z2. Note that F}, is not a probability, but v, is, because
vn(R) = / 2?dF, (x Z/xank Za e=1L
R
For u € R, set

(8.4)

h(u, ) = (e — 1 —juz)/z? ifx#0
) —u?/2 if =0

By (8.3), we have

" i) = [ hlu,z)dvy(2)
;so K /R

F,, with

Recall that the class M is sequentially compact under the D-convergence. One may choose
v € M and a subsequence (vp, )72, which D-converges to v. Clearly, h is continuous and

vanishes at +£o0o. This implies

/R B, 2)dvn () — /R h(u, 2)dv ().

Exercise 8.1. Let u, € N and p € M. Assume that p,(zg) — u(zg) for some xg € C(u).
Prove that p, — w in distribution if and only if fR fdp, — fR fdu for all continuous functions

vanishing at +oo.

Next, let 02 = v({0}) and Q be a measure satisfying dQ(z) = m%dl/(x) for z # 0 and

Q({0}) = 0. In this setting, we may rewrite
2

/Rh(u,:c)dl/(x) = —?uQ + /R(ei“w — 1 — jux)dQ(x).
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This implies, for u € R,

o2

(8.5) fr(u) = exp {—2u2 + /R(ei“x —1- iux)dQ(x)} ,

where Q({0}) = 0 and o* + [ z2dQ(z) < 1.

Theorem 8.7. For n > 1, let Xy 1,..., Xy, be independent random variables with finite
variances and set S, =Y ;" Xp . Assume that UAN holds and

ES, — a, Var(S,) — b* < o0.
If S, 2 L, then fr(u) = e?™ with

o2b242

Y(u) =iau —

+ /R(emz — 1 —iux)dK(z),

where o is a constant, K({0}) =0 and [, 2*dK(z) < oo.

Proof. Forn>1and 1 <k <r,, set

v Xn k — ]EXn k = LY S’n — ESn
Xnk=—\r— Sn=) Xpnp=—F7——.
7k Var(Sy,) kzzl ’k \/ Var(S,)

Clearly, E)?nk =0and )", E)?Zk = 1. Since S,, z L, ES,, — a and Var(S,) — b%, we have

S, B L=

L—a
T

By (8.5), there is a constant ¢ > 0 and a measure @ on R satisfying Q({0}) = 0 and o2 +
Jg #2dQ(z) < 1 such that

2

f7(u) = exp {—(’219 + /R(em 1 iux)dQ(:v)} .

By setting dK (y) = dQ(y/b), we obtain
2b2

fr(u) = "™ f7(bu) = exp {iau - %uQ + / (e —1 — zuy)dK(y)} .
R

Remark 8.4. Consider some particular cases.
(1) If K=0and 0 =0, then L =a as..
(2) If K =0, then L L2 N(a,o?b?).
(3) If a =0 =0 and K = ¢, then fr(u) = exp {c(e™® — 1 —iux)}. Let Z) be a Poisson
random variable with parameter A > 0, i.e. P(Zy =n) = e *\"/n! for n = 0,1,2, ....
Then f7, (u) = exp {(e¢™ — 1)A} and L 2 x(Z. — c).
(4) fa=o0=0and K =) _}_, cx0s,, then L 2 Y vy Tk(Ze,, — cx), where Z.,, ..., Z,, are
independent.
Proposition 8.8. Let ¢(u) = iau — o?u?/2 + [p(e"* — 1 — iux)dK (), where K({0}) =0
and [p 22dK (x) < oo. Then, e¥™ is a characteristic function of some random variable with

finite second moment.
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Proof. Tt loses no generality to assume that @ = o = 0. Set du(z) = 22dK () and let h be the
function in (8.4). Clearly, p(R) < oo and

(8.6) /( wr _ ] —juz)dK (x /h u, z)dp(x
R

Since h is uniformly continuous and bounded on A x R for any bounded set A C R, the right
side of (8.6), as a function of u, is continuous on R.
Forn >1,let z, = —n+ % for all Kk =0,1,...,2n? — 1 and set

2n?—1 2n2—1
/’LTL = E ,U([xn,kaxn,k + %))(517”’]97 hn(uax) = Z h(u? xn7k)1[$n,kazn,k+%)(x)'
k=0 k=0

Immediately, we have
2n2-1

/ B, 2)dpin(@) = 3 s ) [T s T + 1)
R k=0

— /R B (u, 2)dpu(z) — /R h(u, z)dp(z),

where the convergence is given by the Lebesgue dominated convergence theorem. (In fact, py,
D-converges to p and, for u € R, x +— h(u,x) vanishes at infinity. By Exercise 8.1, one has
the above convergence.)

Next, set ¢, = m;i,u([xnk,mnk + %)) if k # n?, Cnp2 = 0 and

2n2—1 2n2—1
K, = Z Cn,k(smmk; Xp = Z xn,k(ch,k - Cn,k)
k=0 k=0
where (Z))>0 are independent Poisson random variables with EZ) = A and Zy = 0. Then,
2
uxr u
[ Hw @) = [ (€ =1 = ina)aK, (@) = (o, )

and exp { [ 1= )iy )} = fi, () = B

Letting n — oo implies

an(u)—>exp{/R( wr 1 —jur)dK (z )}, Yu € R.

By the continuity theorem, there is a random variable X such that X,, — X in distribution
and

) =exp{ [ (€ <1~ iua)if ()}

Observe that
2n2—1
EX2= 3 a2,E(Z,, — cap)? = nll—n,n)) — u([0,1/n)).
k=0

By Corollary 7.6, one has
= liminf EX? = u(R) < oo.

n—oo
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