
8. The central limit theorems

8.1. The central limit theorem for i.i.d. sequences. Recall that C∞
0 (R) is N -separating.

Theorem 8.1. Let X1, X2, ... be i.i.d. random variables with EX1 = 0 and EX2
1 = σ2 ∈

(0,∞). Suppose that there is a random variable X such that

X1 + · · ·+Xn√
nσ

→ X in distribution.

Then, for any i.i.d. random variables Y1, Y2, ... with EY1 = 0 and EY 2
1 = δ2 ∈ (0,∞),

Y1 + · · ·+ Yn√
nδ

→ X in distribution.

Proof. It loses no generality to assume that σ = δ = 1 and that (Xn)
∞
n=1 and (Yn)

∞
n=1 are

independent. Set

Sn =
X1 + · · ·+Xn√

n
, Tn =

Y1 + · · ·+ Yn√
n

.

Clearly, E(S2
n) = E(T 2

n) = 1. By Exercise 7.3, (Sn)
∞
n=1 and (Tn)

∞
n=1 are mass-preserving. Note

that Ef(Sn) → Ef(X) for any bounded continuous function f . Since C∞
0 (R) is N -separating,

to prove this theorem, it remains to show that Ef(Sn)− Ef(Tn) → 0 for all f ∈ C∞
0 (R).

Let f ∈ C∞
0 (R). For 0 ≤ k ≤ n, set

Un,k =
X1 + · · ·+Xk−1 + Yk+1 + · · ·+ Yn√

n

and

Vn,k = f

(
Un,k +

Xk√
n

)
− f

(
Un,k +

Yk√
n

)
.

Clearly, f(Sn)− f(Tn) =
∑n

k=1 Vn,k. By Taylor’s theorem, there are θ, θ̃ ∈ [0, 1] such that

(8.1) Vn,k =
Xk − Yk√

n
f ′(Un,k) +

X2
k

2n
f ′′
(
Un,k + θ

Xk√
n

)
−
Y 2
k

2n
f ′′
(
Un,k + θ̃

Yk√
n

)
.

Set ∆f (h) = max{|f ′′(x)− f ′′(y)| : |x− y| ≤ h}. Since f ′′ is uniformly continuous, ∆f (h) → 0
as h→ 0. Note that ∆f (h) ≤ ∆f (h+ δ) ≤ ∆f (h)+∆f (δ). This implies that ∆f is continuous
and, thus, Borel measurable. By (8.1), we obtain∣∣∣∣EVn,k − 1

2n
E
[
(X2

k − Y 2
k )f

′′(Un,k)
]∣∣∣∣ ≤ 1

2n
E
[
X2
k∆f

(
|Xk|√
n

)
+ Y 2

k ∆f

(
|Yk|√
n

)]
or, equivalently,

|EVn,k| ≤
1

2n
E
[
X2

1∆f

(
|X1|√
n

)
+ Y 2

1 ∆f

(
|Y1|√
n

)]
.

Consequently, this yields

|Ef(Sn)− Ef(Tn)| ≤
1

2
E
[
X2

1∆f

(
|X1|√
n

)
+ Y 2

1 ∆f

(
|Y1|√
n

)]
.

By the Lebesgue dominated convergence theorem, Ef(Sn)− Ef(Tn) → 0 as n→ ∞. �
The next theorem is a simple corollary of Theorems 1.4 and 8.1.

Theorem 8.2 (The central limit theorem). Let X1, X2, ... be i.i.d. random variables with
mean µ and variance σ2 > 0. Then,

X1 + · · ·+Xn − nµ

σ
√
n

→ N(0, 1) in distribution.
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Remark 8.1. Let X1, X2, ... be i.i.d. random variables with P(X1 = 1) = P(X1 = −1) = 1/2
and X be a standard normal random variable. Let fn, f be the characteristic functions of
Xn, X. Note that

fn(u) =
eiu + e−iu

2
= cosu, ∀n = 1, 2, ...

By the central limit theorem, we have

fn

(
u√
n

)n
=

(
cos

(
u√
n

))n
→ f(u) ∀u ∈ R.

Using Taylor’s theorem, one has, for fixed u ∈ R,

cos(u/
√
n) =

(
1− u2

2n

)
(1 +O(n−2)), as n→ ∞.

This leads to

f(u) = lim
n→∞

(
1− u2

2n

)n
(1 +O(n−2))n = e−u

2/2.

8.2. The central limit theorem for non-identical distributions. In this section, we
introduce two famous results related to the central limit theorem given by J. Lindeburg and
W. Feller respectively in 1922 and 1935.

For n ≥ 1, let rn be a positive integers and Xn,1, ..., Xn,rn be independent random variables
with mean 0 and variance Var(Xn,k) = σ2n,k. Set

Sn =

rn∑
k=1

Xn,k, s2n = Var(Sn) =

rn∑
k=1

σ2n,k.

The triangular array {Xn,k : 1 ≤ k ≤ rn, n ≥ 1} is said to possess

(1) the Lindeberg condition (LC) if, for all ϵ > 0,

1

s2n

rn∑
k=1

∫
{|Xn,k|≥ϵsn}

X2
n,kdP → 0 as n→ ∞.

(2) the uniform asymptotic negligibility (UAN) if

max
1≤k≤rn

σ2n,k
s2n

→ 0 as n→ ∞.

(3) the central limit theorem (CLT) if

Sn
sn

D→ N(0, 1), as n→ ∞.

Theorem 8.3 (Lindeberg(1922)). LC ⇒ UAN + CLT .

Theorem 8.4 (Feller(1935)). UAN + CLT ⇒ LC.

Remark 8.2. Under UAN, CLT ⇔ LC.

To prove the above theorems, we need the following setting. For n ≥ 1 and ϵ > 0, set

An(ϵ) =
1

s2n

rn∑
k=1

∫
{|Xn,k|≥ϵsn}

X2
n,kdP (LC)

Bn(ϵ) =
1

s3n

rn∑
k=1

∫
{|Xn,k|<ϵsn}

|Xn,k|3dP
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and

Cn =
1

s4n

rn∑
k=1

σ4n,k, Dn = max
1≤k≤rn

σ2n,k
s2n

(UAN).

For n ≥ 1 and 1 ≤ k ≤ rn, let fn,k be the characteristic function of Xn,k and define

Σn(u) =

rn∑
k=1

∣∣∣∣fn,k ( u

sn

)
− e−u

2σ2
n,k/(2s

2
n)

∣∣∣∣
Lemma 8.5. In the above setting, we have

(1) Bn(ϵ) ≤ ϵ.
(2) Cn ≤ Dn.
(3) Dn ≤ An(ϵ) + ϵ2.
(4) Σn(u) ≤ u2An(ϵ) + |u|3Bn(ϵ) + u4Cn.

Proof. (1) and (2) are obvious. (3) follows immediately from the following inequality.

σ2n,k
s2n

=
1

s2n

∫
{|Xn,k|≥ϵsn}

X2
n,kdP+

1

s2n

∫
{|Xn,k|<ϵsn}

X2
n,kdP ≤ An(ϵ) + ϵ2.

To see (4), we need the fact that, for any random variable Y with mean 0 and variance b > 0,

|EeiY − e−b/2| ≤ E|R(Y )|+ b2,

where R(y) = eiy − (1 + iy − 1
2y

2). Observe that e−a − 1 + a ∈ [0, a2/2] for a ≥ 0 and

R(Y )− (eiY − e−b/2) = e−b/2 − 1− iY +
Y 2

2
.

Replacing a with b/2 and taking the expectation on both sides gives the desired inequality.

Next, let Y =
uXn,k
sn

. This implies

|fn,k(u/sn)− e−u
2σ2
n,k/(2s

2
n)| ≤ E

∣∣∣∣R(uXn,k

sn

)∣∣∣∣+ u4σ4n,k
s4n

.

We will use the inequality |R(y)| ≤ y2∧|y|3 to bound the first term of the right side. To prove

this inequality, it suffices to consider y > 0, since R(−y) = R(y). Note that

R′(y) = ieiy − i+ y, R′′(y) = −eiy + 1, R′′′(y) = −ieiy.
This implies

R(0) = R′(0) = R′′(0) = 0, |R′′(y)| ≤ 2, |R′′′(y)| = 1.

Since R,R′, R′′ are continuously differentiable, we have that, for y ≥ 0,

|R′′(y)| ≤
∫ y

0
|R′′′(z)|dz = y ⇒ |R′′(y)| ≤ 2 ∧ y

|R′(y)| ≤
∫ y

0
|R′′(z)|dz ≤ (2y) ∧ (y2/2)

|R(y)| ≤
∫ y

0
|R′(z)|dz ≤ y2 ∧ (y3/6) ≤ y2 ∧ y3

Consequently, we obtain

E
∣∣∣∣R(uXn,k

sn

)∣∣∣∣ ≤ ∫
{|Xn,k|≥ϵsn}

(
uXn,k

sn

)2

dP+

∫
{|Xn,k|<ϵsn}

∣∣∣∣uXn,k

sn

∣∣∣∣3 dP
and this proves (4). �
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Proof of Theorem 8.3. First, it is clear that LC is exactly the case An(ϵ) → 0 for all ϵ > 0
and UAN is equivalent to Dn → 0. By Lemma 8.5(3), LC implies UAN and then Σn(u) → 0,
as n→ ∞, for all u ∈ R.

To show the CLT , it is equivalent to prove
rn∏
k=1

fn,k

(
u

sn

)
→ e−u

2/2,

where fn,k is the c.f. of Xn,k. Let z1, ..., zn and w1, ..., wn be complex numbers with absolute
values at most 1. Note that ∣∣∣∣∣

n∏
k=1

zk −
n∏
k=1

wk

∣∣∣∣∣ ≤
n∑
k=1

|zk − wk|.

Letting zk = fn,k(u/sn) and wk = exp{−σ2n,ku2/(2s2n)} implies∣∣∣∣∣
rn∏
k=1

fn,k

(
u

sn

)
− e−u

2/2

∣∣∣∣∣ ≤ Σn(u) → 0, as n→ ∞.

�
Definition 8.1. Any triangular array {Xn,k : 1 ≤ k ≤ rn, n ≥ 1} with EXn,k = 0 is said to
have Lyapunov’s condition if

Ln(δ) =
1

s2+δn

rn∑
k=1

E|Xn,k|2+δ → 0 for some δ > 0.

Remark 8.3. Note that, for any random variable X,∫
{|X|>ϵs}

X2dP ≤
∫
{|X|>ϵs}

X2

∣∣∣∣Xϵs
∣∣∣∣δ dP ≤ E|X|2+δ

ϵδsδ
.

This implies
Lyapunov’s condition ⇒ LC.

Corollary 8.6. Lyapunov’s condition implies CLT .

Proof of Theorem 8.4. For n ≥ 1 and 1 ≤ k ≤ rn, let φn,k(u) = fn,k(u)− 1 and

ψn(u) =

rn∑
k=1

φn,k

(
u

sn

)
+
u2

2
=

rn∑
k=1

E

[
eiuXn,k/sn − 1−

iuXn,k

sn
+
u2X2

n,k

2s2n

]
.

Step 1: An(ϵ) ≤ ϵ2

6 <ψn
(
4
ϵ

)
. To see this, observe that, for 1 ≤ k ≤ rn,

<

[
φn,k

(
u

sn

)
+
u2σ2n,k
2s2n

]
= <E

[
eiuXn,k/sn − 1 +

u2X2
n,k

2s2n

]

=E

[
cos

(
uXn,k

sn

)
− 1 +

u2X2
n,k

2s2n

]
≥
∫
{|Xn,k|≥ϵsn}

[
cos

(
uXn,k

sn

)
− 1 +

u2X2
n,k

2s2n

]
dP

≥ 1

s2n

∫
{|Xn,k|≥ϵsn}

X2
n,k

(
u2

2
− 2

ϵ2

)
dP.

In the above computations, the first inequality uses the fact

cos t− 1 +
t2

2
=

∫ t

0
(s− sin s)ds ≥ 0, ∀t ≥ 0,
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and the second inequality applies cos s− 1 ≥ −2. Summing up k yields

<ψn(u) ≥
(
u2

2
− 2

ϵ2

)
An(ϵ).

The desired inequality is given by choosing u = 4/ϵ.
Step 2: UAN ⇒ maxk |φn,k(u/sn)| → 0 for all u ∈ R. First, observe that, for t > 0,

(8.2) eit − 1 =

∫ t

0
ieisds.

This implies |eit − 1| ≤ |t| ∧ 2. Using this fact, we have∣∣∣∣φn,k ( u

sn

)∣∣∣∣ ≤ E|eiuXn,k/sn − 1| ≤ E
[
2 ∧

∣∣∣∣uXn,k

sn

∣∣∣∣]
≤ 2P(|Xn,k| ≥ ϵsn) +

∫
{|Xn,k|<ϵsn}

∣∣∣∣uXn,k

sn

∣∣∣∣ dP ≤
2σ2n,k
ϵ2s2n

+ ϵ|u|

Thus, for all ϵ > 0,

max
1≤k≤rn

|φn,k(u/sn)| ≤ 2ϵ−2Dn + ϵ|u|,

which proves the desired property.
Step 3: UAN ⇒

∏rn
k=1 e

φn,k(u/sn) −
∏rn
k=1 fn,k(u/sn) → 0. Since |fn,k(v)| ≤ 1, we have

<φn,k(v) = <fn,k(v)− 1 ≤ 0 and then |eφn,k(v)| = exp{<φn,k(v)} ≤ 1. Fix u ∈ R. By Step 2,
there is N > 0 such that |φn,k(u/sn)| < ϵ for 1 ≤ k ≤ rn and n ≥ N . This implies∣∣∣∣∣

rn∏
k=1

eφn,k(u/sn) −
rn∏
k=1

fn,k(u/sn)

∣∣∣∣∣ ≤
rn∑
k=1

∣∣∣eφn,k(u/sn) − fn,k(u/sn)
∣∣∣

=

rn∑
k=1

∣∣∣eφn,k(u/sn) − 1− φn,k(u/sn)
∣∣∣ ≤ eϵ

rn∑
k=1

|φn,k(u/sn)|2, ∀n ≥ N,

where the last inequality comes from the following fact

|eα − 1− α| =

∣∣∣∣∣α2
∞∑
k=2

αk−2

k!

∣∣∣∣∣ ≤ |α|2e|α|, ∀α ∈ C.

Moreover, by (8.2), one has, for t ∈ R,

|eit − 1− it| =
∣∣∣∣∫ t

0
i(eis − 1)ds

∣∣∣∣ ≤ ∫ |t|

0
|eis − 1|ds ≤

∫ |t|

0

∫ s

0
drds =

t2

2
.

This implies
rn∑
k=1

|φn,k(u/sn)|2 ≤ ϵ

rn∑
k=1

|φn,k(u/sn)| ≤ ϵ

rn∑
k=1

E
∣∣∣∣eiuXn,k/sn − 1−

iuXn,k

sn

∣∣∣∣
≤ ϵu2

2s2n

rn∑
k=1

EX2
n,k =

ϵu2

2
, ∀n ≥ N.

This part is proved by the result in Step 2.
Finally, if UAN and CLT hold, then by Step 3,

exp

{
rn∑
k=1

φn,k(u/sn)

}
→ e−u

2/2
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or equivalently eψn(u) → 1. This implies

exp{<ψn(u)} = |eψn(u)| → 1,

which gives <ψn(u) → 0. By Step 1, LC follows. �

8.3. D-Convergence under UAN. Consider the triangular array {Xn,k|1 ≤ k ≤ rn, n ≥ 1},
where Xn,1, ..., Xn,rn are independent and

EXn,k = 0, EX2
n,k = σ2n,k,

rn∑
k=1

σ2n,k = 1.

Let fn,k be the characteristic function of Xn,k and set Sn =
∑rn

k=1Xn,k.

Assumption: Sn
D→ L under UAN .

Note that

Sn
D→ L ⇔ fSn =

rn∏
k=1

fn,k → fL ⇔ exp

{
rn∑
k=1

φn,k

}
→ fL

where φn,k = fn,k − 1 and the second equivalence comes from step 3 in the proof of Theorem
8.4. Observe that,

(8.3)

rn∑
k=1

φn,k(u) =

∫
R
(eiux − 1− iux)dFn(x)

where Fn =
∑rn

k=1 Fn,k and Fn,k is the distribution function of Xn,k. For n ≥ 1, set
dνn(x) = x2dFn(x). Clearly, νn({0}) = 0 and νn is absolutely continuous w.r.t. Fn with
Radon derivative x2. Note that Fn is not a probability, but νn is, because

νn(R) =
∫
R
x2dFn(x) =

rn∑
k=1

∫
R
x2dFn,k(x) =

rn∑
k=1

σ2n,k = 1.

For u ∈ R, set

(8.4) h(u, x) =

{
(eiux − 1− iux)/x2 if x 6= 0

−u2/2 if x = 0

By (8.3), we have
rn∑
k=1

φn,k(u) =

∫
R
h(u, x)dνn(x)

Recall that the class M is sequentially compact under the D-convergence. One may choose
ν ∈ M and a subsequence (νnk)

∞
k=1 which D-converges to ν. Clearly, h is continuous and

vanishes at ±∞. This implies∫
R
h(u, x)dνnk(x) →

∫
R
h(u, x)dν(x).

Exercise 8.1. Let µn ∈ N and µ ∈ M. Assume that µn(x0) → µ(x0) for some x0 ∈ C(µ).
Prove that µn → µ in distribution if and only if

∫
R fdµn →

∫
R fdµ for all continuous functions

vanishing at ±∞.

Next, let σ2 = ν({0}) and Q be a measure satisfying dQ(x) = 1
x2
dν(x) for x 6= 0 and

Q({0}) = 0. In this setting, we may rewrite∫
R
h(u, x)dν(x) = −σ

2

2
u2 +

∫
R
(eiux − 1− iux)dQ(x).
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This implies, for u ∈ R,

(8.5) fL(u) = exp

{
−σ

2

2
u2 +

∫
R
(eiux − 1− iux)dQ(x)

}
,

where Q({0}) = 0 and σ2 +
∫
R x

2dQ(x) ≤ 1.

Theorem 8.7. For n ≥ 1, let Xn,1, ..., Xn,rn be independent random variables with finite
variances and set Sn =

∑rn
k=1Xn,k. Assume that UAN holds and

ESn → a, Var(Sn) → b2 <∞.

If Sn
D→ L, then fL(u) = eψ(u) with

ψ(u) = iau− σ2b2u2

2
+

∫
R
(eiux − 1− iux)dK(x),

where σ is a constant, K({0}) = 0 and
∫
R x

2dK(x) <∞.

Proof. For n ≥ 1 and 1 ≤ k ≤ rn, set

X̃n,k =
Xn,k − EXn,k√

Var(Sn)
, S̃n =

rn∑
k=1

X̃n,k =
Sn − ESn√
Var(Sn)

.

Clearly, EX̃n,k = 0 and
∑rn

k=1 EX̃2
n,k = 1. Since Sn

D→ L, ESn → a and Var(Sn) → b2, we have

S̃n
D→ L̃ =

L− a

b
.

By (8.5), there is a constant σ > 0 and a measure Q on R satisfying Q({0}) = 0 and σ2 +∫
R x

2dQ(x) ≤ 1 such that

f
L̃
(u) = exp

{
−σ

2

2
u2 +

∫
R
(eiux − 1− iux)dQ(x)

}
.

By setting dK(y) = dQ(y/b), we obtain

fL(u) = eiauf
L̃
(bu) = exp

{
iau− σ2b2

2
u2 +

∫
R
(eiuy − 1− iuy)dK(y)

}
.

�

Remark 8.4. Consider some particular cases.

(1) If K = 0 and σ = 0, then L = a a.s..

(2) If K = 0, then L
D
= N(a, σ2b2).

(3) If a = σ = 0 and K = cδx, then fL(u) = exp
{
c(eiux − 1− iux)

}
. Let Zλ be a Poisson

random variable with parameter λ > 0, i.e. P(Zλ = n) = e−λλn/n! for n = 0, 1, 2, ....

Then fZλ(u) = exp
{
(eiu − 1)λ

}
and L

D
= x(Zc − c).

(4) If a = σ = 0 and K =
∑n

k=1 ckδxk , then L
D
=
∑n

k=1 xk(Zck − ck), where Zc1 , ..., Zcn are
independent.

Proposition 8.8. Let ψ(u) = iau − σ2u2/2 +
∫
R(e

iux − 1 − iux)dK(x), where K({0}) = 0

and
∫
R x

2dK(x) < ∞. Then, eψ(u) is a characteristic function of some random variable with
finite second moment.
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Proof. It loses no generality to assume that a = σ = 0. Set dµ(x) = x2dK(x) and let h be the
function in (8.4). Clearly, µ(R) <∞ and

(8.6)

∫
R
(eiux − 1− iux)dK(x) =

∫
R
h(u, x)dµ(x).

Since h is uniformly continuous and bounded on A×R for any bounded set A ⊂ R, the right
side of (8.6), as a function of u, is continuous on R.

For n ≥ 1, let xn,k = −n+ k
n for all k = 0, 1, ..., 2n2 − 1 and set

µn =

2n2−1∑
k=0

µ([xn,k, xn,k +
1
n))δxn,k , hn(u, x) =

2n2−1∑
k=0

h(u, xn,k)1[xn,k,xn,k+ 1
n
)(x).

Immediately, we have∫
R
h(u, x)dµn(x) =

2n2−1∑
k=0

h(u, xn,k)µ([xn,k, xn,k +
1
n))

=

∫
R
hn(u, x)dµ(x) →

∫
R
h(u, x)dµ(x),

where the convergence is given by the Lebesgue dominated convergence theorem. (In fact, µn
D-converges to µ and, for u ∈ R, x 7→ h(u, x) vanishes at infinity. By Exercise 8.1, one has
the above convergence.)

Next, set cn,k = x−2
n,kµ([xn,k, xn,k +

1
n)) if k 6= n2, cn,n2 = 0 and

Kn =

2n2−1∑
k=0

cn,kδxn,k , Xn =

2n2−1∑
k=0

xn,k(Zcn,k − cn,k)

where (Zλ)λ>0 are independent Poisson random variables with EZλ = λ and Z0 ≡ 0. Then,∫
R
h(u, x)dµn(x) =

∫
R
(eiux − 1− iux)dKn(x)−

u2

2
µ([0, 1n))

and

exp

{∫
R
(eiux − 1− iux)dKn(x)

}
= fXn(u) = E[eiuXn ].

Letting n→ ∞ implies

fXn(u) → exp

{∫
R
(eiux − 1− iux)dK(x)

}
, ∀u ∈ R.

By the continuity theorem, there is a random variable X such that Xn → X in distribution
and

fX(u) = exp

{∫
R
(eiux − 1− iux)dK(x)

}
.

Observe that

EX2
n =

2n2−1∑
k=0

x2n,kE(Zcn,k − cn,k)
2 = µ([−n, n))− µ([0, 1/n)).

By Corollary 7.6, one has
EX2 = lim inf

n→∞
EX2

n = µ(R) <∞.

�
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