9. INFINITE DIVISIBILITY
Definition 9.1. A random variable X is infinitely divisible if, for any n > 1, there are
ii.d. random variables X, 1, ..., X, , such that
D
X:Xn,l+"'+Xn,n-

Remark 9.1. Equivalently, X is infinitely divisible if and only if, for n > 1, fx(u) = fn(u)",
where f, is a characteristic function of some random variable.

Ezxample 9.1. Consider the following two examples.

(1) Normal random variables: N (u,c?) 2 Ny(£, %2) + -4+ Nn(£, %2)

(2) Poisson random variables: Z) 2 Z/{/n + -+ 2y, since fz, (u) = exp{ (e —1)}.
Theorem 9.1. The following three classes are identical.

C1: The class of all limiting distributions X under UAN, that is,

Sn:Xn,1+~~—i—Xn7rn2>X as n — 0o,

where Xy 1, ..., Xp r, are independent with finite second moments such that ES,, and
Var(S,,) converges and maxy{Var(X,, ;)/Var(S,)} — 0.
Cy: The class of all distributions of which characteristic functions are of the form ¥,

where
o2

Y(u) = iau — + /R(ei“x — 1 —jux)dK(x)

with K({0}) =0 and [ #*dK (z) < oo.
Cs: The class of all infinitely divisible distributions with finite second moment.

Proof. C7 C (5 has been proved in Theorem 8.7. For Cy C (3, let X be a random variable
with c.f. fx(u) = e¥®, where

Y(u) =iau — (722112 + / (e — 1 — juzx)dK (z)
R

and K ({0}) =0 and [, #*dK () < co. By Proposition 8.8, let X1, ..., X5, be i.i.d. random
variables with c.f.s

exp {Z:Zu _ ((’/f)?u? + /R (e 1 — iux)dKn(:n)} ,

where K, ({0}) = 0 and dK,(z) = LdK(z). This implies fx (u) = [[r_; fx, () or equivalently
xZ X1 + .-+ X,,. The finiteness of EX? is immediate from Proposition 8.8.

For C5 C (1, let X be an infinitely divisible random variable with EX = p and Var(X) = o2.
For n > 1, let X,,1,..., X}, , be i.i.d. random variables such that X s Xp1+ -+ Xon.

Clearly, Var(X, 1) = %2 for 1 <k <nandn >1and the UAN holds for the triangular array
{Xn k1 <k <n,n>1}. This implies X € C}. O

In the following, we consider infinitely divisible random variables without the assumption
of finite second moment and generalize Theorem 9.1.

Proposition 9.2. A random variable X is infinitely divisible if and only if there are i.i.d.

random variables Xy 1, ..., Xpnpn such that S, = Xp1+ -+ Xpn 2) X.
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Proof. The necessity for the infinite divisibility is obvious. For the sufficiency, assume that
SngX. Fix m > 1 and set

n
Yok = Zan,(kq)mw Vi< k<m.
i=1

Obviously, Yy, 1, ..., Y m are iid. and Sy = Y1 + -+ + Yy, . This implies
]P)(Yn,l < _y)m = ]P)(Yn,k < -y, V1I<Ek<Z n) < IED(Smn < _my)~

Similarly, one may derive P(Y;, 1 > y)™ < P(Sp,, > my). Since Sy, z X, S;n and, thus,
Y,1 are mass-preserving. As a consequence, we may choose a subsequence (n)7°, of N such
that Y;,, ; converges in distribution to Y}, for all 1 < k < m. Clearly, Y7, ...,Y,, are identically
distributed. By creating the independency of Y7, ..., Y,,, the continuity theorem implies that

XEyvi4+. 4. 0

Theorem 9.3. Let X be a random variable with characteristic function f. Then, X is infin-
itely divisible if and only if

(9.1) F(u) = exp {iﬁu - "22“2 4 /R <em Lo > L+ 2° du(w)}

1+ a2 22

where 3,0 € R and v is a finite measure with v({0}) = 0.
To prove this theorem, we need the following proposition.

Proposition 9.4. Let X, 1,..., Xpn be i.i.d. random variables and set S, = > " | Xy ;. If
Sh 3 X, then X, 1 Bo.

Proof. Let f, and g, be characteristic functions of X, and S, and, for z € C\ (—o0,0],
let Argz € (—m,m) be the argument of z. Since S,, D-converges to X, we may choose, by
Theorem 7.15, a > 0 and § > 0 such that Rg, > 6 > 0 on (—a,a) for all n > 1. This implies
|Argg, (u)| < w/2 for |u| < a. Note that g, = (f,)". By the continuity of f,, this implies
Arggy,
Argfu(w) = 280 gy <,
which leads to Argfy,(u) — 0 for |u| < a. Moreover, by the fact |f,|" = |gn| > 0 on (—a,a)
for all n > 1, we have |f,| — 1 on (—a,a). As a result, f,(u) — 1 for |u| < a. By Corollary
7.16, X, 1 converges to 0 in distribution. O

Corollary 9.5. For any infinitely divisible random variable X, Ee®™X £ 0 for all u € R.

Proof. Let X, 1,..., X, be i.i.d. random variables such that S, = X, 1 +--- + X, 5, 2x.
Clearly, S, — X in distribution. By Proposition 9.4, X,, 1 — 0 in distribution. Let f,, f be
characteristic functions of X, 1, X. Then, f(u) = fn(u)" and fy(u) — 1 for all u € R. If
f(ug) = 0 for some ug € R, then f,(up) = 0 for all n > 1, which leads to f,(uy) — 0. A
contradiction! O

Proof of Theorem 9.3: Necessity for infinite divisibility. Assume that X is infinitely divisible

and X L Xp1+ -+ Xy, where X, 1,..., X, , are i.i.d. random variables. Let f, f,, be
characteristic functions of X, X,, 1. By Corollary 9.5, f(u) # 0 for all u € R and thus f,,(u) # 0
for all u € R. By the continuity of f,, there is a (unique) complex-valued continuous function
1y, defined on R such that 1,(0) = 0 and f,, = e¥". Set 1) := ntp,. Obviously, 1 is continuous
and f = e¥
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By Proposition 9.4 and Theorem 7.15, f, — 1 and then 9, (u) — 0 uniformly on any finite
interval. Write

(9-2) P(u) = nlfo(u) = 1] x 1+ en(u)],

where

[ B 20
0 for ¢, (u) = 0.

Clearly, one has that €,(u) — 0 uniformly on any finite interval. Let F,, be the distribution
of Xy 1 and dpp(x) = ndF,(z). Then, (9.2) becomes

(9.3) ) = (1+ en(u)) / (€ — 1)djin ().

R

Consider the following two facts.
Fact 1: There is A > 0 such that

1/a
lim sup g ([—a, a]) < Aa/ Ru(v)|dv, Va > 0.
0

n—oo

It is easy to see from (9.2) that

. o P(u) \ _ _
(9.4) o= Rpy ()] = = Jim 3 () = <Ro) = R,
uniformly on any finite interval. Letting A be the constant in Proposition 7.12, we have
1/a
tn([—a,al) < Aa/ n[l — Rfn(v)]dv, Va > 0.
0

As R is bounded on any finite interval, the desired inequality is then given by the Lebesgue
dominated convergence theorem.
Fact 2:
lim sup/ 22dp, () < oo.
n—oo [_171]

Note that

n[l —Rfn(1)] = /R(l — cosz)dpn(z) > / (1 — cosz)dpn(x).

[7171}
Consider the inequality sint > 2t/m for ¢ € [0,1]. This implies, for € [0, 1],
x {E2
1—cosx = / sintdt > —,
0 0
which leads to

™

nll — Rfa(1)] > L /[ i)

By (9.4), the left hand side converges to |R(1)| < co and this proves Fact 2.
To see the characteristic function of X, we define

[ _ 1 N I
an = /R din(y),  Glz) = /( dpn(y), B = /IR djin (1),

1492 an S0z L +Y 1+ a2
and
. Ux 1+ a2 u?
(P(U,ZL’) = <€W$ —1- 1+ 332) 2 Va #0, QO(U, 0) = T
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Following the above setting, (9.3) can be rewritten as

(9.5) W) = (1+ en (1)) /R o, 2)dCo () + (1 + 0 (1) )iuby.

It is obvious that G,, is a distribution function and |¢(u, x)| < |u| + 4 for || > 1. By writing

& w1+ )
o(u, z) = iux + kz X ,
—2

one has |¢(u, )| < 2(el*l — 1) for || < 1. As a result, this implies that, for fixed u, @(u, ) is
bounded and continuous on R and then { [ ¢(u, z)dG,,(x)|n > 1} is bounded.

Recall that f(u) # 0 for all w € R. By Facts 1 and 2, ()32, is a bounded sequence
and, hence, (8,)72, is bounded. By (9.5), if a;, — 0, then 3, converges, which implies that
X is degenerate, i.e. 02 = 0 and v(R) = 0 in (9.1). When «,, - 0, we select a convergent
subsequence o, with limit o > 0. By Fact 1, one has

lim sup lim sup py, ([—a, a]®) = 0.
a—r0o0 n—oo
This implies that (G, )72, is mass-preserving. As a result, we may choose a further sub-
sequence (my)7, of (ng)72, and f € R, G € N such that §,,, — 8 and G, — G in
distribution. Replacing n with my in (9.5) and passing k to infinity yields

~ 2
f(u) = exp {oz/R (ewx -1 e > 1+723007,G(:E) + iﬁu}

1422 x
, ux 1+ 22 au?
= exp{ o et —1— ) dG(z) +ifu— —G({0 .
{ L[ ) dew) (o))
U

Proof of Theorem 9.3: Sufficiency for infinite divisibility. As in the Proof of Theorem 9.1, it
remains to prove that f(u) is the characteristic function of some random variable. Without
loss of generality, we may assume that 5 = o = 0. We first consider the case that v is
supported on a finite set, say {z1,...,z,}. Clearly, x; # 0, for 1 < i < n, and

flu) = H exp{)\j(ewzﬂ' — 1)} x exp{—iub},

j=1
where \; = v({z;})(1 +x§)/x§ and b= —>7"_; v({z;})/z;. Clearly, f(u) is the characteristic
function of X, where X = Z?Zl x;Y; — b and Yi,...,Y,, are independent Poisson random

variables with parameters A1, ..., Ap.
For the general case, let (v,,)2° | be a sequence of measures supported on finite sets satisfying
vn(R) — v(R) and v, /v, (R) D-converges to v/v(R). (How to create v,7) Let

fn(u) =exp {/R cp(u,m)dun(:n)} , VneN,

and X, be a random variable with characteristic function f,,. By the Lebesgue dominated
convergence theorem, since, for u € R, ¢(u,-) is bounded and continuous, f,, — f. As ¢ is
uniformly bounded on [—a,a] X R for any a > 0, one my apply the LDCT to derive that, for

any v € R and any sequence (h, )5, converging to 0,

i f(ut hy) = ().

This yields the continuity of f. As a consequence of the continuity theorem, f is the charac-
teristic function of some random variable. (]
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Exercise 9.1. Show that, for any finite measure v on (R, B(RR)), there is a sequence of mea-
sures (v,,)72, supported on finite sets satisfying v, (R) — v(R) and v, /v, (R) converges to
v/v(R) in distribution.

In the following, we examine the uniqueness of constants # and v in Theorem 9.3. First,
recall the following function

00 plw0) =02 () = (-1
Let + be the finite measure on R defined by

_Ju(B)+o* if0€eB
(B = {V<B) if0¢ B’

Using the above setting, we may rewrite the function f in Theorem 9.3 as

(9.7) F(u) = exp {wu i sO(u,w)d’y(l‘)} ,

where ~ is a finite measure on R.

Yz # 0.

UT 1+ 22
1+ 22 2

Proposition 9.6. (3, are uniquely determined by (9.7).

Proof. Let 1)(u) be a continuous function satisfying f = e¥ and set
Y p(u+h) +9p(u—h)

O(u) = (u 5 dh.
Clearly, 0 is independent of the choice of ¢ and is determined by f. Note that
1 _ 1 2 1
pluth o) Lo =) ) oo o) — e X220 [0 costha))dn
0 2 22 Jo
, sinz\ 1+ 22
— etz (1 _
o (1222 L
This implies
O(u) = / e dp(x),
R
where )
sinz\ 1+x
n(e) = s@)r (@), glo) = (1~ 25) L

Since 0 < inf, g(z) < sup, g(z) < 0o, i is a finite measure and dvy(z) = (1/g( ))du(x).
Assume that ¥ (u) = if'u + [ ©( a:,u)d’y( ) and set dy/(z) = g(z)dy'(z). As before, one
has 0(u) = [ e™*dy/ () and dy'(z) = (1/g(x))dp’(z). When u = 0, (0) = u(R) = /(R). By
Theorem 7.11, this implies y = p’ and, hence, v = /. Putting this fact back to (9.7) yields
ePu = ¢if'v for all u € R. Again, Theorem 7.11 implies § = 3. O

To state the next theorem, we need the following generalization of mass-preserving measures.
A set A of finite measures on R is said to be mass-preserving if, for any € > 0, there is a finite
interval I such that p(I¢) < € for all u € A.

Remark 9.2. Let pu, 1 be finite measures on R satisfying u,(R) > 0 and p(R) > 0. Then,
(n)9; is mass-preserving and D-converges to p if and only if p,(R) — p(R) < oo and
tn/ pin (R) D-converges to p/u(R).

Remark 93 If (pn)pe; is mass-preserving and D-converges to u, then [p f(x)du,(z) —

Jz f( ) for any bounded measurable function f satisfying u(C(f)¢) = 0.
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Theorem 9.7. Let X, 1,..., Xy be i.1.d. random variables and S, = Z;;l Xn,i. Let F,, be
the distribution of Xn1, Bn = [gna/(1+ 2?)dF,(z) and y,(z) = f(—oo,ac] ny?/(1+ y*)dF,(y).
Then, Sy, converges in distribution to some random variable X if and only if B, converges and
Yo S mass-preserving and converges in distribution. Furthermore, if v, is mass-preserving
and D-converges to v and B, — B, then the characteristic function f of X is given by

(9.8) f(u) =exp {iuﬁ + /Rgo(u,x)dfy(a:)} .

Proof. Let fy,, hy, be characteristic functions of X, 1, .S, and I, C R be the largest open interval
such that f,(u) # 0 (also for h,(u)) for u € I,,. Let ¢, (u) be the (unique) complex-valued
continuous function on I, satisfying ,,(0) = 0 and f,(u) = e () for u € I,,. Set 6,, := n,.
Clearly, 6,, is continuous and h,, = e’» on I,,. Similar to (9.2) and (9.5), one may write

On(u) = (1 + €en(u))n[fn(u) — 1]

(9:9) = (14 en(u))ay /R o(u, 2)dGp(x) + (1 + en(u))iufn, Vu € I,

where G, (z) = y,(z) /o, and

na? ny? nx
n = 7an ) n = an 3 n — an .
= [t w@= [ e, s= [ R

First, assume that S, — X in distribution. By Propositions 9.2 and 9.4, X is infinitely
divisible and X, ; — 0 in distribution. Let f be the characteristic function of X and 1) be the
(unique) complex-valed continuous function satisfying 1(0) = 0 and f = e¥. Then, f, — 1
and 6,, — 1 uniformly on any finite interval and thus liminf,, I, = R and €,(u) — 0 uniformly
on any finite interval. A similar reasoning as in the proof of Theorem 9.3 (Facts 1 and 2)
yields

1/a
lim sup nF,([—a,al®) < Aa/ IR (v)|dv < 00, Va >0,
0

n—oo

for some A > 0 and

n—oo

limsup/ 2 ndF,(z) < 7Ry (1)| < 0.
[_171]

This implies that (a,);2; is bounded and (v,);2; is mass-preserving. Let (ap, )i, be a
convergent subsequence with limit a.

Case 1: a = 0. Clearly, v,, converges to 0 in distribution.

Case 2: «a > 0. One can show that (G, )72 is mass-preserving. Let (G, )72 be a further
subsequence that D-converges to G € N'. By Remark 9.2, 7,,,, D-converges to v := aG.

By Proposition 9.6, this implies (7,)°; is mass-preserving and D-converges. By (9.9),
(Bn)s2, is convergent. Moreover, if 7, 8 are limits of vy, 8y, then ¢(u) = [ ©(u, z)dy(x)+iup.

Next, suppose 7y, D-converges to v and 3, converges to 5. Note that v, — - in distribution
implies F}, — 1pp ) in distribution or equivalently X, ; — 0 in distribution. In (9.9), this
implies €,(u) — 0 uniformly on any finite interval. By Remark 9.3, we obtain

n—o0

lim 6, (u) = / o(u, x)dy(x) +iuf, YueR.
R

By the LDCT, since ¢(u, ) is bounded on [—a,a] x R for any a > 0 and ¢(u,z) = ¢(0,z) =0

as u — 0, the integral at the right side of the above equality is continuous at 0. As a

consequence of the continuity theorem (Theorem 7.13), S,, converges in distribution to some

random variable X. (]
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Corollary 9.8. Let X, 1,...,Xpn be i.i.d. random variables and set S, = Z?:l Xn,i and
M, = max{|X, ;| : 1 <i < n}. Assume that S, converges in distribution to X. Then, X is
normal if and only if M, converges to 0 in distribution.

Proof. Consider the expression of (9.8). By Proposition 9.6, X is normal with mean p and
variance o2 if and only if 3 = p and v = 021[0,00). By Theorem 9.7, v = 021[0700) for some
o? > 0 if and only if

2
/ - i ndFa(r) 50, Yo >0,
[_ava}c

or equivalently nlP(|X,, 1| > a) = nFy,([—a,a]®) — 0 for al a > 0. Note that, for a > 0,
P(M, < a) = [1 —P(|Xp1| > a)]" = enlosl-F(Xnal>a)],
Since P(|Xp1]| > a) — 0 for a > 0 (by Proposition 9.4), this implies

M, B0 o nlogll—P(Xp1l>a)]—=0, YVa>0 < nP(Xn1|>a)—0, Va> 0.
U
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