
9. Infinite divisibility

Definition 9.1. A random variable X is infinitely divisible if, for any n ≥ 1, there are
i.i.d. random variables Xn,1, ..., Xn,n such that

X
D
= Xn,1 + · · ·+Xn,n.

Remark 9.1. Equivalently, X is infinitely divisible if and only if, for n ≥ 1, fX(u) = fn(u)
n,

where fn is a characteristic function of some random variable.

Example 9.1. Consider the following two examples.

(1) Normal random variables: N(µ, σ2)
D
= N1(

µ
n ,

σ2

n ) + · · ·+Nn(
µ
n ,

σ2

n ).

(2) Poisson random variables: Zλ
D
= Z1

λ/n + · · ·+ Znλ/n since fZλ(u) = exp{λ(eiu − 1)}.

Theorem 9.1. The following three classes are identical.

C1: The class of all limiting distributions X under UAN , that is,

Sn = Xn,1 + · · ·+Xn,rn
D→ X as n→ ∞,

where Xn,1, ..., Xn,rn are independent with finite second moments such that ESn and
Var(Sn) converges and maxk{Var(Xn,k)/Var(Sn)} → 0.

C2: The class of all distributions of which characteristic functions are of the form eψ(u),
where

ψ(u) = iau− σ2u2

2
+

∫
R
(eiux − 1− iux)dK(x)

with K({0}) = 0 and
∫
R x

2dK(x) <∞.
C3: The class of all infinitely divisible distributions with finite second moment.

Proof. C1 ⊂ C2 has been proved in Theorem 8.7. For C2 ⊂ C3, let X be a random variable
with c.f. fX(u) = eψ(u), where

ψ(u) = iau− σ2u2

2
+

∫
R
(eiux − 1− iux)dK(x)

and K({0}) = 0 and
∫
R x

2dK(x) <∞. By Proposition 8.8, let Xn,1, ..., Xn,n be i.i.d. random
variables with c.f.s

exp

{
ia

n
u− (σ/

√
n)2

2
u2 +

∫
R
(eiux − 1− iux)dKn(x)

}
,

whereKn({0}) = 0 and dKn(x) =
1
ndK(x). This implies fX(u) =

∏n
k=1 fXk(u) or equivalently

X
D
= X1 + · · ·+Xn. The finiteness of EX2 is immediate from Proposition 8.8.
For C3 ⊂ C1, letX be an infinitely divisible random variable with EX = µ and Var(X) = σ2.

For n ≥ 1, let Xn,1, ..., Xn,n be i.i.d. random variables such that X
D
= Xn,1 + · · · + Xn,n.

Clearly, Var(Xn,k) =
σ2

n for 1 ≤ k ≤ n and n ≥ 1 and the UAN holds for the triangular array
{Xn,k|1 ≤ k ≤ n, n ≥ 1}. This implies X ∈ C1. �

In the following, we consider infinitely divisible random variables without the assumption
of finite second moment and generalize Theorem 9.1.

Proposition 9.2. A random variable X is infinitely divisible if and only if there are i.i.d.

random variables Xn,1, ..., Xn,n such that Sn = Xn,1 + · · ·+Xn,n
D→ X.
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Proof. The necessity for the infinite divisibility is obvious. For the sufficiency, assume that

Sn
D→ X. Fix m ≥ 1 and set

Yn,k =
n∑
i=1

Xmn,(k−1)n+i, ∀1 ≤ k ≤ m.

Obviously, Yn,1, ..., Yn,m are i.i.d. and Smn = Yn,1 + · · ·+ Yn,m. This implies

P(Yn,1 ≤ −y)m = P(Yn,k ≤ −y, ∀1 ≤ k ≤ n) ≤ P(Smn ≤ −my).

Similarly, one may derive P(Yn,1 ≥ y)m ≤ P(Smn ≥ my). Since Smn
D→ X, Smn and, thus,

Yn,1 are mass-preserving. As a consequence, we may choose a subsequence (nℓ)
∞
ℓ=1 of N such

that Ynℓ,k converges in distribution to Yk for all 1 ≤ k ≤ m. Clearly, Y1, ..., Ym are identically
distributed. By creating the independency of Y1, ..., Ym, the continuity theorem implies that

X
D
= Y1 + · · ·+ Ym. �

Theorem 9.3. Let X be a random variable with characteristic function f . Then, X is infin-
itely divisible if and only if

(9.1) f(u) = exp

{
iβu− σ2u2

2
+

∫
R

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
dν(x)

}
where β, σ ∈ R and ν is a finite measure with ν({0}) = 0.

To prove this theorem, we need the following proposition.

Proposition 9.4. Let Xn,1, ..., Xn,n be i.i.d. random variables and set Sn =
∑n

i=1Xn,i. If

Sn
D→ X, then Xn,1

D→ 0.

Proof. Let fn and gn be characteristic functions of Xn,1 and Sn and, for z ∈ C \ (−∞, 0],
let Argz ∈ (−π, π) be the argument of z. Since Sn D-converges to X, we may choose, by
Theorem 7.15, a > 0 and δ > 0 such that <gn ≥ δ > 0 on (−a, a) for all n ≥ 1. This implies
|Arggn(u)| < π/2 for |u| < a. Note that gn = (fn)

n. By the continuity of fn, this implies

Argfn(u) =
Arggn(u)

n
, ∀|u| < a,

which leads to Argfn(u) → 0 for |u| < a. Moreover, by the fact |fn|n = |gn| ≥ δ on (−a, a)
for all n ≥ 1, we have |fn| → 1 on (−a, a). As a result, fn(u) → 1 for |u| < a. By Corollary
7.16, Xn,1 converges to 0 in distribution. �

Corollary 9.5. For any infinitely divisible random variable X, EeiuX 6= 0 for all u ∈ R.

Proof. Let Xn,1, ..., Xn,n be i.i.d. random variables such that Sn = Xn,1 + · · · + Xn,n
D
= X.

Clearly, Sn → X in distribution. By Proposition 9.4, Xn,1 → 0 in distribution. Let fn, f be
characteristic functions of Xn,1, X. Then, f(u) = fn(u)

n and fn(u) → 1 for all u ∈ R. If
f(u0) = 0 for some u0 ∈ R, then fn(u0) = 0 for all n ≥ 1, which leads to fn(u0) → 0. A
contradiction! �

Proof of Theorem 9.3: Necessity for infinite divisibility. Assume that X is infinitely divisible

and X
D
= Xn,1 + · · · + Xn,n, where Xn,1, ..., Xn,n are i.i.d. random variables. Let f, fn be

characteristic functions of X,Xn,1. By Corollary 9.5, f(u) 6= 0 for all u ∈ R and thus fn(u) 6= 0
for all u ∈ R. By the continuity of fn, there is a (unique) complex-valued continuous function
ψn defined on R such that ψn(0) = 0 and fn = eψn . Set ψ := nψn. Obviously, ψ is continuous
and f = eψ
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By Proposition 9.4 and Theorem 7.15, fn → 1 and then ψn(u) → 0 uniformly on any finite
interval. Write

(9.2) ψ(u) = n[fn(u)− 1]× [1 + ϵn(u)],

where

ϵn(u) =

{
ψn(u)

eψn(u)−1
− 1 for ψn(u) 6= 0,

0 for ψn(u) = 0.

Clearly, one has that ϵn(u) → 0 uniformly on any finite interval. Let Fn be the distribution
of Xn,1 and dµn(x) = ndFn(x). Then, (9.2) becomes

(9.3) ψ(u) = (1 + ϵn(u))

∫
R
(eiux − 1)dµn(x).

Consider the following two facts.
Fact 1: There is A > 0 such that

lim sup
n→∞

µn([−a, a]c) ≤ Aa

∫ 1/a

0
|<ψ(v)|dv, ∀a > 0.

It is easy to see from (9.2) that

(9.4) lim
n→∞

n[1−<fn(u)] = − lim
n→∞

<
(

ψ(u)

1 + ϵn(u)

)
= −<ψ(u) = |<ψ(u)|,

uniformly on any finite interval. Letting A be the constant in Proposition 7.12, we have

µn([−a, a]c) ≤ Aa

∫ 1/a

0
n[1−<fn(v)]dv, ∀a > 0.

As <ψ is bounded on any finite interval, the desired inequality is then given by the Lebesgue
dominated convergence theorem.
Fact 2:

lim sup
n→∞

∫
[−1,1]

x2dµn(x) <∞.

Note that

n[1−<fn(1)] =
∫
R
(1− cosx)dµn(x) ≥

∫
[−1,1]

(1− cosx)dµn(x).

Consider the inequality sin t ≥ 2t/π for t ∈ [0, 1]. This implies, for x ∈ [0, 1],

1− cosx =

∫ x

0
sin tdt ≥ x2

π
,

which leads to

n[1−<fn(1)] ≥
1

π

∫
[−1,1]

x2dµn(x).

By (9.4), the left hand side converges to |<ψ(1)| <∞ and this proves Fact 2.
To see the characteristic function of X, we define

αn =

∫
R

y2

1 + y2
dµn(y), Gn(x) =

1

αn

∫
(−∞,x]

y2

1 + y2
dµn(y), βn =

∫
R

x

1 + x2
dµn(x),

and

φ(u, x) =

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
, ∀x 6= 0, φ(u, 0) = −u

2

2
.
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Following the above setting, (9.3) can be rewritten as

(9.5) ψ(u) = (1 + ϵn(u))αn

∫
R
φ(u, x)dGn(x) + (1 + ϵn(u))iuβn.

It is obvious that Gn is a distribution function and |φ(u, x)| ≤ |u|+ 4 for |x| > 1. By writing

φ(u, x) = iux+
∞∑
k=2

(iu)kxk−2(1 + x2)

k!
,

one has |φ(u, x)| ≤ 2(e|u| − 1) for |x| ≤ 1. As a result, this implies that, for fixed u, φ(u, x) is
bounded and continuous on R and then {

∫
R φ(u, x)dGn(x)|n ≥ 1} is bounded.

Recall that f(u) 6= 0 for all u ∈ R. By Facts 1 and 2, (αn)
∞
n=1 is a bounded sequence

and, hence, (βn)
∞
n=1 is bounded. By (9.5), if αn → 0, then βn converges, which implies that

X is degenerate, i.e. σ2 = 0 and ν(R) = 0 in (9.1). When αn 9 0, we select a convergent
subsequence αnk with limit α > 0. By Fact 1, one has

lim sup
a→∞

lim sup
n→∞

µn([−a, a]c) = 0.

This implies that (Gnk)
∞
k=1 is mass-preserving. As a result, we may choose a further sub-

sequence (mk)
∞
k=1 of (nk)

∞
k=1 and β ∈ R, G ∈ N such that βmk → β and Gmk → G in

distribution. Replacing n with mk in (9.5) and passing k to infinity yields

f(u) = exp

{
α

∫
R

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
dG(x) + iβu

}
= exp

{
α

∫
R\{0}

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
dG(x) + iβu− αu2

2
G({0})

}
.

�
Proof of Theorem 9.3: Sufficiency for infinite divisibility. As in the Proof of Theorem 9.1, it
remains to prove that f(u) is the characteristic function of some random variable. Without
loss of generality, we may assume that β = σ = 0. We first consider the case that ν is
supported on a finite set, say {x1, ..., xn}. Clearly, xi 6= 0, for 1 ≤ i ≤ n, and

f(u) =

n∏
j=1

exp{λj(eiuxj − 1)} × exp{−iub},

where λj = ν({xj})(1+x2j )/x2j and b = −
∑n

j=1 ν({xj})/xj . Clearly, f(u) is the characteristic
function of X, where X =

∑n
i=1 xiYi − b and Y1, ..., Yn are independent Poisson random

variables with parameters λ1, ..., λn.
For the general case, let (νn)

∞
n=1 be a sequence of measures supported on finite sets satisfying

νn(R) → ν(R) and νn/νn(R) D-converges to ν/ν(R). (How to create νn?) Let

fn(u) = exp

{∫
R
φ(u, x)dνn(x)

}
, ∀n ∈ N,

and Xn be a random variable with characteristic function fn. By the Lebesgue dominated
convergence theorem, since, for u ∈ R, φ(u, ·) is bounded and continuous, fn → f . As φ is
uniformly bounded on [−a, a]× R for any a > 0, one my apply the LDCT to derive that, for
any u ∈ R and any sequence (hn)

∞
n=1 converging to 0,

lim
n→∞

f(u+ hn) = f(u).

This yields the continuity of f . As a consequence of the continuity theorem, f is the charac-
teristic function of some random variable. �
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Exercise 9.1. Show that, for any finite measure ν on (R,B(R)), there is a sequence of mea-
sures (νn)

∞
n=1 supported on finite sets satisfying νn(R) → ν(R) and νn/νn(R) converges to

ν/ν(R) in distribution.

In the following, we examine the uniqueness of constants β and ν in Theorem 9.3. First,
recall the following function

(9.6) φ(u, 0) = −u2/2, φ(u, x) =

(
eiux − 1− iux

1 + x2

)
1 + x2

x2
∀x 6= 0.

Let γ be the finite measure on R defined by

γ(B) =

{
ν(B) + σ2 if 0 ∈ B

ν(B) if 0 /∈ B
.

Using the above setting, we may rewrite the function f in Theorem 9.3 as

(9.7) f(u) = exp

{
iβu+

∫
R
φ(u, x)dγ(x)

}
,

where γ is a finite measure on R.

Proposition 9.6. β, γ are uniquely determined by (9.7).

Proof. Let ψ(u) be a continuous function satisfying f = eψ and set

θ(u) = ψ(u)−
∫ 1

0

ψ(u+ h) + ψ(u− h)

2
dh.

Clearly, θ is independent of the choice of ψ and is determined by f . Note that∫ 1

0

φ(u+ h, x) + φ(u− h, x)

2
dh = φ(u, x)− eiux

1 + x2

x2

∫ 1

0
(1− cos(hx))dh

= φ(u, x)− eiux
(
1− sinx

x

)
1 + x2

x2

This implies

θ(u) =

∫
R
eiuxdµ(x),

where

dµ(x) = g(x)dγ(x), g(x) =

(
1− sinx

x

)
1 + x2

x2
.

Since 0 < infx g(x) ≤ supx g(x) <∞, µ is a finite measure and dγ(x) = (1/g(x))dµ(x).
Assume that ψ(u) = iβ′u +

∫
R φ(x, u)dγ

′(x) and set dµ′(x) = g(x)dγ′(x). As before, one

has θ(u) =
∫
R e

iuxdµ′(x) and dγ′(x) = (1/g(x))dµ′(x). When u = 0, θ(0) = µ(R) = µ′(R). By
Theorem 7.11, this implies µ = µ′ and, hence, γ = γ′. Putting this fact back to (9.7) yields

eiβu = eiβ
′u for all u ∈ R. Again, Theorem 7.11 implies β = β′. �

To state the next theorem, we need the following generalization of mass-preserving measures.
A set A of finite measures on R is said to be mass-preserving if, for any ϵ > 0, there is a finite
interval I such that µ(Ic) < ϵ for all µ ∈ A.

Remark 9.2. Let µn, µ be finite measures on R satisfying µn(R) > 0 and µ(R) > 0. Then,
(µn)

∞
n=1 is mass-preserving and D-converges to µ if and only if µn(R) → µ(R) < ∞ and

µn/µn(R) D-converges to µ/µ(R).

Remark 9.3. If (µn)
∞
n=1 is mass-preserving and D-converges to µ, then

∫
R f(x)dµn(x) →∫

R f(x)dµ(x) for any bounded measurable function f satisfying µ(C(f)c) = 0.
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Theorem 9.7. Let Xn,1, ..., Xn,n be i.i.d. random variables and Sn =
∑n

i=1Xn,i. Let Fn be
the distribution of Xn,1, βn =

∫
R nx/(1 + x2)dFn(x) and γn(x) =

∫
(−∞,x] ny

2/(1 + y2)dFn(y).

Then, Sn converges in distribution to some random variable X if and only if βn converges and
γn is mass-preserving and converges in distribution. Furthermore, if γn is mass-preserving
and D-converges to γ and βn → β, then the characteristic function f of X is given by

(9.8) f(u) = exp

{
iuβ +

∫
R
φ(u, x)dγ(x)

}
.

Proof. Let fn, hn be characteristic functions ofXn,1, Sn and In ⊂ R be the largest open interval
such that fn(u) 6= 0 (also for hn(u)) for u ∈ In. Let ψn(u) be the (unique) complex-valued

continuous function on In satisfying ψn(0) = 0 and fn(u) = eψn(u) for u ∈ In. Set θn := nψn.
Clearly, θn is continuous and hn = eθn on In. Similar to (9.2) and (9.5), one may write

(9.9)

θn(u) = (1 + ϵn(u))n[fn(u)− 1]

= (1 + ϵn(u))αn

∫
R
φ(u, x)dGn(x) + (1 + ϵn(u))iuβn, ∀u ∈ In,

where Gn(x) = γn(x)/αn and

αn =

∫
R

nx2

1 + x2
dFn(x), γn(x) =

∫
(−∞,x]

ny2

1 + y2
dFn(y), βn =

∫
R

nx

1 + x2
dFn(x).

First, assume that Sn → X in distribution. By Propositions 9.2 and 9.4, X is infinitely
divisible and Xn,1 → 0 in distribution. Let f be the characteristic function of X and ψ be the

(unique) complex-valed continuous function satisfying ψ(0) = 0 and f = eψ. Then, fn → 1
and θn → ψ uniformly on any finite interval and thus lim infn In = R and ϵn(u) → 0 uniformly
on any finite interval. A similar reasoning as in the proof of Theorem 9.3 (Facts 1 and 2)
yields

lim sup
n→∞

nFn([−a, a]c) ≤ Aa

∫ 1/a

0
|<ψ(v)|dv <∞, ∀a > 0,

for some A > 0 and

lim sup
n→∞

∫
[−1,1]

x2ndFn(x) ≤ π|<ψ(1)| <∞.

This implies that (αn)
∞
n=1 is bounded and (γn)

∞
n=1 is mass-preserving. Let (αnk)

∞
k=1 be a

convergent subsequence with limit α.
Case 1: α = 0. Clearly, γnk converges to 0 in distribution.
Case 2: α > 0. One can show that (Gnk)

∞
k=1 is mass-preserving. Let (Gmk)

∞
k=1 be a further

subsequence that D-converges to G ∈ N . By Remark 9.2, γmk D-converges to γ := αG.
By Proposition 9.6, this implies (γn)

∞
n=1 is mass-preserving and D-converges. By (9.9),

(βn)
∞
n=1 is convergent. Moreover, if γ, β are limits of γn, βn, then ψ(u) =

∫
R φ(u, x)dγ(x)+iuβ.

Next, suppose γn D-converges to γ and βn converges to β. Note that γn → γ in distribution
implies Fn → 1[0,∞) in distribution or equivalently Xn,1 → 0 in distribution. In (9.9), this
implies ϵn(u) → 0 uniformly on any finite interval. By Remark 9.3, we obtain

lim
n→∞

θn(u) =

∫
R
φ(u, x)dγ(x) + iuβ, ∀u ∈ R.

By the LDCT, since φ(u, x) is bounded on [−a, a]×R for any a > 0 and φ(u, x) → φ(0, x) = 0
as u → 0, the integral at the right side of the above equality is continuous at 0. As a
consequence of the continuity theorem (Theorem 7.13), Sn converges in distribution to some
random variable X. �
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Corollary 9.8. Let Xn,1, ..., Xn,n be i.i.d. random variables and set Sn =
∑n

i=1Xn,i and
Mn = max{|Xn,i| : 1 ≤ i ≤ n}. Assume that Sn converges in distribution to X. Then, X is
normal if and only if Mn converges to 0 in distribution.

Proof. Consider the expression of (9.8). By Proposition 9.6, X is normal with mean µ and
variance σ2 if and only if β = µ and γ = σ21[0,∞). By Theorem 9.7, γ = σ21[0,∞) for some

σ2 > 0 if and only if ∫
[−a,a]c

y2

1 + y2
ndFn(x) → 0, ∀a > 0,

or equivalently nP(|Xn,1| > a) = nFn([−a, a]c) → 0 for al a > 0. Note that, for a > 0,

P(Mn ≤ a) = [1− P(|Xn,1| > a)]n = en log[1−P(|Xn,1|>a)].

Since P(|Xn,1| > a) → 0 for a > 0 (by Proposition 9.4), this implies

Mn
D→ 0 ⇔ n log[1− P(|Xn,1| > a)] → 0, ∀a > 0 ⇔ nP(|Xn,1| > a) → 0, ∀a > 0.

�
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