Definition 9.1. A random variable *X* is **infinitely divisible** if, for any $n \geq 1$, there are i.i.d. random variables $X_{n,1},...,X_{n,n}$ such that

$$
X \stackrel{\mathcal{D}}{=} X_{n,1} + \cdots + X_{n,n}.
$$

Remark 9.1. Equivalently, *X* is infinitely divisible if and only if, for $n \ge 1$, $f_X(u) = f_n(u)^n$, where f_n is a characteristic function of some random variable.

Example 9.1*.* Consider the following two examples.

- (1) Normal random variables: $N(\mu, \sigma^2) \stackrel{\mathcal{D}}{=} N_1(\frac{\mu}{n})$ $\frac{\mu}{n}, \frac{\sigma^2}{n}$ $\frac{\sigma^2}{n}$) + \cdots + $N_n(\frac{\mu}{n})$ $\frac{\mu}{n}, \frac{\sigma^2}{n}$ $\frac{\sigma^2}{n}$).
- (2) Poisson random variables: $Z_{\lambda} \stackrel{\mathcal{D}}{=} Z_{\lambda/n}^1 + \cdots + Z_{\lambda/n}^n$ since $f_{Z_{\lambda}}(u) = \exp{\{\lambda(e^{iu} 1)\}}$.

Theorem 9.1. *The following three classes are identical.*

*C*1: *The class of all limiting distributions X under UAN, that is,*

$$
S_n = X_{n,1} + \cdots + X_{n,r_n} \stackrel{\mathcal{D}}{\rightarrow} X \quad \text{as } n \to \infty,
$$

where $X_{n,1},...,X_{n,r_n}$ *are independent with finite second moments such that* $\mathbb{E}S_n$ *and* $Var(S_n)$ *converges and* $max_k \{Var(X_{n,k})/Var(S_n)\} \to 0$.

 C_2 : *The class of all distributions of which characteristic functions are of the form* $e^{\psi(u)}$ *, where*

$$
\psi(u) = iau - \frac{\sigma^2 u^2}{2} + \int_{\mathbb{R}} (e^{iux} - 1 - iux) dK(x)
$$

 w *ith* $K({0}) = 0$ *and* $\int_{\mathbb{R}} x^2 dK(x) < \infty$.

*C*3: *The class of all infinitely divisible distributions with finite second moment.*

Proof. $C_1 \subset C_2$ has been proved in Theorem 8.7. For $C_2 \subset C_3$, let X be a random variable with c.f. $f_X(u) = e^{\psi(u)}$, where

$$
\psi(u) = iau - \frac{\sigma^2 u^2}{2} + \int_{\mathbb{R}} (e^{iux} - 1 - iux) dK(x)
$$

and $K({0}) = 0$ and $\int_{\mathbb{R}} x^2 dK(x) < \infty$. By Proposition 8.8, let $X_{n,1}, ..., X_{n,n}$ be i.i.d. random variables with c.f.s

$$
\exp\left\{\frac{ia}{n}u-\frac{(\sigma/\sqrt{n})^2}{2}u^2+\int_{\mathbb{R}}(e^{iux}-1-iux)dK_n(x)\right\},\,
$$

where $K_n({0}) = 0$ and $dK_n(x) = \frac{1}{n}dK(x)$. This implies $f_X(u) = \prod_{k=1}^n f_{X_k}(u)$ or equivalently $X \stackrel{\mathcal{D}}{=} X_1 + \cdots + X_n$. The finiteness of $\mathbb{E}X^2$ is immediate from Proposition 8.8.

For $C_3 \subset C_1$, let X be an infinitely divisible random variable with $\mathbb{E}X = \mu$ and $\text{Var}(X) = \sigma^2$. For $n \geq 1$, let $X_{n,1},...,X_{n,n}$ be i.i.d. random variables such that $X = X_{n,1} + \cdots + X_{n,n}$. Clearly, $Var(X_{n,k}) = \frac{\sigma^2}{n}$ $\frac{\sigma^2}{n}$ for $1 \leq k \leq n$ and $n \geq 1$ and the *UAN* holds for the triangular array $\{X_{n,k}|1 \leq k \leq n, n \geq 1\}$. This implies $X \in C_1$.

In the following, we consider infinitely divisible random variables without the assumption of finite second moment and generalize Theorem 9.1.

Proposition 9.2. *A random variable X is infinitely divisible if and only if there are i.i.d. random variables* $X_{n,1},...,X_{n,n}$ *such that* $S_n = X_{n,1} + \cdots + X_{n,n} \stackrel{\mathcal{D}}{\rightarrow} X$.

Proof. The necessity for the infinite divisibility is obvious. For the sufficiency, assume that $S_n \stackrel{\mathcal{D}}{\rightarrow} X$. Fix $m \ge 1$ and set

$$
Y_{n,k} = \sum_{i=1}^{n} X_{mn,(k-1)n+i}, \quad \forall 1 \le k \le m.
$$

Obviously, $Y_{n,1},..., Y_{n,m}$ are i.i.d. and $S_{mn} = Y_{n,1} + \cdots + Y_{n,m}$. This implies

$$
\mathbb{P}(Y_{n,1} \le -y)^m = \mathbb{P}(Y_{n,k} \le -y, \forall 1 \le k \le n) \le \mathbb{P}(S_{mn} \le -my).
$$

Similarly, one may derive $\mathbb{P}(Y_{n,1} \geq y)^m \leq \mathbb{P}(S_{mn} \geq my)$. Since $S_{mn} \stackrel{\mathcal{D}}{\rightarrow} X$, S_{mn} and, thus, *Y*_{*n*},1 are mass-preserving. As a consequence, we may choose a subsequence $(n_\ell)_{\ell=1}^\infty$ of N such that $Y_{n_k,k}$ converges in distribution to Y_k for all $1 \leq k \leq m$. Clearly, $Y_1, ..., Y_m$ are identically distributed. By creating the independency of $Y_1, ..., Y_m$, the continuity theorem implies that $X \stackrel{\mathcal{D}}{=} Y_1 + \cdots + Y_m.$

Theorem 9.3. *Let X be a random variable with characteristic function f. Then, X is infinitely divisible if and only if*

(9.1)
$$
f(u) = \exp\left\{i\beta u - \frac{\sigma^2 u^2}{2} + \int_{\mathbb{R}} \left(e^{iux} - 1 - \frac{iux}{1+x^2}\right) \frac{1+x^2}{x^2} d\nu(x)\right\}
$$

where $\beta, \sigma \in \mathbb{R}$ *and* ν *is a finite measure with* $\nu({0}) = 0$ *.*

To prove this theorem, we need the following proposition.

Proposition 9.4. Let $X_{n,1},...,X_{n,n}$ be i.i.d. random variables and set $S_n = \sum_{i=1}^n X_{n,i}$. If $S_n \stackrel{\mathcal{D}}{\rightarrow} X$, then $X_{n,1} \stackrel{\mathcal{D}}{\rightarrow} 0$.

Proof. Let f_n and g_n be characteristic functions of $X_{n,1}$ and S_n and, for $z \in \mathbb{C} \setminus (-\infty, 0]$, let Arg $z \in (-\pi, \pi)$ be the argument of *z*. Since S_n *D*-converges to *X*, we may choose, by Theorem 7.15, $a > 0$ and $\delta > 0$ such that $\Re g_n \ge \delta > 0$ on $(-a, a)$ for all $n \ge 1$. This implies $|Arg g_n(u)| < \pi/2$ for $|u| < a$. Note that $g_n = (f_n)^n$. By the continuity of f_n , this implies

$$
Arg f_n(u) = \frac{Arg g_n(u)}{n}, \quad \forall |u| < a,
$$

which leads to $\text{Arg} f_n(u) \to 0$ for $|u| < a$. Moreover, by the fact $|f_n|^n = |g_n| \ge \delta$ on $(-a, a)$ for all $n \geq 1$, we have $|f_n| \to 1$ on $(-a, a)$. As a result, $f_n(u) \to 1$ for $|u| < a$. By Corollary 7.16, $X_{n,1}$ converges to 0 in distribution.

Corollary 9.5. For any infinitely divisible random variable X , $\mathbb{E}e^{iuX} \neq 0$ for all $u \in \mathbb{R}$.

Proof. Let $X_{n,1},...,X_{n,n}$ be i.i.d. random variables such that $S_n = X_{n,1} + \cdots + X_{n,n} \stackrel{\mathcal{D}}{=} X$. Clearly, $S_n \to X$ in distribution. By Proposition 9.4, $X_{n,1} \to 0$ in distribution. Let f_n, f be characteristic functions of $X_{n,1}$, X. Then, $f(u) = f_n(u)^n$ and $f_n(u) \to 1$ for all $u \in \mathbb{R}$. If $f(u_0) = 0$ for some $u_0 \in \mathbb{R}$, then $f_n(u_0) = 0$ for all $n \geq 1$, which leads to $f_n(u_0) \to 0$. contradiction!

Proof of Theorem 9.3: Necessity for infinite divisibility. Assume that *X* is infinitely divisible and $X \stackrel{\mathcal{D}}{=} X_{n,1} + \cdots + X_{n,n}$, where $X_{n,1},...,X_{n,n}$ are i.i.d. random variables. Let f, f_n be characteristic functions of *X, X_{n,1}*. By Corollary 9.5, $f(u) \neq 0$ for all $u \in \mathbb{R}$ and thus $f_n(u) \neq 0$ for all $u \in \mathbb{R}$. By the continuity of f_n , there is a (unique) complex-valued continuous function ψ_n defined on R such that $\psi_n(0) = 0$ and $f_n = e^{\psi_n}$. Set $\psi := n\psi_n$. Obviously, ψ is continuous and $f = e^{\psi}$

By Proposition 9.4 and Theorem 7.15, $f_n \to 1$ and then $\psi_n(u) \to 0$ uniformly on any finite interval. Write

(9.2)
$$
\psi(u) = n[f_n(u) - 1] \times [1 + \epsilon_n(u)],
$$

where

$$
\epsilon_n(u) = \begin{cases} \frac{\psi_n(u)}{e^{\psi_n(u)} - 1} - 1 & \text{for } \psi_n(u) \neq 0, \\ 0 & \text{for } \psi_n(u) = 0. \end{cases}
$$

Clearly, one has that $\epsilon_n(u) \to 0$ uniformly on any finite interval. Let F_n be the distribution of $X_{n,1}$ and $d\mu_n(x) = ndF_n(x)$. Then, (9.2) becomes

(9.3)
$$
\psi(u) = (1 + \epsilon_n(u)) \int_{\mathbb{R}} (e^{iux} - 1) d\mu_n(x).
$$

Consider the following two facts. **Fact 1:** There is $A > 0$ such that

$$
\limsup_{n \to \infty} \mu_n([-a, a]^c) \le Aa \int_0^{1/a} |\Re \psi(v)| dv, \quad \forall a > 0.
$$

It is easy to see from (9.2) that

(9.4)
$$
\lim_{n \to \infty} n[1 - \Re f_n(u)] = -\lim_{n \to \infty} \Re \left(\frac{\psi(u)}{1 + \epsilon_n(u)} \right) = -\Re \psi(u) = |\Re \psi(u)|,
$$

uniformly on any finite interval. Letting *A* be the constant in Proposition 7.12, we have

$$
\mu_n([-a,a]^c) \le Aa \int_0^{1/a} n[1 - \Re f_n(v)] dv, \quad \forall a > 0.
$$

As $\Re \psi$ is bounded on any finite interval, the desired inequality is then given by the Lebesgue dominated convergence theorem.

Fact 2:

$$
\limsup_{n \to \infty} \int_{[-1,1]} x^2 d\mu_n(x) < \infty.
$$

Note that

$$
n[1 - \Re f_n(1)] = \int_{\mathbb{R}} (1 - \cos x) d\mu_n(x) \ge \int_{[-1,1]} (1 - \cos x) d\mu_n(x).
$$

Consider the inequality $\sin t \geq 2t/\pi$ for $t \in [0,1]$. This implies, for $x \in [0,1]$,

$$
1 - \cos x = \int_0^x \sin t dt \ge \frac{x^2}{\pi},
$$

which leads to

$$
n[1 - \Re f_n(1)] \ge \frac{1}{\pi} \int_{[-1,1]} x^2 d\mu_n(x).
$$

By (9.4), the left hand side converges to $|\Re \psi(1)| < \infty$ and this proves Fact 2.

To see the characteristic function of *X*, we define

$$
\alpha_n = \int_{\mathbb{R}} \frac{y^2}{1+y^2} d\mu_n(y), \quad G_n(x) = \frac{1}{\alpha_n} \int_{(-\infty, x]} \frac{y^2}{1+y^2} d\mu_n(y), \quad \beta_n = \int_{\mathbb{R}} \frac{x}{1+x^2} d\mu_n(x),
$$

and

$$
\varphi(u,x) = \left(e^{iux} - 1 - \frac{iux}{1+x^2}\right) \frac{1+x^2}{x^2}, \quad \forall x \neq 0, \quad \varphi(u,0) = -\frac{u^2}{2}
$$

.

Following the above setting, (9.3) can be rewritten as

(9.5)
$$
\psi(u) = (1 + \epsilon_n(u))\alpha_n \int_{\mathbb{R}} \varphi(u, x) dG_n(x) + (1 + \epsilon_n(u))iu\beta_n.
$$

It is obvious that G_n is a distribution function and $|\varphi(u, x)| \leq |u| + 4$ for $|x| > 1$. By writing

$$
\varphi(u, x) = iux + \sum_{k=2}^{\infty} \frac{(iu)^k x^{k-2} (1 + x^2)}{k!},
$$

one has $|\varphi(u, x)| \leq 2(e^{|u|} - 1)$ for $|x| \leq 1$. As a result, this implies that, for fixed *u*, $\varphi(u, x)$ is bounded and continuous on \mathbb{R} and then $\{\int_{\mathbb{R}} \varphi(u, x) dG_n(x) | n \geq 1\}$ is bounded.

Recall that $f(u) \neq 0$ for all $u \in \mathbb{R}$. By Facts 1 and 2, $(\alpha_n)_{n=1}^{\infty}$ is a bounded sequence and, hence, $(\beta_n)_{n=1}^{\infty}$ is bounded. By (9.5), if $\alpha_n \to 0$, then β_n converges, which implies that *X* is degenerate, i.e. $\sigma^2 = 0$ and $\nu(\mathbb{R}) = 0$ in (9.1). When $\alpha_n \to 0$, we select a convergent subsequence α_{n_k} with limit $\alpha > 0$. By Fact 1, one has

$$
\limsup_{a \to \infty} \limsup_{n \to \infty} \mu_n([-a, a]^c) = 0.
$$

This implies that $(G_{n_k})_{k=1}^{\infty}$ is mass-preserving. As a result, we may choose a further subsequence $(m_k)_{k=1}^{\infty}$ of $(n_k)_{k=1}^{\infty}$ and $\beta \in \mathbb{R}$, $G \in \mathcal{N}$ such that $\beta_{m_k} \to \beta$ and $G_{m_k} \to G$ in distribution. Replacing *n* with m_k in (9.5) and passing *k* to infinity yields

$$
f(u) = \exp \left\{ \alpha \int_{\mathbb{R}} \left(e^{iux} - 1 - \frac{iux}{1+x^2} \right) \frac{1+x^2}{x^2} dG(x) + i\beta u \right\}
$$

= $\exp \left\{ \alpha \int_{\mathbb{R} \setminus \{0\}} \left(e^{iux} - 1 - \frac{iux}{1+x^2} \right) \frac{1+x^2}{x^2} dG(x) + i\beta u - \frac{\alpha u^2}{2} G(\{0\}) \right\}.$

Proof of Theorem 9.3: Sufficiency for infinite divisibility. As in the Proof of Theorem 9.1, it remains to prove that $f(u)$ is the characteristic function of some random variable. Without loss of generality, we may assume that $\beta = \sigma = 0$. We first consider the case that ν is supported on a finite set, say $\{x_1, ..., x_n\}$. Clearly, $x_i \neq 0$, for $1 \leq i \leq n$, and

$$
f(u) = \prod_{j=1}^{n} \exp\{\lambda_j(e^{iux_j} - 1)\} \times \exp\{-iub\},
$$

where $\lambda_j = \nu(\lbrace x_j \rbrace)(1+x_j^2)/x_j^2$ and $b = -\sum_{j=1}^n \nu(\lbrace x_j \rbrace)/x_j$. Clearly, $f(u)$ is the characteristic function of *X*, where $X = \sum_{i=1}^{n} x_i Y_i - b$ and $Y_1, ..., Y_n$ are independent Poisson random variables with parameters $\lambda_1, ..., \lambda_n$.

For the general case, let $(\nu_n)_{n=1}^{\infty}$ be a sequence of measures supported on finite sets satisfying $\nu_n(\mathbb{R}) \to \nu(\mathbb{R})$ and $\nu_n/\nu_n(\mathbb{R})$ *D*-converges to $\nu/\nu(\mathbb{R})$. (How to create ν_n ?) Let

$$
f_n(u) = \exp\left\{ \int_{\mathbb{R}} \varphi(u, x) d\nu_n(x) \right\}, \quad \forall n \in \mathbb{N},
$$

and X_n be a random variable with characteristic function f_n . By the Lebesgue dominated convergence theorem, since, for $u \in \mathbb{R}$, $\varphi(u, \cdot)$ is bounded and continuous, $f_n \to f$. As φ is uniformly bounded on $[-a, a] \times \mathbb{R}$ for any $a > 0$, one my apply the LDCT to derive that, for any $u \in \mathbb{R}$ and any sequence $(h_n)_{n=1}^{\infty}$ converging to 0,

$$
\lim_{n \to \infty} f(u + h_n) = f(u).
$$

This yields the continuity of *f*. As a consequence of the continuity theorem, *f* is the characteristic function of some random variable. **Exercise 9.1.** Show that, for any finite measure ν on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, there is a sequence of measures $(\nu_n)_{n=1}^{\infty}$ supported on finite sets satisfying $\nu_n(\mathbb{R}) \to \nu(\mathbb{R})$ and $\nu_n/\nu_n(\mathbb{R})$ converges to $\nu/\nu(\mathbb{R})$ in distribution.

In the following, we examine the uniqueness of constants β and ν in Theorem 9.3. First, recall the following function

(9.6)
$$
\varphi(u,0) = -u^2/2, \quad \varphi(u,x) = \left(e^{iux} - 1 - \frac{iux}{1+x^2}\right) \frac{1+x^2}{x^2} \quad \forall x \neq 0.
$$

Let γ be the finite measure on $\mathbb R$ defined by

$$
\gamma(B) = \begin{cases} \nu(B) + \sigma^2 & \text{if } 0 \in B \\ \nu(B) & \text{if } 0 \notin B \end{cases}.
$$

Using the above setting, we may rewrite the function *f* in Theorem 9.3 as

(9.7)
$$
f(u) = \exp\left\{i\beta u + \int_{\mathbb{R}} \varphi(u, x) d\gamma(x)\right\},\,
$$

where γ is a finite measure on R.

Proposition 9.6. β , γ *are uniquely determined by* (9.7)*.*

Proof. Let $\psi(u)$ be a continuous function satisfying $f = e^{\psi}$ and set

$$
\theta(u) = \psi(u) - \int_0^1 \frac{\psi(u+h) + \psi(u-h)}{2} dh.
$$

Clearly, θ is independent of the choice of ψ and is determined by f . Note that

$$
\int_0^1 \frac{\varphi(u+h,x) + \varphi(u-h,x)}{2} dh = \varphi(u,x) - e^{iux} \frac{1+x^2}{x^2} \int_0^1 (1 - \cos(hx)) dh
$$

$$
= \varphi(u,x) - e^{iux} \left(1 - \frac{\sin x}{x}\right) \frac{1+x^2}{x^2}
$$

This implies

$$
\theta(u) = \int_{\mathbb{R}} e^{iux} d\mu(x),
$$

where

$$
d\mu(x) = g(x)d\gamma(x), \quad g(x) = \left(1 - \frac{\sin x}{x}\right) \frac{1 + x^2}{x^2}.
$$

Since $0 < \inf_x g(x) \le \sup_x g(x) < \infty$, μ is a finite measure and $d\gamma(x) = (1/g(x))d\mu(x)$.

Assume that $\psi(u) = i\beta'u + \int_{\mathbb{R}} \varphi(x, u) d\gamma'(x)$ and set $d\mu'(x) = g(x) d\gamma'(x)$. As before, one has $\theta(u) = \int_{\mathbb{R}} e^{iux} d\mu'(x)$ and $d\gamma'(x) = (1/g(x))d\mu'(x)$. When $u = 0$, $\theta(0) = \mu(\mathbb{R}) = \mu'(\mathbb{R})$. By Theorem 7.11, this implies $\mu = \mu'$ and, hence, $\gamma = \gamma'$. Putting this fact back to (9.7) yields $e^{i\beta u} = e^{i\beta' u}$ for all $u \in \mathbb{R}$. Again, Theorem 7.11 implies $\beta = \beta'$.

To state the next theorem, we need the following generalization of mass-preserving measures. A set *A* of finite measures on R is said to be mass-preserving if, for any $\epsilon > 0$, there is a finite interval *I* such that $\mu(I^c) < \epsilon$ for all $\mu \in \mathcal{A}$.

Remark 9.2. Let μ_n, μ be finite measures on R satisfying $\mu_n(\mathbb{R}) > 0$ and $\mu(\mathbb{R}) > 0$. Then, $(\mu_n)_{n=1}^{\infty}$ is mass-preserving and *D*-converges to μ if and only if $\mu_n(\mathbb{R}) \to \mu(\mathbb{R}) < \infty$ and $\mu_n/\mu_n(\mathbb{R})$ *D*-converges to $\mu/\mu(\mathbb{R})$.

Remark 9.3. If $(\mu_n)_{n=1}^{\infty}$ is mass-preserving and *D*-converges to μ , then $\int_{\mathbb{R}} f(x) d\mu_n(x) \to$ $\int_{\mathbb{R}} f(x) d\mu(x)$ for any bounded measurable function *f* satisfying $\mu(C(f)^c) = 0$.

Theorem 9.7. Let $X_{n,1},...,X_{n,n}$ be i.i.d. random variables and $S_n = \sum_{i=1}^n X_{n,i}$. Let F_n be the distribution of $X_{n,1}$, $\beta_n = \int_{\mathbb{R}} n x/(1+x^2) dF_n(x)$ and $\gamma_n(x) = \int_{(-\infty,\pi]} n y^2/(1+y^2) dF_n(y)$. *Then,* S_n *converges in distribution to some random variable* X *if and only if* β_n *converges and* γ_n *is mass-preserving and converges in distribution. Furthermore, if* γ_n *is mass-preserving and D-converges to* γ *and* $\beta_n \to \beta$ *, then the characteristic function f of X is given by*

(9.8)
$$
f(u) = \exp\left\{iu\beta + \int_{\mathbb{R}} \varphi(u,x)d\gamma(x)\right\}.
$$

Proof. Let f_n , h_n be characteristic functions of $X_{n,1}$, S_n and $I_n \subset \mathbb{R}$ be the largest open interval such that $f_n(u) \neq 0$ (also for $h_n(u)$) for $u \in I_n$. Let $\psi_n(u)$ be the (unique) complex-valued continuous function on I_n satisfying $\psi_n(0) = 0$ and $f_n(u) = e^{\psi_n(u)}$ for $u \in I_n$. Set $\theta_n := n\psi_n$. Clearly, θ_n is continuous and $h_n = e^{\theta_n}$ on I_n . Similar to (9.2) and (9.5), one may write

(9.9)
\n
$$
\theta_n(u) = (1 + \epsilon_n(u))n[f_n(u) - 1]
$$
\n
$$
= (1 + \epsilon_n(u))\alpha_n \int_{\mathbb{R}} \varphi(u, x) dG_n(x) + (1 + \epsilon_n(u))iu\beta_n, \quad \forall u \in I_n,
$$

where $G_n(x) = \gamma_n(x)/\alpha_n$ and

$$
\alpha_n = \int_{\mathbb{R}} \frac{nx^2}{1+x^2} dF_n(x), \quad \gamma_n(x) = \int_{(-\infty, x]} \frac{ny^2}{1+y^2} dF_n(y), \quad \beta_n = \int_{\mathbb{R}} \frac{nx}{1+x^2} dF_n(x).
$$

First, assume that $S_n \to X$ in distribution. By Propositions 9.2 and 9.4, X is infinitely divisible and $X_{n,1} \to 0$ in distribution. Let f be the characteristic function of X and ψ be the (unique) complex-valed continuous function satisfying $\psi(0) = 0$ and $f = e^{\psi}$. Then, $f_n \to 1$ and $\theta_n \to \psi$ uniformly on any finite interval and thus $\liminf_n I_n = \mathbb{R}$ and $\epsilon_n(u) \to 0$ uniformly on any finite interval. A similar reasoning as in the proof of Theorem 9.3 (Facts 1 and 2) yields

$$
\limsup_{n \to \infty} n F_n([-a, a]^c) \le Aa \int_0^{1/a} |\Re \psi(v)| dv < \infty, \quad \forall a > 0,
$$

for some $A > 0$ and

$$
\limsup_{n\to\infty}\int_{[-1,1]}x^2ndF_n(x)\leq \pi|\Re \psi(1)|<\infty.
$$

This implies that $(\alpha_n)_{n=1}^{\infty}$ is bounded and $(\gamma_n)_{n=1}^{\infty}$ is mass-preserving. Let $(\alpha_{n_k})_{k=1}^{\infty}$ be a convergent subsequence with limit *α*.

Case 1: $\alpha = 0$. Clearly, γ_{n_k} converges to 0 in distribution.

Case 2: $\alpha > 0$. One can show that $(G_{n_k})_{k=1}^{\infty}$ is mass-preserving. Let $(G_{m_k})_{k=1}^{\infty}$ be a further subsequence that *D*-converges to $G \in \mathcal{N}$. By Remark 9.2, γ_{m_k} *D*-converges to $\gamma := \alpha G$.

By Proposition 9.6, this implies $(\gamma_n)_{n=1}^{\infty}$ is mass-preserving and *D*-converges. By (9.9), $(\beta_n)_{n=1}^{\infty}$ is convergent. Moreover, if γ , β are limits of γ_n , β_n , then $\psi(u) = \int_{\mathbb{R}} \varphi(u, x) d\gamma(x) + iu\beta$.

Next, suppose γ_n *D*-converges to γ and β_n converges to β . Note that $\gamma_n \to \gamma$ in distribution implies $F_n \to \mathbf{1}_{[0,\infty)}$ in distribution or equivalently $X_{n,1} \to 0$ in distribution. In (9.9), this implies $\epsilon_n(u) \to 0$ uniformly on any finite interval. By Remark 9.3, we obtain

$$
\lim_{n \to \infty} \theta_n(u) = \int_{\mathbb{R}} \varphi(u, x) d\gamma(x) + iu\beta, \quad \forall u \in \mathbb{R}.
$$

By the LDCT, since $\varphi(u, x)$ is bounded on $[-a, a] \times \mathbb{R}$ for any $a > 0$ and $\varphi(u, x) \to \varphi(0, x) = 0$ as $u \to 0$, the integral at the right side of the above equality is continuous at 0. As a consequence of the continuity theorem (Theorem 7.13), *Sⁿ* converges in distribution to some random variable X .

Corollary 9.8. Let $X_{n,1},...,X_{n,n}$ be *i.i.d.* random variables and set $S_n = \sum_{i=1}^n X_{n,i}$ and $M_n = \max\{|X_{n,i}| : 1 \leq i \leq n\}$. Assume that S_n converges in distribution to X. Then, X is *normal if and only if* \overline{M}_n *converges to 0 in distribution.*

Proof. Consider the expression of (9.8) . By Proposition 9.6, *X* is normal with mean μ and variance σ^2 if and only if $\beta = \mu$ and $\gamma = \sigma^2 \mathbf{1}_{[0,\infty)}$. By Theorem 9.7, $\gamma = \sigma^2 \mathbf{1}_{[0,\infty)}$ for some $\sigma^2 > 0$ if and only if

$$
\int_{[-a,a]^c}\frac{y^2}{1+y^2}ndF_n(x)\to 0,\quad \forall a>0,
$$

or equivalently $n\mathbb{P}(|X_{n,1}| > a) = nF_n([-a,a]^c) \to 0$ for al $a > 0$. Note that, for $a > 0$,

$$
\mathbb{P}(M_n \le a) = [1 - \mathbb{P}(|X_{n,1}| > a)]^n = e^{n \log[1 - \mathbb{P}(|X_{n,1}| > a)]}.
$$

Since $\mathbb{P}(|X_{n,1}| > a) \to 0$ for $a > 0$ (by Proposition 9.4), this implies

$$
M_n \stackrel{\mathcal{D}}{\rightarrow} 0 \Leftrightarrow n \log[1 - \mathbb{P}(|X_{n,1}| > a)] \rightarrow 0, \forall a > 0 \Leftrightarrow n \mathbb{P}(|X_{n,1}| > a) \rightarrow 0, \forall a > 0.
$$