3. Markov chains

3.1. Definitions and examples.

Definition 3.1. Let (S, \mathcal{C}) be a measurable space, $(\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration and $(X_n)_{n=0}^{\infty}$ be a stochastic process taking valued on S. X_n is called a *Markov chain* w.r.t. \mathcal{F}_n if X_n is \mathcal{F}_n -measurable and

$$\mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = \mathbb{P}(X_{n+1} \in B | X_n), \quad \forall B \in \mathcal{C}, n \ge 0.$$

The distribution of X_0 is called the initial distribution.

Lemma 3.1. A sequence of random elements X_n taking values in (S, C) is a Markov chain w.r.t. a filtration \mathcal{F}_n if and only if

(3.1) $\mathbb{E}(f(X_{n+1})|\mathcal{F}_n) = \mathbb{E}(f(X_{n+1})|X_n),$

where $f: S \to \mathbb{R}$ is any bounded C-measurable function.

Proof. The sufficient condition for Markov chains is clear. For the necessary condition, let H be the class of all bounded C-measurable function f such that (3.1) holds. Obviously, H is a linear space containing the constant function $\mathbf{1}$ and the multiplicative system $\{\mathbf{1}_B : B \in \mathcal{C}\}$. Also, H is closed under the bounded convergence. By the multiplicative system theorem, H contains all bounded C-measurable functions.

Example 3.1 (Random walks). Let $X_0, \xi_1, \xi_2, ...$ be independent random elements taking values in \mathbb{R}^d . Let $X_n = X_0 + \xi_1 + \cdots + \xi_n$ and $\mathcal{F}_n = \mathcal{F}(X_0, \xi_1, ..., \xi_n)$. Then X_n is a Markov chain w.r.t. \mathcal{F}_n . To see this fact, let μ_n be the distribution of ξ_n . Note that, for any random elements X, Ytaking values on (R, \mathcal{B}) and (S, \mathcal{C}) , if Y is \mathcal{F} -measurable, $\mathcal{F}(X)$ is independent of \mathcal{F} and φ is a random variable defined on $(R \times S, \mathcal{B} \times \mathcal{C})$ satisfying $\mathbb{E}|\varphi(X, Y)| < \infty$, then $\mathbb{E}(\varphi(X, Y)|\mathcal{F}) = \phi(Y)$, where $\phi(y) = \mathbb{E}\varphi(X, y)$. Replacing $X, Y, \mathcal{F}, \varphi(x, y)$ with $\xi_{n+1}, X_n, \mathcal{F}_n, \mathbf{1}_B(x+y)$ yields

$$\mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = \mu_{n+1}(B - X_n),$$

where $\mathbb{E}\mathbf{1}_B(\xi_{n+1}, x_n) = \mathbb{P}(x_n + \xi_{n+1} \in B) = \mu_{n+1}(B - x_n)$ is used. Similarly, one has $\mathbb{P}(X_{n+1} \in B | X_n) = \mu_{n+1}(B - X_n)$.

Remark 3.1. It follows immediately from (3.1) that, for bounded C-measurable functions $f_0, ..., f_k$ with $k \ge 1$,

$$\mathbb{E}\left(\prod_{i=0}^{k} f_i(X_{n+i}) \middle| \mathcal{F}_n\right) = \mathbb{E}\left(\prod_{i=0}^{k-1} f_i(X_{n+i}) \mathbb{E}(f_k(X_{n+k}) \middle| \mathcal{F}_{n+k-1}) \middle| \mathcal{F}_n\right)$$
$$= \mathbb{E}\left(\prod_{i=0}^{k-2} f_i(X_{n+i}) g(X_{n+k-1}) \middle| \mathcal{F}_n\right),$$

where $\prod_{i=0}^{-1} := 1$ and $g(x) = f_{k-1}(x)\mathbb{E}(f_k(X_{n+k})|X_{n+k-1} = x)$, which is bounded and \mathcal{C} -measurable. By induction, one has

$$\mathbb{E}\left(\prod_{i=0}^{k-2} f_i(X_{n+i})g(X_{n+k-1})|\mathcal{F}_n\right) = \mathbb{E}\left(\prod_{i=0}^{k-2} f_i(X_{n+i})g(X_{n+k-1})|X_n\right)$$
$$= \mathbb{E}\left(\prod_{i=0}^{k-1} f_i(X_{n+i})\mathbb{E}(f_k(X_{n+k})|\mathcal{F}_{n+k-1})\Big|X_n\right)$$
$$= \mathbb{E}\left(\prod_{i=0}^{k} f_i(X_{n+i})\Big|X_n\right).$$

As a result, we obtain

(3.2)
$$\mathbb{E}\left(\prod_{i=0}^{k} f_i(X_{n+i}) \middle| \mathcal{F}_n\right) = \mathbb{E}\left(\prod_{i=0}^{k} f_i(X_{n+i}) \middle| X_n\right), \quad \forall k \ge 0,$$

where the case of k = 0 is obvious.

Thereafter, we need the following notations. For $n \geq 0$, let $\mathcal{C}_{n+1} = \mathcal{C} \otimes \cdots \otimes \mathcal{C}$ be the product σ -field over S^{n+1} and $\mathcal{C}_{\infty} = \mathcal{C} \otimes \mathcal{C} \otimes \cdots$ be the product σ -field over S^{∞} .

Lemma 3.2. Let X_n be a Markov chain on (S, \mathcal{C}) w.r.t. \mathcal{F}_n and \mathcal{C}_{∞} . For any bounded \mathcal{C}_{∞} -measurable function f, one has

$$\mathbb{E}(f(X_n, X_{n+1}, \dots) | \mathcal{F}_n) = \mathbb{E}(f(X_n, X_{n+1}, \dots) | X_n).$$

Proof. By the Lebesgue dominated convergence theorem, it suffices to prove that

$$\mathbb{P}((X_n, X_{n+1}, \ldots) \in B | \mathcal{F}_n) = \mathbb{P}((X_n, X_{n+1}, \ldots) \in B | X_n).$$

By the π - λ lemma, it remains to consider the case $B = B_0 \times \cdots \times B_k \times S^\infty$, where $B_0, ..., B_k \in C$, $S^\infty = S \times S \times \cdots$ and $k \ge 0$, and this is given by (3.2) with $f_i = \mathbf{1}_{B_i}$, as desired. \Box

Remark 3.2. It follows immediately from Lemma 3.2 that, for $n \in \mathbb{N}$ and any bounded \mathcal{C}_{n+1} measurable and \mathcal{C}_{∞} -measurable functions f, g,

$$\mathbb{E}(f(X_0, ..., X_n)g(X_n, X_{n+1}, ...)|X_n) = \mathbb{E}(f(X_0, ..., X_n)|X_n)\mathbb{E}(g(X_n, X_{n+1}, ...)|X_n).$$

In particular, for $A \in \mathcal{F}(X_0, X_1, ..., X_n)$ and $B \in \mathcal{F}(X_n, X_{n+1}, ...)$,

$$\mathbb{P}(A \cap B|X_n) = \mathbb{P}(A|X_n)\mathbb{P}(B|X_n).$$

Definition 3.2. Let (S, \mathcal{C}) be a measurable space. A function $p : S \times \mathcal{C} \to \mathbb{R}$ is said to be a *transition probability* or *transition function* if:

- (1) For each $x \in S$, $p(x, \cdot)$ is a probability on (S, \mathcal{C}) ;
- (2) For each $A \in \mathcal{C}$, $p(\cdot, A)$ is a \mathcal{C} -measurable function.

A process X_n is said to be a Markov chain w.r.t. \mathcal{F}_n with transition probabilities p_n if

$$\mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = p_n(X_n, B) \quad \forall B \in \mathcal{C}, \ n \ge 1.$$

Remark 3.3. Note that if $p : S \times C \to \mathbb{R}$ is a transition probability and f is a bounded C-measurable function, then the following map

(3.3)
$$x \mapsto \int_{S} f(y)p(x,dy)$$

is C-measurable. To see the details, let H be the class of all bounded C-measurable functions satisfying (3.3). It is obvious that H is a linear space containing $\mathbf{1}_S$ and is closed under bounded convergence. Since $\mathbf{1}_B \in H$ for all $B \in C$, the multiplicative system theorem implies that H is the class of all bounded C-measurable functions.

Theorem 3.3. Let X_n be a Markov chain on (S, \mathcal{C}) with transition probabilities p_n and initial distribution μ . Fix $m \geq 1$ and let f be a bounded \mathcal{C}_{m+1} -measurable function. Set

$$\varphi(x) = \int_{S} p_n(x, dy_1) \cdots \int_{S} p_{n+m-1}(y_{m-1}, dy_m) f(x, y_1, \dots, y_m)$$

Then, φ is well-defined, C-measurable and

$$\mathbb{E}(f(X_n, ..., X_{n+m}) | \mathcal{F}_n) = \varphi(X_n), \quad \forall n \ge 0.$$

In particular,

(3.4)
$$\mathbb{E}f(X_0, ..., X_m) = \int_S \mu(dx_0) \int_S p_0(x_0, dx_1) \cdots \int_S p_{m-1}(x_{m-1}, dx_m) f(x_0, ..., x_m)$$

and, for $B_0, ..., B_n \in \mathcal{C}$,

(3.5)
$$\mathbb{P}(X_m \in B_m, \ 0 \le m \le n) = \int_{B_0} \mu(dx_0) \int_{B_1} p_0(x_0, dx_1) \cdots \int_{B_n} p_{n-1}(x_{n-1}, dx_n).$$

Proof. The second and third identities are special cases of the first one. For the first identity, it suffices to consider $f(y_0, ..., y_m) = \prod_{i=0}^m f_i(y_i)$, where $f_0, ..., f_m$ are bounded C-measurable functions, by the multiplicative system theorem. The well-definedness and C-measurability of φ can be proved by induction and the details are skipped. For the identity, the case of m=1is immediate from Proposition 1.10. For m > 1, note that $\mathbb{E}(f_m(X_{n+m})|\mathcal{F}_{n+m-1}) = g(X_{n+m})$, where $g(x) = \int_{S} p_{n+m-1}(x, dy_m) f_m(y_m)$. By induction, we may write

$$\mathbb{E}(f(X_n, \dots, X_{n+m})|\mathcal{F}_n) = \mathbb{E}[\mathbb{E}(f(X_n, \dots, X_{n+m})|\mathcal{F}_{n+m-1})|\mathcal{F}_n]$$
$$= \mathbb{E}[f_0(X_n) \cdots f_{m-2}(X_{n+m-2})(f_{m-1}g)(X_{n+m-1})|\mathcal{F}_n] = \widetilde{\varphi}(X_n),$$

where

$$\widetilde{\varphi}(x) = \int_{S} p_n(x, dy_1) \cdots \int_{S} p_{n+m-2}(y_{m-2}, dy_{m-1}) f_0(x) f_1(y_1) \cdots f_{m-1}(y_{m-1}) g(y_{m-1}) = \varphi(x),$$
as desired.

as desired.

Note that (3.1) can be rewritten as

$$\mathbb{P}(X_m \in B_m, \ 0 \le m \le n) = \int_S \mu(dx_0) \int_S p_0(x_0, dx_1) \cdots \int_S \mathbf{1}_{B_0 \times \dots \times B_n} p_{n-1}(x_{n-1}, dx_n).$$

Based on this observation, it is natural to consider the following function

(3.6)
$$\mathbb{P}_{\mu}^{(n)}(A) = \int_{S} \mu(dx_0) \int_{S} p_0(x_0, dx_1) \cdots \int_{S} \mathbf{1}_A p_{n-1}(x_{n-1}, dx_n),$$

for all $A \in \mathcal{C}_{n+1}$ and $n \ge 0$. By (3.4), (3.6) defines a probability on $(S^{n+1}, \mathcal{C}_{n+1})$ and

$$\mathbb{P}^{(n+1)}_{\mu}(A \times S) = \mathbb{P}^{(n)}_{\mu}(A), \quad \forall A \in \mathcal{C}_{n+1}, \ n \ge 0.$$

Lemma 3.4. Let $\mathbb{P}^{(n)}_{\mu}$ be the probability in (3.6). For $n \geq 0$, set $X_n(\omega) = \omega_n$ for $\omega = (\omega_n)_{n=0}^{\infty} \in S^{\infty}$ and $\mathcal{F}_n = \mathcal{C}_{n+1}$. Assume that there is a probability \mathbb{P}_{μ} on $(S^{\infty}, \mathcal{C}_{\infty})$ satisfying $\mathbb{P}_{\mu}(A \times S^{\infty}) = \mathbb{P}_{\mu}^{(n)}(A)$ for all $A \in \mathcal{C}_{n+1}$ and $n \geq 0$. Then, X_n is a Markov chain w.r.t. \mathcal{F}_n with initial distribution μ and transition probability p_n .

Proof. It is clear that X_n is adapted to \mathcal{F}_n . Note that, for $A = \{X_i \in B_i, 0 \leq i \leq n\}$ and $B_{n+1} \in \mathcal{C},$

$$\int_{A} \mathbf{1}_{\{X_{n+1}\in B_{n+1}\}} d\mathbb{P}_{\mu} = \mathbb{P}_{\mu}(A, X_{n+1}\in B_{n+1}) = \mathbb{P}_{\mu}(B_0\times\cdots\times B_{n+1}\times S^{\infty})$$
$$= \mathbb{P}_{\mu}^{(n)}(B_0\times\cdots\times B_{n+1}) = \int_{B_0} \mu(dx_0) \int_{B_1} p_0(x_0, dx_1)\cdots \int_{B_n} p_{n-1}(x_{n-1}, dx_n) p_n(x_n, B_{n+1}).$$

By the multiplicative system theorem, one can show that

$$\int_{B_0} \mu(dx_0) \int_{B_1} p_0(x_0, dx_1) \cdots \int_{B_n} p_{n-1}(x_{n-1}, dx_n) f(x_n) = \int_A f(X_n) d\mathbb{P}_{\mu},$$
35

for any bounded C-measurable function f. As $p_n(\cdot, B_{n+1})$ is C-measurable, this implies

$$\int_{A} \mathbf{1}_{\{X_{n+1}\in B_{n+1}\}} d\mathbb{P}_{\mu} = \int_{A} p_n(X_n, B_{n+1}) d\mathbb{P}_{\mu}.$$

As a consequence of the π - λ lemma, the above identity holds for all $A \in \mathcal{F}_n$ or equivalently $\mathbb{P}_{\mu}(X_{n+1} \in B | \mathcal{F}_n) = p_n(X_n, B)$. Since $p_n(X_n, B)$ is $\mathcal{F}(X_n)$ -measurable, we obtain

$$\mathbb{P}_{\mu}(X_{n+1} \in B | \mathcal{F}_n) = \mathbb{E}_{\mu} \left(\mathbf{1}_{\{X_{n+1} \in B\}} | \mathcal{F}_n \right) = \mathbb{E}_{\mu} \left(\mathbb{E} \left(\mathbf{1}_{\{X_{n+1} \in B\}} | \mathcal{F}_n \right) | X_n \right) = \mathbb{P}_{\mu}(X_{n+1} \in B | X_n),$$

where \mathbb{E}_{μ} denotes the expectation under \mathbb{P}_{μ} .

Note that the transition probability is closely related to the regular condition probability and distribution. Recall that (S, \mathcal{C}) is a Borel space if there is $R \in \mathcal{B}(\mathbb{R})$ and a bijection $\varphi: (S, \mathcal{C}) \to (R, \mathcal{B}(R))$, where $\mathcal{B}(R) = \{R \cap E | E \in \mathcal{B}(\mathbb{R})\}$, such that φ and φ^{-1} are measurable.

Lemma 3.5. Let X_n be a Markov chain on (S, \mathcal{C}) w.r.t. \mathcal{F}_n . If (S, \mathcal{C}) is a Borel space, then there exist transition probabilities for X_n .

Proof. Since (S, \mathcal{C}) is a Borel space, there exists a regular conditional distribution for X_{n+1} given $X_n = x$ and we write it as p_n , which means that, for any $x \in S$, $p_n(x, \cdot)$ is a probability and, for any $B \in \mathcal{C}$, $p_n(x, B)$ is a version for $\mathbb{P}(X_{n+1} \in B | X_n = x)$. This implies that p_n is a transition probability and

$$\mathbb{P}(X_{n+1} \in B | \mathcal{F}_n) = \mathbb{P}(X_{n+1} \in B | X_n) = p_n(X_n, B) \quad \forall B \in \mathcal{C}, n \ge 0.$$

Theorem 3.6. Let μ be a probability measure and p_n be a sequence of transition functions on $S \times C$. If (S, C) is a Borel space, then there exists a Markov chains X_n on (S, C) with transition probability p_n and initial distribution μ .

Proof. For $n \geq 0$, let $\mathbb{P}_{\mu}^{(n)}$ be the probability defined by (3.6). Note that $\mathbb{P}_{\mu}^{(n)}$ possesses the consistency property and (S, \mathcal{C}) is a Borel space. By the Kolmogorov extension theorem, there is an extension probability on $(S^{\infty}, \mathcal{C}_{\infty})$, say \mathbb{P}_{μ} , such that $\mathbb{P}_{\mu}(A \times S^{\infty}) = \mathbb{P}_{\mu}^{(n)}(A)$ for $A \in \mathcal{C}_{n+1}$ and $n \geq 0$. The remaining proof is then given by Lemma 3.4.

Example 3.2 (Markov chains with discrete state spaces). Assume that S is a countable set and $C = 2^S$. It is clear that (S, C) is a Borel space. Suppose $p_n(i, j) \ge 0$ and $\sum_j p_n(i, j) = 1$ for all $i \in S$ and $n \ge 0$. Then, $p_n(i, A) = \sum_{j \in A} p_n(i, j)$ defines a transition probability. By Theorem 3.6, there is a Markov chain on S with transition probabilities p_n and this implies $p_n(i, j) = P(X_{n+1} = j | X_n = i)$.

Exercise 3.1. Let \mathbb{P}_{μ} and $\mathbf{X} = (X_0, X_1, ...)$ be the probability and the stochastic process created in the proofs of Theorem 3.6 and Lemma 3.4. If $\mu = \delta_x$, the Dirac measure at x, we simply write \mathbb{P}_x for \mathbb{P}_{δ_x} . Prove that, for $B \in \mathcal{C}_{\infty}$, the map $x \mapsto \mathbb{P}_x(B)$ is \mathcal{C} -measurable and

$$\mathbb{P}_{\mu}(B) = \int_{S} \mu(dx) \mathbb{P}_{x}(B), \quad \forall B \in \mathcal{C}_{\infty}.$$

Use the above equality to conclude that, for $B \in \mathcal{C}_{\infty}$,

$$\mathbb{P}_{\mu}(\mathbf{X} \in B | X_0 = x) = \mathbb{P}_x(\mathbf{X} \in B).$$

Hint: The π - λ lemma.

Remark 3.4. It follows immediately from Exercise 3.1 that, for any bounded \mathcal{C}_{∞} -measurable function f,

$$\mathbb{E}_{\mu}(f(\mathbf{X})|X_0 = x) = \mathbb{E}_x f(\mathbf{X}), \quad \mathbb{E}_{\mu}f(\mathbf{X}) = \int_{S} \mu(dx)\mathbb{E}_x f(\mathbf{X}).$$
36

Example 3.3 (Branching processes). Let $S = \{0, 1, ...\}$ and ξ_i^n , $i, n \ge 1$, be i.i.d. nonnegative integer-valued random variables. Set

$$p(i,j) = \mathbb{P}\left(\sum_{k=1}^{i} \xi_k^n = j\right).$$

Let Z_n be the number of the population at time n. Then, Z_n forms a (time homogeneous) Markov chain w.r.t. $\mathcal{F}_n = \mathcal{F}(\xi_i^m, i \ge 0, m \le n)$ with common transition probability p. In details, one has

$$\mathbb{P}(Z_{n+1} = j | Z_1 = i_1, \dots, Z_{n-1} = i_{n-1}, Z_n = i)$$
$$= \mathbb{P}\left(\sum_{k=1}^i \xi_k^{n+1} = j\right) = p(i, j) = \mathbb{P}(Z_{n+1} = j | Z_n = i)$$

Example 3.4 (Renewal chains). Let a_k be a sequence of nonnegative real numbers summing up to 1. A renewal chain is a (time homogeneous) Markov chain with common transition probability p given by

$$p(i,j) = \begin{cases} a_{k+1} & \text{if } (i,j) = (0,k), \, k \ge 0\\ 1 & \text{if } (i,j) = (k,k-1)\\ 0 & \text{o.w.} \end{cases}$$

Concerning the meaning of a renewal chain, let's consider the following setting. Let $\xi_1, \xi_2, ...$ be i.i.d. random variables with $\mathbb{P}(\xi_n = j) = a_j$ and $T_0 = i_0$. For k > 0, set $T_k = T_{k-1} + \xi_k$. T_k should be viewed as a sequence of renewal times. It is worthwhile to note that T_k forms a Markov chain. Let

$$Y_m = \begin{cases} 1 & \text{if } m \in \{T_0, T_1, ...\} \\ 0 & \text{o.w.} \end{cases}$$

and set $X_n = \inf\{m - n : Y_m = 1, m \ge n\}$. X_n is the amount of time until the first renewal after time n. We shall prove in the following that X_n is a (time homogeneous) Markov chain w.r.t. $\mathcal{F}_n = \mathcal{F}(\xi_1, ..., \xi_n)$ with common transition probability p.

Note that T_k is adapted to \mathcal{F}_k . Let $N_n = \inf\{k : T_k \ge n\}$. Clearly, N_n is a stopping time on the filtration $\mathcal{F}_n = \mathcal{F}(\xi_1, ..., \xi_n)$. It is easy to see that $T_{N_n} = X_n + n$ and this implies

$$\mathcal{F}(T_{N_1},...,T_{N_n}) = \mathcal{F}(X_1,...,X_n)$$

Since N_n is nondecreasing in n, for $i_1 \leq \cdots \leq i_{n-1} \leq i_n$ and $k \geq 0$,

$$\{T_{N_j} = i_j, 1 \le j \le n, N_n = k\} = \bigcup_{0 \le \ell_1 \le \dots \le \ell_{n-1} \le \ell_n = k} \{T_{\ell_j} = i_j, N_j = \ell_j, 1 \le j \le n\} \in \mathcal{F}_k.$$

This yields

$$\mathcal{F}(T_{N_1},...,T_{N_n}) \subset \mathcal{F}_{N_n} = \mathcal{F}(\xi_1,\xi_2,...,\xi_{N_n}).$$

If $X_n = i > 0$, then $X_{n+1} = i - 1$. This implies

$$\mathbb{P}(X_{n+1} = i - 1 | X_n = i, X_{n-1} = i_{n-1}, \dots, X_1 = i_1) = 1 = \mathbb{P}(X_{n+1} = i - 1 | X_n = i).$$

If $X_n = 0$, then $X_{n+1} = \xi_{N_n+1} - 1$. Since $\mathbb{P}(N_n < \infty) = 1$, \mathcal{F}_{N_n} is independent of $\mathcal{F}(\xi_{N_n+1})$ and ξ_{N_n+1} has the same distribution as ξ_1 . (Why?) Hence, we have

$$\mathbb{P}(X_{n+1} = k | X_n = 0, X_{n-1} = i_{n-1}, \dots, X_1 = i_1) = a_{k+1} = \mathbb{P}(X_{n+1} = k | X_n = 0).$$

This proves that X_n is a Markov chain with transition probability p.

Example 3.5 (Ehrenfest chain). An Ehrenfest chain is a (time homogeneous) Markov chain on $\{0, 1, ..., r\}$ with the following common transition probability.

$$\begin{cases} p(i, i+1) = 1 - i/r & \text{for } 0 \le i < r\\ p(i, i-1) = i/r & \text{for } 0 < i \le r\\ p(i, j) = 0 & \text{otherwise} \end{cases}$$

Paul Ehrenfest uses this chain to model the diffusion of air molecules between two chambers connected by a small hole and explain the second law of thermodynamics.

Proposition 3.7. Let S be a countable set and X_n is a Markov chain on S with transition probability p_n and initial distribution μ . Then, for $n \ge 1$, $\mathbb{P}(X_n = j) = (\mu p_0 p_1 \cdots p_{n-1})(j)$ for $j \in S$, where

$$(p_0p_1\cdots p_m)(i,j) = \sum_{k\in S} (p_0p_1\cdots p_{m-1})(i,k)p_m(k,j)$$

and μp^n is the multiplication of the row vector μ and p^n .

Proof. Immediate from the following fact.

$$\mathbb{P}(X_k = i_k, 0 \le k \le n) = \mu(x_0) \prod_{k=0}^{n-1} p(x_k, x_{k+1}).$$

Exercise 3.2. Let $S = \{0, 1\}$ and X_n be a (time homogeneous) Markov chain on S with common transition probability p given by

$$p = \left(\begin{array}{cc} 1-a & a \\ b & 1-b \end{array}\right).$$

Show that for $n \ge 0$,

$$\mathbb{P}(X_n = 0) = \frac{b}{a+b} + (1-a-b)^n \left(\mu(0) - \frac{b}{a+b}\right).$$

Exercise 3.3. Let $\xi_1, \xi_2, ...$ be i.i.d. random variables taking values on $\{1, 2, ..., N\}$ satisfying $\mathbb{P}(\xi_1 = i) = 1/N$ for $1 \leq i \leq N$. Set $X_n = |\{\xi, ..., \xi_n\}|$ where |A| denotes the number of different elements in A. Prove that X_n is a Markov chain and describe the transition probability.

Exercise 3.4. Let $\xi_1, \xi_2, ...$ be i.i.d. random variables satisfying $\mathbb{P}(\xi_1 = 1) = P(\xi_1 = -1) = 1/2$. Let $S_0 = 0, S_n = \xi_1 + \cdots + \xi_n$ and set $X_n = \max\{S_m : 0 \le m \le n\}$. Show that X_n is not a Markov chain.

3.2. Markov property and strong Markov property. A naive way to define a time homogeneous Markov chain X_n is to consider the following identity

(3.7)
$$\mathbb{P}(X_{n+1} \in B | X_n = x) = \mathbb{P}(X_1 \in B | X_0 = x), \quad \forall B \in \mathcal{C}, n \ge 0,$$

where the equality means that there is a common version for $\mathbb{P}(X_{n+1} \in B | X_n = x)$ and $\mathbb{P}(X_1 \in B | X_0 = x)$. Note that such a definition of homogeneity for Markov chains can't be easily fulfilled and any theorem like Lemmas 3.1 and 3.2 may be generated with complicated priori assumptions. However, if X_n possesses a common transition probability, then (3.7) turns out an obvious request. Thus, it is reasonable to consider the following definition.

Definition 3.3. A Markov chain X_n on (S, \mathcal{C}) with transition probability p_n is time homogeneous if $p_n = p_0$ for all $n \ge 0$.

Throughout the remaining of this section, all Markov chains taking values on (S, \mathcal{C}) are restricted to stochastic processes $(X_n)_{n=0}^{\infty}$, where $X_n(\omega) = \omega_n$ for all $\omega = (\omega_n)_{n=0}^{\infty} \in S^{\infty}$ and $n \geq 0$ and $\mathcal{F}_n = \mathcal{F}(X_0, ..., X_n)$. When we say that $(X_n)_{n=0}^{\infty}$ is a Markov chain with transition probability p_n and initial distribution μ , it means that $(S^{\infty}, \mathcal{C}_{\infty})$ is equipped with the probability \mathbb{P}_{μ} generated in the proof of Theorem 3.6. We will use \mathbb{E}_{μ} to denote the expectation under \mathbb{P}_{μ} . If $\mu = \delta_x$, we simply write $\mathbb{P}_x, \mathbb{E}_x$, for short. Remember that if (S, \mathcal{C}) is a Borel space, then \mathbb{P}_{μ} always exists for any probability μ on (S, \mathcal{C}) .

Theorem 3.8 (Markov property). Let X_n be a time homogeneous Markov chain on (S, C) with respect to \mathcal{F}_n with transition probability p. Then, for any bounded \mathcal{C}_{∞} -measurable function f,

$$\mathbb{E}_{\mu}(f(X_n, X_{n+1}, \dots) | \mathcal{F}_n) = \varphi(X_n) \quad \mathbb{P}_{\mu}\text{-}a.s.,$$

for all $n \ge 0$, where $\varphi(x) = \mathbb{E}_x f(X_0, X_1, ...)$.

Proof. By the multiplicative system theorem, it suffices to prove the above identity with $f(x_0, x_1, ...) = g(x_0, ..., x_m)$, where g is a bounded \mathcal{C}_{m+1} -measurable function, and $m \ge 0$. By Theorem 3.3, one has

$$\mathbb{E}_{\mu}[g(X_n, ..., X_{n+m}) | \mathcal{F}_n] = \phi(X_n),$$

where

$$\phi(x) = \int_{S} p(x, dx_1) \int_{S} p(x_1, dx_2) \cdots \int_{S} p(x_{m-1}, dx_m) g(x, x_1, \dots, x_m) = \varphi(x),$$
d.

as desired.

Corollary 3.9 (Chapman-Kolmogorov equation). Let X_n be a time homogeneous Markov chain on (S, \mathcal{C}) . Then, for $B \in \mathcal{C}$,

$$\mathbb{P}_x(X_{m+n} \in B) = \int_S \mathbb{P}_y(X_n \in B) \mathbb{P}_x(X_m \in dy).$$

Proof. By the Markov property, one has

$$\mathbb{P}_x(X_{m+n} \in B) = \mathbb{E}_x(\mathbb{P}_x(X_{m+n} \in B | \mathcal{F}_m)) = \mathbb{E}_x\varphi(X_m),$$

where $\varphi(y) = \mathbb{P}_y(X_n \in B)$. This implies

$$\mathbb{P}_x(X_{m+n} \in B) = \int_S \varphi(y) \mathbb{P}_x(X_m \in dy) = \int_S \mathbb{P}_y(X_n \in B) \mathbb{P}_x(X_m \in dy).$$

Corollary 3.10. Let X_n be a time homogeneous Markov chain on (S, \mathcal{C}) and $A_n, B_n \in \mathcal{C}$ be events satisfying

$$\mathbb{P}_{\mu}\left(\bigcup_{i=n+1}^{\infty} \{X_i \in B_i\} \middle| X_n\right) \ge \delta > 0 \quad on \ \{X_n \in A_n\}.$$

Then, $\mathbb{P}_{\mu}(\{X_n \in A_n \ i.o.\} \setminus \{X_n \in B_n \ i.o.\}) = 0.$

Proof. Let $A = \{X_n \in A_n \text{ i.o.}\}, B = \{X_n \in B_n \text{ i.o.}\}$ and $\widetilde{B}_n = \bigcup_{m>n} \{X_n \in B_n\}$. Then, $\mathbf{1}_{\widetilde{B}_n} \to \mathbf{1}_B$ as $n \to \infty$. By the Markov property and Theorem 2.26, we have

$$\mathbb{E}_{\mu}(\mathbf{1}_{\widetilde{B}_{n}}|X_{n}) = \mathbb{E}_{\mu}(\mathbf{1}_{\widetilde{B}_{n}}|\mathcal{F}_{n}) \stackrel{a.s.}{\to} \mathbb{E}_{\mu}(\mathbf{1}_{B}|\mathcal{F}_{\infty}) = \mathbf{1}_{B},$$

where $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$. Note that, almost surely on A, $\mathbf{1}_{B_n} \ge \delta$ for infinitely many n. This implies $A \subset B$ almost surely.

Exercise 3.5. Let X_n be a time homogeneous Markov chains. A state $a \in S$ is called an absorbing state if $\mathbb{P}_a(X_1 = a) = 1$. Let $D = \{X_n = a \text{ for some } n\}$ and $h(x) = \mathbb{P}_x(D)$. Show that $h(X_n) \to 0$ \mathbb{P}_{μ} -a.s. on D^c for any initial distribution μ .

Recall the concept of stopped σ -fileds as follows. Let \mathcal{F} be a σ -field over Ω and \mathcal{F}_n be a filtration contained in \mathcal{F} . For any stopping time N for \mathcal{F}_n , \mathcal{F}_N is the smallest σ -field containing events $A \in \mathcal{F}$ satisfying $A \cap \{N = n\} \in \mathcal{F}_n$ for all $n < \infty$. Clearly, if X_n is adapted to \mathcal{F}_n , then $X_N \mathbf{1}_{\{N \leq \infty\}}$ is \mathcal{F}_N -measurable.

Theorem 3.11 (Strong Markov property). Let X_n be a time homogeneous Markov chain on (S, \mathcal{C}) and N be a stopping time for \mathcal{F}_n . Then, for any sequence of uniformly bounded \mathcal{C}_{∞} -measurable functions, $(f_n)_{n=0}^{\infty}$,

$$\mathbb{E}_{\mu}(f_N(X_N, X_{N+1}, ...) | \mathcal{F}_N) = \varphi(X_N, N) \quad on \ \{N < \infty\},\$$

where $\varphi(x,n) := \mathbb{E}_x f_n(X_0, X_1, \ldots).$

Remark 3.5. If $f_n = f$ for all $n \ge 0$, then the strong Markov property becomes

$$\mathbb{E}_{\mu}(f(X_N, X_{N+1}, ...) | \mathcal{F}_N) = \varphi(X_N) \quad \text{on } \{N < \infty\},\$$

where $\varphi(x) = \mathbb{E}_x f(X_0, X_1, ...).$

Proof. Note that, for $A \in \mathcal{F}_N$,

$$\mathbb{E}_{\mu}(f_N(X_N, X_{N+1}, \dots); A \cap \{N < \infty\}) = \sum_{n=0}^{\infty} \mathbb{E}_{\mu}(f_n(X_n, X_{n+1}, \dots); A \cap \{N = n\}).$$

Since $\varphi(X_N, N) \mathbf{1}_{\{N < \infty\}}$ is \mathcal{F}_N -measurable (why?), it remains to show that

$$\mathbb{E}_{\mu}(f_n(X_n, X_{n+1}, \ldots); A \cap \{N = n\}) = \mathbb{E}_{\mu}(\varphi(X_n, n); A \cap \{N = n\}),$$

which is, in fact, given by the Markov property.

Example 3.6 (Reflection principle). Let S_0, ξ_1, ξ_2, \dots be independent random variables and ξ_1, ξ_2, \dots are identically distributed with distributions symmetric about 0. Set $S_n = S_0 + \xi_1 + \dots + \xi_n$. Then, for a > 0,

$$\mathbb{P}\left(\max_{1\le m\le n} S_m > a\right) \le 2\mathbb{P}(S_n > a).$$

We prove the inequality by the strong Markov property. Set, for $m \leq n$ and $\omega = (\omega_n)_{n=0}^{\infty}$,

$$f_m(\omega) = \begin{cases} 1 & \text{if } \omega_{n-m} > a \\ 0 & \text{o.w.} \end{cases}$$

and $N = \inf\{1 \le m \le n : S_m > a\}$ with $\inf \emptyset = \infty$. Then,

$$\{N < \infty\} = \{N \le n\} = \left\{\max_{0 \le m \le n} S_m > a\right\}$$

Note that, on $\{N \leq n\}$, $f_N(\omega_N, \omega_{N+1}, ...) = 1$ if $\omega_n > a$ and 0 otherwise. Since S_n is a Markov chain, by the strong Markov property,

$$\mathbb{E}(f_N(S_N, S_{N+1}, ...) | \mathcal{F}_N) = \varphi(S_N, N) \quad \text{on } \{N \le n\},\$$

where $\varphi(y,m) = \mathbb{E}_y f_m(S_0, S_1, ...)$. Observe that, for y > a and $m \le n$,

$$\varphi(y,m) := \mathbb{E}_y f_m(S_0, S_1, \ldots) = \mathbb{P}_y(S_{n-m} > a) \ge \mathbb{P}_y(S_{n-m} \ge y)$$
$$= \mathbb{P}_y(S_{n-m} - S_0 \ge 0) \ge 1/2,$$

where the last inequality uses the symmetry of $\mathbb{P}_0(S_{n-m} - S_0 \in \cdot)$. Thus, on $\{N < \infty\} = \{N \leq n\}, \varphi(S_N, N) \geq 1/2$. As a consequence, we obtain

$$\frac{1}{2}\mathbb{P}(N \le n) \le \mathbb{E}(\varphi(X_N, N); N \le n) = \mathbb{E}(\mathbb{E}(f_N(S_N, S_{N+1}, \dots) | \mathcal{F}_N); N \le n)$$
$$= \mathbb{P}(S_n > a, N \le n) = \mathbb{P}(S_n > a).$$

In the following two exercises, we consider Markov chians X_n on countable state spaces S with transition probability p and set

$$\tau_A = \inf\{n \ge 0 : X_n \in A\}, \quad T_A = \inf\{n \ge 1 : X_n \in A\}$$

Briefly, we write $\tau_y = \tau_{\{y\}}$ and $T_y = T_{\{y\}}$.

Exercise 3.6. [First entrance decomposition] Show that, for $n \ge 1$ and $x, y \in S$,

$$\mathbb{P}_x(X_n = y) = \sum_{m=1}^n \mathbb{P}_x(T_y = m)\mathbb{P}_y(X_{n-m} = y)$$

and, for $k \ge 0$,

$$\sum_{m=0}^{n} \mathbb{P}_x(X_m = x) \ge \sum_{m=k}^{n+k} \mathbb{P}_x(X_m = x).$$

Exercise 3.7. Suppose that $S \setminus C$ is a finite set and, for each $x \in S \setminus C$, $\mathbb{P}_x(\tau_C < \infty) > 0$. Show that there exist N > 0 and $\epsilon > 0$ such that

(3.8)
$$\mathbb{P}_x(\tau_C > kN) \le (1-\epsilon)^k \quad \forall k \ge 1, \ x \in S \setminus C.$$

Use this to conclude that $\mathbb{P}_x(\tau_C < \infty) = 1$ for all $x \notin C$.

Example 3.7. Let S be a countable set and X_n be a time homogeneous Markov chain on S with transition probability p. A function h defined on S is called *harmonic* on $E \subset S$ if

$$h(x) = \sum_{y \in S} h(y) p(x, y) \quad \forall x \in E.$$

Let A, B be disjoint subsets of S such that $(A \cup B)^c$ is finite. By Exercise 3.7, $\mathbb{P}_x(\tau_{A\cup B} < \infty) = 1$ for all $x \in (A \cup B)^c$. We claim that if $\mathbb{P}_x(\tau_{A\cup B} < \infty) > 0$ for all $x \in (A \cup B)^c$, then $\mathbb{P}_x(\tau_A < \tau_B)$ is the unique function h on S, which is harmonic on $(A \cup B)^c$ and satisfies h = 1 on A and h = 0 on B. First, we shall prove the following statements in order.

- (1) The mapping $x \mapsto \mathbb{P}_x(\tau_A < \tau_B)$ is harmonic on $(A \cup B)^c$.
- (2) Let h be a bounded function on S. If h is harmonic on $(A \cup B)^c$, then $h(X_{n \wedge \tau_{A \cup B}})$ is a martingale under \mathbb{P}_x for $x \in (A \cup B)^c$.

Proof. Set $f(x) = \mathbb{P}_x(\tau_A < \tau_B)$. Obviously, f = 1 on A and f = 0 on B. Note that, for $x \notin A \cup B$, $\mathbb{P}_x(\tau_A > 0) = \mathbb{P}_x(\tau_B > 0) = 1$. For $E \subset S$, set

$$f_E(x_0, x_1, ...) = \inf\{k \ge 0 | x_k \in E\}, \quad \forall (x_0, x_1, ...) \in S^{\infty}.$$

Clearly, f_E is \mathcal{C}_{∞} -measurable and $\tau_E = f_E(X_0, X_1, ...)$. Note that if $f_E(x_0, x_1, ...) > 0$, then

$$f_E(x_0, x_1, ...) = f_E(x_1, x_2, ...) + 1.$$

By the Markov property, we have that, for $x \notin A \cup B$,

$$f(x) = \mathbb{P}_x(\tau_A < \tau_B) = \mathbb{E}_x(\mathbb{P}_x(f_A(X_1, X_2, ...) < f_B(X_1, X_2, ...)|X_1))$$

= $\mathbb{E}_x f(X_1) = \sum_{y \in S} f(y)p(x, y).$

This proves (1).

For (2), let $x \in (A \cup B)^c$. Note that $\tau_{A \cup B}$ is a stopping time for \mathcal{F}_n and, for $D \in \mathcal{F}_{n \wedge \tau_{A \cup B}}$, $D \cap \{\tau_{A \cup B} = k\} \in \mathcal{F}_k, \quad \forall k < n, \quad D \cap \{\tau_{A \cup B} \ge n\} \in \mathcal{F}_n.$

This implies $D \in \mathbb{F}_n$ and, thus, $D \cap \{\tau_{A \cup B} = n\}$ and $D \cap \{\tau_{A \cup B} > n\}$ are in \mathcal{F}_n . Write

$$\int_D h(X_{(n+1)\wedge\tau_{A\cup B}})d\mathbb{P}_x = \sum_{k=0}^n \int_{D\cap\{\tau_{A\cup B}=k\}} h(X_k)d\mathbb{P}_x + \int_{D\cap\{\tau_{A\cup B}>n\}} h(X_{n+1})d\mathbb{P}_x.$$

Observe that, by the Markov property, $\mathbb{E}_x(h(X_{n+1})|\mathcal{F}_n) = \varphi(X_n)$, where

$$\varphi(y) = \mathbb{E}_y h(X_1) = \sum_{z \in S} h(z) p(y, z) = h(y), \quad \forall y \in (A \cup B)^c$$

Sice $D \cap \{\tau_{A \cup B} > n\} \in \mathcal{F}_n$, this yields

$$\int_{D \cap \{\tau_{A \cup B > n}\}} h(X_{n+1}) d\mathbb{P}_x = \mathbb{E}_x(\mathbb{E}_x(h(X_{n+1})|\mathcal{F}_n); D \cap \{\tau_{A \cup B} > n\})$$
$$= \mathbb{E}_x(h(X_n); D \cap \{\tau_{A \cup B} > n\})$$

As a consequence, we obtain

$$\int_{D} h(X_{(n+1)\wedge\tau_{A\cup B}})d\mathbb{P}_{x} = \sum_{k=0}^{n-1} \int_{D\cap\{\tau_{A\cup B}=k\}} h(X_{k})d\mathbb{P}_{x} + \int_{D\cap\{\tau_{A\cup B}\geq n\}} h(X_{n})d\mathbb{P}_{x}$$
$$= \int_{D} h(X_{n\wedge\tau_{A\cup B}})d\mathbb{P}_{x},$$

which proves (2).

Back to our example. Let h be a function which is harmonic on $(A \cup B)^c$ and satisfies h = 1on A and h = 0 on B. By (2), we have that $h(x) = \mathbb{E}_x h(X_0) = \mathbb{E}_x h(X_{n \wedge \tau_{A \cup B}})$ for all $n \ge 0$. Since $\mathbb{P}_x(\tau_{A \cap B} < \infty) = 1$ for all $x \in S$ and h is bounded, the martingale convergence theorem implies

$$h(x) = \lim_{n \to \infty} \mathbb{E}_x h(X_{n \wedge \tau_{A \cup B}}) = \mathbb{E}_x h(X_{\tau_{A \cup B}}) = \mathbb{P}_x(\tau_A < \tau_B)$$

3.3. Asymptotic stationarity. In this subsection, all Markov chains are assumed to be time homogeneous. As before, let X_n be the coordinate representation process defined on $(S^{\infty}, \mathcal{C}_{\infty})$ and p be a transition probability on (S, \mathcal{C}) . Assume that, for any probability μ on (S, \mathcal{C}) , there is a probability \mathbb{P}_{μ} on $(S^{\infty}, \mathcal{C}_{\infty})$ such that X_n is a Markov chain on (S, \mathcal{C}) with transition probability p and initial distribution μ .

If there is a probability μ on (S, \mathcal{C}) such that

$$\lim_{n \to \infty} \mathbb{P}_{\mu}(X_n \in B) = \pi(B), \quad \forall B \in \mathcal{C}$$

then one can show that π is a finitely additive probability on (S, \mathcal{C}) and, for any \mathcal{C} -measurable simple function f,

$$\lim_{n \to \infty} \mathbb{E}_{\mu} f(X_n) = \int_S f(x) \pi(dx).$$

Fix $B \in \mathcal{C}$. Assume in addition that π is a probability. Then, for any bounded \mathcal{C} -measurable function g and $\epsilon > 0$, we may choose a \mathcal{C} -measurable simple function f such that $\sup_x |g(x) - f(x)| < \epsilon$. This implies

$$\left|\mathbb{E}_{\mu}g(X_{n}) - \mathbb{E}_{\mu}f(X_{n})\right| \leq \epsilon, \quad \left|\int_{S}g(x)\pi(dx) - \int_{S}f(x)\pi(dx)\right| \leq \epsilon.$$

Letting $n \to \infty$ and then $\epsilon \to 0$ yields

(3.9)
$$\lim_{n \to \infty} \mathbb{E}_{\mu} g(X_n) = \int_S g(x) \pi(dx)$$

In particular, for $g = p(\cdot, B)$, the above limit turns out

$$\lim_{n \to \infty} \mathbb{E}_{\mu} p(X_n, B) = \int_S p(x, B) \pi(dx)$$

Note that, by the Markov property, one has

$$\mathbb{P}_{\mu}(X_{n+1} \in B) = \int_{S} p(x, B) \mathbb{P}_{\mu}(X_n \in dx) = \mathbb{E}_{\mu} p(X_n, B).$$

As a result, we obtain

(3.10)
$$\pi(B) = \int_{S} p(x, B) \pi(dx), \quad \forall B \in \mathcal{C}.$$

Definition 3.4. Let X_n be a Markov chain on (S, \mathcal{C}) with transition probability p. A probability π on (S, \mathcal{C}) is said to be a *stationary distribution* if (3.10) holds.

Remark 3.6. If π is a stationary distribution of a Markov chain with transition probability p, then $\mathbb{P}_{\pi}(X_n = \cdot) = \pi(\cdot)$ for all n.

Lemma 3.12. Suppose there is a probability μ on (S, \mathcal{C}) such that

$$\lim_{n \to \infty} \mathbb{P}_{\mu}(X_n \in B) = \pi(B), \quad \forall B \in \mathcal{C}.$$

If π is a probability on (S, \mathcal{C}) , then it's a stationary distribution.

Definition 3.5. A process X_n taking values on (S, \mathcal{C}) is said to be *stationary* if

$$\mathbb{P}((X_0, X_1, \ldots) \in B) = \mathbb{P}((X_n, X_{n+1}, \ldots) \in B), \quad \forall B \in \mathcal{C}_{\infty}, n \ge 0.$$

Proposition 3.13. Let X_n be a Markov chain with transition probability p. If π is a stationary distribution for X_n , then $(X_0, X_1, ...)$ is a stationary process under \mathbb{P}_{π} .

Proof. By the Markov property, we have

$$\mathbb{P}_{\pi}((X_n, X_{n+1}, \ldots) \in B | X_n = x) = \mathbb{P}_x((X_0, X_1, \ldots) \in B), \quad \forall B \in \mathcal{C}_{\infty}, n \ge 0.$$

Since π is a stationary distribution, $\mathbb{P}_{\pi}(X_n \in \cdot) = \pi(\cdot)$ for all $n \geq 0$. Integrating both sides of the above equation w.r.t. π leads to the desired identity.

Proposition 3.14. Let X_n be a Markov chain on (S, C) with transition probability p. Assume that there are probabilities μ, π on (S, C) such that

$$\lim_{n \to \infty} \mathbb{P}_{\mu}(X_n \in B) = \pi(B), \quad \forall B \in \mathcal{C}.$$

Then, for any bounded \mathcal{C}_{∞} -measurable function f,

$$\lim_{n \to \infty} \mathbb{E}_{\mu}(f(X_n, X_{n+1}, \ldots)) = \mathbb{E}_{\pi}f(X_0, X_1, \ldots).$$

In particular, for $B \in \mathcal{C}_{\infty}$,

$$\lim_{n \to \infty} \mathbb{P}_{\mu}((X_n, X_{n+1}, ...) \in B) = \mathbb{P}_{\pi}((X_0, X_1, ...) \in B).$$

Remark 3.7. The above proposition says that under \mathbb{P}_{μ} , the process X_n is asymptotically stationary.

Proof of Proposition 3.14. In a similar reasoning for (3.10), it suffices to consider the case that $f = \mathbf{1}_B$ with $B \in \mathcal{C}_\infty$. Fix $B \in \mathcal{C}_\infty$ and set $\varphi(x) = \mathbb{P}_x((X_0, X_1, ...) \in B)$. By the Markov property, $\mathbb{P}_\mu((X_n, X_{n+1}, ...) \in B | \mathcal{F}_n) = \varphi(X_n)$. This implies

$$\mathbb{P}_{\mu}((X_n, X_{n+1}, \ldots) \in B) = \mathbb{E}_{\mu}(\mathbb{P}_{\mu}((X_n, X_{n+1}, \ldots) \in B | \mathcal{F}_n))$$
$$= \mathbb{E}_{\mu}\varphi(X_n) = \int_{S}\varphi(y)\mathbb{P}_{\mu}(X_n \in dy).$$

As a result of (3.9), we obtain

$$\lim_{n \to \infty} \int_{S} \varphi(y) \mathbb{P}_{\mu}(X_n \in dy) = \int_{S} \mathbb{P}_{y}((X_0, X_1, \ldots) \in B) \pi(dy) = \mathbb{P}_{\pi}((X_0, X_1, \ldots) \in B).$$

One natural question arises. How many stationary distributions a Markov chain may possess?

Lemma 3.15. Let Π be the set of all stationary distributions for a Markov chain on (S, C). If Π is nonempty, then Π forms a convex set in the space of all probability measures on (S, C).

Proof. Suppose p is the transition probability of the Markov chain. Let $\mu, \nu \in \Pi$ and set, for $a \in (0, 1), \pi_a = a\mu + (1 - a)\nu$. Then, for $B \in \mathcal{C}$,

$$\int_{S} p(x,B)\pi_{a}(dx) = a \int_{S} p(x,B)\mu(dx) + (1-a) \int_{S} p(x,B)\nu(dx)$$
$$= a\pi(B) + (1-a)\pi(B) = \pi(B).$$

3.4. Recurrence and transience. In this section, all Markov chains are assumed to have countable state spaces. Let $T_y^{(0)} = 0$ and set, for $k \ge 1$,

$$T_y^{(k)} = \min\{n > T_y^{(k-1)} : X_n = y\}.$$

 T_y^k is the time of the k-th return to state y. Briefly, we let $T_y = T_y^{(1)}$. Set $\rho_{xy} = \mathbb{P}_x(T_y < \infty)$ for $x, y \in S$.

Definition 3.6. A state y is said to be *recurrent* if $\rho_{yy} = 1$ and *transient* if $\rho_{yy} < 1$.

Theorem 3.16. For all $x, y \in S$ and $k \ge 1$, $\mathbb{P}_x(T_y^{(k)} < \infty) = \rho_{xy}\rho_{yy}^{(k-1)}$, where $0^0 := 1$.

Proof. The case k = 1 is clear. Let k > 1 and set $N = T_y^{(k-1)}$,

$$f(\omega) = \begin{cases} 1 & \text{if } \omega_n = y \text{ for some } n \ge 1\\ 0 & \text{o.w.} \end{cases}$$

Note that, on $\{N < \infty\}$, $f(X_N, X_{N+1}, ...) = 1$ if and only if $T_y^{(k)} < \infty$. Since N is a stopping time for X_n , by the strong Markov property, one has $X_N = y$ and

$$\mathbb{E}_x(f(X_N, X_{N+1}, \dots) | \mathcal{F}_N) = \varphi(X_N) = \varphi(y) = \rho_{yy} \quad \text{on } \{N < \infty\},\$$

where $\varphi(z) = \mathbb{E}_z(f(X_0, X_1, ...))$. Putting all above together, we have

$$\mathbb{P}_x(T_y^{(k)} < \infty) = \mathbb{E}_x(f(X_N, X_{N+1}, \ldots); N < \infty) = \rho_{yy} \mathbb{P}_x(T_y^{(k-1)} < \infty).$$

The desired identity is then proved by induction.

Corollary 3.17. *y* is recurrent if and only if $\mathbb{P}_y(X_n = y \ i.o.) = 1$; *y* is transient if and only if $\mathbb{P}_y(X_n = y \ i.o.) = 0$.

Proof. Note that $\{X_n = y \text{ i.o.}\} = \{T_y^{(k)} < \infty, \forall k > 0\}$. By Theorem 3.16, one has $\mathbb{P}_y(T_y^{(k)} < \infty) = \rho_{yy}^k$ for all $k \ge 0$. The desired property is obvious from these observations.

Theorem 3.18. y is recurrent if and only if $\sum_{n=1}^{\infty} p^n(y, y) = \infty$.

Proof. Let $N_y = \sum_{n=1}^{\infty} \mathbf{1}_{\{X_n = y\}}$. By definition, N_y is the number of visits to y at positive times and

$$\{N_y \ge k\} = \{T_y^{(k)} < \infty\}$$

As a result of this equation and Theorem 3.16, one has

$$\mathbb{E}_x N_y = \sum_{k=1}^{\infty} \mathbb{P}_x (N_y \ge k) = \sum_{k=1}^{\infty} \mathbb{P}_x (T_y^{(k)} < \infty) = \sum_{k=1}^{\infty} \rho_{xy} \rho_{yy}^{k-1}.$$

Note that $\mathbb{E}_y N_y = \sum_{n=1}^{\infty} p^n(y, y)$. If y is transient, that is, $\rho_{yy} < 1$, then $\mathbb{E}_x N_y = \rho_{xy}/(1 - \rho_{yy}) < \infty$ for all $x \in S$. If y is recurrent, then $\mathbb{E}_y N_y = \infty$.

Remark 3.8. If y is transient, then

$$\mathbb{E}_x N_y = \frac{\rho_{xy}}{1 - \rho_{yy}} \quad \forall x \in S.$$

Remark 3.9. We summarize the above discussion as follows. The following are equivalences of recurrence,

- (1) y is recurrent;
- (2) $\mathbb{P}_y(T_y < \infty) = \mathbb{P}_y(X_n = y \text{ for some } n > 0) = 1;$
- (3) $\mathbb{P}_y(X_n = y \text{ i.o.}) = \mathbb{P}_y(T_y^{(k)} < \infty, \forall k > 0) = 1;$ (4) $\sum_n \mathbb{P}_y(X_n = y) = \mathbb{E}_y N_y = \infty.$

and the following are equivalences of transience,

- (5) y is transient;
- (6) $\mathbb{P}_y(T_y < \infty) = \mathbb{P}_y(X_n = y \text{ for some } n > 0) < 1;$
- (7) $\mathbb{P}_y(X_n = y \text{ i.o.}) = \mathbb{P}_y(T_y^{(k)} < \infty, \forall k > 0) = 0;$ (8) $\sum_n \mathbb{P}_y(X_n = y) = \mathbb{E}_y N_y < \infty.$

From the view point of generating functions, let

$$u_x(s) = \sum_{n=0}^{\infty} p^n(x, x) s^n, \quad f_x(s) = \sum_{n=1}^{\infty} \mathbb{P}_x(T_x = n) s^n.$$

Exercise 3.8. Show that $u_x(s) = 1/(1 - f_x(s))$ for all $s \in [0, 1]$ and $x \in S$, where $1/0 := \infty$. **Exercise 3.9.** Prove that if x is transient, then

$$\mathbb{P}_x(T_x = \infty) = \left(\sum_{n=0}^{\infty} p^n(x, x)\right)^{-1}$$

Exercise 3.10. Let X_n be a simple random walk on \mathbb{Z} with transition probability

$$p(i, i+1) = p, \quad p(i, i-1) = q = 1 - p \quad \forall i \in \mathbb{Z}.$$

Use Taylor's expansion for $(1-x)^{-1/2}$ to show that, for all $i \in \mathbb{Z}$,

$$u_i(s) = (1 - 4pqs^2)^{-1/2}, \quad f_i(s) = 1 - (1 - 4pqs^2)^{1/2}, \quad \forall s \in [0, 1],$$

and determine ρ_{00} .

Assume that y is recurrent and set $R_k = T_y^{(k)}$ for $k \ge 0$ and $r_k = R_k - R_{k-1}$. Here, the sequence R_k is called the renewal time of state y.

Theorem 3.19. If y is recurrent, then, under \mathbb{P}_y , the sequence $(r_k, X_{R_{k-1}}, ..., X_{R_k-1})$ with $k \ge 1$ are *i.i.d.* and, for $n \ge 1, x_0, ..., x_n \in S$,

$$\mathbb{P}_{y}((r_{k}, X_{R_{k-1}}, \dots, X_{R_{k}-1}) = (n, x_{0}, \dots, x_{n-1}))$$
$$= \delta_{y}(x_{0}) \left(\prod_{i=0}^{n-2} p(x_{i}, x_{i+1})(1 - \delta_{y}(x_{i+1}))\right) p(x_{n-1}, y).$$

Proof. Let $f_1(x) = \delta_y(x)$ and, for n > 1, let f_n be a function on S^n defined by

$$f_n(y_0, y_1, ..., y_{n-1}) = \delta_y(y_0) \left(\prod_{i=0}^{n-2} p(y_i, y_{i+1})(1 - \delta_y(y_{i+1})) \right) p(y_{n-1}, y), \quad \forall y_0, ..., y_{n-1} \in S^n.$$

Since the range of $(r_k, X_{R_{k-1}}, ..., X_{R_k-1})$ is countable, it suffices to show that for $m \ge 1$, $a_1, ..., a_m \in \mathbb{N}$ and $x_{i,j} \in S$ with $0 \le j < a_i$ and $1 \le i \le m$,

$$\mathbb{P}_{y}(X_{b_{i}+j} = x_{i,j}, r_{i} = a_{i}, \forall 0 \le j < a_{i}, \forall 1 \le i \le m) = \prod_{i=1}^{m} f_{a_{i}}(x_{i,0}, ..., x_{i,a_{i}-1})$$

where $b_1 = 0$ and $b_i = a_1 + \cdots + a_{i-1}$. It is clear that the above identity holds if $x_{i,0} \neq y$ for some $1 \leq i \leq m$ or $x_{i,j} = y$ for some $1 \leq i \leq m$ and some $0 < j < a_i$. Assuming $x_{i,0} = y$ for all $1 \leq i \leq m$ and $x_{i,j} \neq y$ for all $1 \leq i \leq m$ and all $0 \leq j < a_i$, one has

$$\{X_{b_i+j} = x_{i,j}, r_i = a_i, \forall 0 \le j < a_i, \forall 1 \le i \le m\} \\ = \{X_{b_i+j} = x_{i,j}, \forall 0 \le j < a_i, \forall 1 \le i \le m, X_{b_{m+1}} = y\}.$$

By the Markov property, we obtain

$$\begin{split} \mathbb{P}_{y}(X_{b_{i}+j} = x_{i,j}, \forall 0 \leq j < a_{i}, \forall 1 \leq i \leq m, X_{b_{m+1}} = y) \\ = \mathbb{P}_{y}(X_{b_{m}+j} = x_{m,j}, \forall 0 < j < a_{i}, X_{b_{m+1}} = y | X_{b_{i}+j} = x_{i,j}, \forall 0 \leq j < a_{i}, \forall 1 \leq i < m, X_{b_{m}} = y) \\ \times \mathbb{P}_{y}(X_{b_{i}+j} = x_{i,j}, \forall 0 \leq j < a_{i}, \forall 1 \leq i < m, X_{b_{m}} = y) \\ = f_{a_{m}}(x_{m,0}, ..., x_{m,a_{m}-1}) \mathbb{P}_{y}(X_{b_{i}+j} = x_{i,j}, \forall 0 \leq j < a_{i}, \forall 1 \leq i < m, X_{b_{m}} = y). \end{split}$$

The desired identity is then given by induction.

3.5. Group property of states.

Theorem 3.20. If x is recurrent and $\rho_{xy} > 0$, then y is recurrent and $\rho_{xy} = \rho_{yx} = 1$.

Proof. Define $K = \inf\{k : p^k(x, y) > 0\}$. Since $\rho_{xy} > 0$, $K < \infty$. Let y_1, \dots, y_{K-1} be states in S such that

$$\prod_{i=1}^{K} p(y_{i-1}, y_i) > 0,$$

where $y_0 = x$ and $y_K = y$. It is easy to see from the definition of K that $y_i \notin \{x, y\}$ for all $1 \le i < K$. By the Markov property, we obtain

$$\mathbb{P}_{x}(T_{x} = \infty) \ge \mathbb{P}_{x}(X_{i} = y_{i}, \forall 1 \le i \le K, X_{i} \ne x, \forall i > K) = \prod_{i=1}^{K} p(y_{i-1}, y_{i})(1 - \rho_{yx}).$$

Thus, the recurrence of x implies $\rho_{yx} = 1$. Since $\rho_{yx} > 0$, one may choose L > 0 such that $p^{L}(y, x) > 0$. Putting all above together and then applying Theorem 3.18 gives

$$\sum_{n=1}^{\infty} p^n(y,y) \ge \sum_{n=1}^{\infty} p^{n+K+L}(y,y) \ge \sum_{\substack{n=1\\46}}^{\infty} p^L(y,x) p^n(x,x) p^K(x,y) = \infty.$$

This means that y is recurrent. The fact $\rho_{xy} = 1$ is immediate from this theorem with the exchange of x and y.

Remark 3.10. If $\rho_{xy} > 0$ but $\rho_{yx} = 0$, then x must be transient.

Exercise 3.11. Prove by using the strong Markov property that $\rho_{xz} \ge \rho_{xy}\rho_{yz}$.

Corollary 3.21. If x is transient and $\rho_{yx} > 0$, then y is transient.

Definition 3.7. A set $C \subset S$ is said to be *closed* if $x \in C$ and $\rho_{xy} > 0$ implies $y \in C$. A set D is said to be *irreducible* if $\rho_{xy} > 0$ for all $x, y \in D$.

Remark 3.11. $\rho_{xy} > 0$ if and only if there exists K > 0 such that $p^K(x, y) > 0$.

Remark 3.12. C is closed if and only if $\mathbb{P}_x(X_n \in C) = 1$ for all $n \ge 1$ and $x \in C$.

Corollary 3.22. Let R be the set of all recurrent states. Then, R is closed. Moreover, $R = \bigcup_i R_i$, where R_i 's are closed and irreducible.

Proof. The closedness of R is obvious from Theorem 3.20. To see a decomposition of R, let R_x be a subset of R defined by

$$R_x = \{ y \in R : \rho_{xy} > 0 \}.$$

As a result of Theorem 3.20 and Exercise 3.11, R_x is closed and it remains to show that $R_x = R_y$ for all $y \in R_x$. Let $z \in R_y$. Then, $\rho_{yz} = 1$. By Exercise 3.11, this implies $\rho_{xz} \ge \rho_{xy}\rho_{yz} = 1$. Hence, we have $R_y \subset R_x$. Note that $\{x, y\} \subset R_x \cap R_y$. Since $x \in R_y$, we have $R_x \subset R_y$.

Proposition 3.23. Let C be finite and closed. Then, C must contain a recurrent state. Moreover, if C is irreducible, then all states in C are recurrent.

Proof. For the first part, recall the notation $N_y = \sum_{n=1}^{\infty} \mathbf{1}_{\{X_n = y\}}$. By Fubini's theorem, we have, for $x \in C$,

$$\sum_{y \in C} \mathbb{E}_x N_y = \sum_{y \in C} \sum_{n=1}^{\infty} p^n(x, y) = \sum_{n=1}^{\infty} \sum_{y \in C} p^n(x, y) = \sum_{n=1}^{\infty} 1 = \infty.$$

Since C is finite, $\mathbb{E}_x N_y = \infty$ for some $y \in C$ and $x \in C$. This implies that y must be recurrent, otherwise, by Remark 3.8,

$$\mathbb{E}_x N_y = \frac{\rho_{xy}}{1 - \rho_{yy}} < \infty,$$

which is a contradiction. The second part is clear from the irreducibility.

Definition 3.8. A recurrent state x is called *positive recurrent* if $\mathbb{E}_x T_x < \infty$ and *null recurrent* if $\mathbb{E}_x T_x = \infty$.

Theorem 3.24. If x is positive recurrent and $\rho_{xy} > 0$, then y is positive recurrent and $\mathbb{E}_x T_y < \infty$.

Proof. The case y = x is obvious and we assume in the following that $y \neq x$. Recall that, in Theorem 3.19, if x is recurrent with recurrent time R_k and $r_k = R_k - R_{k-1}$, then, under \mathbb{P}_x , $(r_k, X_{R_{k-1}}, \dots, X_{R_k-1})$ with $k \geq 1$ are i.i.d.

For $k \geq 1$, set

$$V_k = \begin{cases} 1 & \text{if } X_m = y \text{ for some } R_{k-1} < m < R_k \\ 0 & \text{o.w.} \end{cases}$$

and

$$U_k = \sum_{i=1}^k V_i, \quad V = \inf\{k \ge 1 : U_k = 2\}$$

Note that $\mathbb{P}_x(V < \infty) = 1$ and, on $\{V = k\}, T_y^{(2)} \leq R_k$. This implies

$$\mathbb{E}_{x}T_{y}^{(2)} = \sum_{k=1}^{\infty} \mathbb{E}(T_{y}^{(2)}; V = k) \le \sum_{k=1}^{\infty} \mathbb{E}(R_{k}; V = k)$$
$$= \sum_{k=1}^{\infty} \sum_{l=1}^{k} \mathbb{E}(r_{l}; V = k) = \sum_{l=1}^{\infty} \mathbb{E}(r_{l}; V \ge l)$$

By Theorem 3.19, since $\{V \ge l\} = \{V \le l - 1\}^c \in \mathcal{F}_{R_{l-1}-1}, \{V \ge l\}$ and r_l are independent. This implies

$$\mathbb{E}_x T_y^{(2)} \le \sum_{l=1}^{\infty} \mathbb{E}_x r_l \mathbb{P}_x (V \ge l) = \mathbb{E}_x T_x \mathbb{E}_x V.$$

As V_1, V_2, \dots are i.i.d., we have, for $l \ge 1$

$$\mathbb{P}_x(V > l) = \sum_{i=1}^l \mathbb{P}_x(V_i = 1, V_j = 0, \forall j \neq i, j \le l) + \mathbb{P}_x(V_i = 0, \forall 1 \le i \le l)$$
$$= l \mathbb{P}_x(V_1 = 1) \mathbb{P}_x(V_1 = 0)^{l-1} + \mathbb{P}_x(V_1 = 0)^l,$$

which yields

$$\mathbb{E}_x V \le \frac{2}{\mathbb{P}_x(V_1 = 1)}$$

By Theorem 3.18, as y is recurrent, one may choose K > 0 such that

 $\mathbb{P}_x(X_i \neq x, \forall 1 \leq i < K, X_K = y) > 0.$

A a consequence, $\mathbb{P}_x(V_1 = 1) > 0$ and then $\mathbb{E}_x V < \infty$. Since x is positive recurrent, $\mathbb{E}_x T_y^{(2)} < \infty$, which leads to $\mathbb{E}_x T_y < \infty$ and

$$\infty > \mathbb{E}_x(T_y^{(2)} - T_y) = \mathbb{E}_x(\mathbb{E}_x(T_y^{(2)} - T_y|\mathcal{F}_{T_y})) = \mathbb{E}_yT_y.$$

Corollary 3.25. Let R be the set of recurrent states. Then, for any closed and irreducible subset of R, either all states are positive recurrent or all states are null recurrent.

Remark 3.13. We will prove in the next subsection that all states in a finite and closed set $C \subset S$ are positive recurrent.

3.6. Stationary distributions.

Definition 3.9. A measure π on S is said to be a stationary measure if

$$\sum_{y \in S} \pi(y) p(y, x) = \pi(x), \quad \forall x \in S.$$

If π is a probability, then we call it a *stationary distribution*.

Example 3.8 (Random walks on \mathbb{Z}). Let p be a transition probability on $S = \mathbb{Z}$ given by

$$p(i, i+1) = p, \quad p(i, i-1) = q = 1 - p, \quad \forall i \in \mathbb{Z},$$

⁴⁸

with $p \in (0, 1)$. Set $\pi(i) = (p/q)^i$. Then, π is a stationary distribution since

$$\sum_{i \in \mathbb{Z}} \pi(i)p(i,j) = \pi(j-1)p(j-1,j) + \pi(j+1)p(j+1,j)$$
$$= (p/q)^{j-1}p + (p/q)^{j+1}q = (p/q)^j(q+p) = (p/q)^j.$$

Example 3.9. Consider the Ehrenfest chain on $\{0, 1, ..., r\}$, that is, the transition probability p is defined by

$$p(i, i+1) = 1 - \frac{i}{r}, \quad \forall 0 \le i < r; \quad p(i, i-1) = \frac{i}{r}, \quad \forall 0 < i \le r$$

Set $\pi(i) = {r \choose i} 2^{-r}$. Then, π is a stationary distribution.

Example 3.10 (Birth and Death chains). A birth and death chain is a Markov chain on $S = \{0, 1, 2, ...\}$ with transition probability

$$p(i, i+1) = p_i, \quad p(i, i) = r_i, \quad p(i, i-1) = q_i,$$

where $p_i + q_i + r_i = 1$ and $q_0 = 0$. Assume that $q_i > 0$ for all i > 0 and set

$$\pi(i) = \prod_{j=1}^{i} \frac{p_{j-1}}{q_j}$$

Then, π is a stationary measure.

Exercise 3.12. Let π be a positive stationary distribution for a Markov chain X_n with transition probability p and set

$$q(x,y) = \frac{\pi(y)p(y,x)}{\pi(x)}, \quad \forall x, y \in S.$$

Let $Y_m = X_{n-m}$. Show that, if X_0 has distribution π , then $Y_0, ..., Y_n$ forms a Markov chain with transition probability q. Here, Y_m is called the *reverse* or *dual* Markov chain for X_n and q is called the *dual transition probability*.

Exercise 3.13. Let π and q be as in Exercise 3.12. If q = p, then π is called a *reversible distribution* for p. Show that if π is reversible for p, then π is stationary.

Theorem 3.26. Let x be a recurrent state. Then, the following map

$$y \mapsto \pi_x(y) = \mathbb{E}_x \left(\sum_{i=0}^{T_x - 1} \mathbf{1}_{\{X_i = y\}} \right) = \sum_{i=0}^{\infty} \mathbb{P}_x(X_i = y, T_x > i)$$

defines a stationary measure for p.

Remark 3.14. Note that $\pi_x(x) = 1$ and $\pi_x(y) < \infty$. Let $y \in S$ and assume that $\rho_{xy} > 0$. By Theorem 3.26, we have

$$1 = \pi_x(x) = \sum_{z \in S} \pi_x(z) p^n(z, x) \ge \pi_x(y) p^n(y, x), \quad \forall n > 0.$$

By Theorem 3.20, since x is recurrent and $\rho_{xy} > 0$, one has $\rho_{yx} = 1$. This implies $\pi_x(y) < \infty$. As a result, if p is irreducible, then $\pi_x(y) < \infty$ for all $y \in S$.

Proof of Theorem 3.26. We prove this theorem using cycle trick. Note that, for $y \neq x$,

$$\sum_{i=0}^{T_x-1} \mathbf{1}_{\{X_i=y\}} = \sum_{i=1}^{T_x} \mathbf{1}_{\{X_i=y\}} = \sum_{i=1}^{T_x-1} \mathbf{1}_{\{X_i=y\}}$$
49

By Fubini's theorem, it is easy to see that

$$\sum_{y \in S} \pi_x(y) p(y, z) = \sum_{i=0}^{\infty} \sum_{y \in S} \mathbb{P}_x(X_i = y, T_x > i) p(y, z).$$

By the Markov property, if $z \neq x$, then

$$\sum_{y \in S} \mathbb{P}_x(X_i = y, T_x > i) p(y, z) = \sum_{y \in S} \mathbb{P}_x(X_i = y, T_x > i, X_{i+1} = z)$$
$$= \sum_{y \in S} \mathbb{P}_x(X_i = y, X_{i+1} = z, T_x > i+1) = \mathbb{P}_x(X_{i+1} = z, T_x > i+1).$$

This implies

$$\sum_{y \in S} \pi_x(y) p(y, z) = \sum_{i=0}^{\infty} \mathbb{P}_x(X_{i+1} = z, T_x > i+1) = \pi_x(z).$$

If z = x, we have

$$\sum_{y \in S} \mathbb{P}_x(X_i = y, T_x > i) p(y, x) = \sum_{y \in S} \mathbb{P}_x(X_i = y, T_x > i, X_{i+1} = x)$$
$$= \sum_{y \in S} \mathbb{P}_x(X_i = y, T_x = i+1) = \mathbb{P}_x(T_x = i+1).$$

Since x is recurrent, this implies

$$\sum_{y \in S} \pi_x(y) p(y, x) = \sum_{i=0}^{\infty} \mathbb{P}_x(T_x = i+1) = 1 = \pi_x(x).$$

Remark 3.15. If x is transient, then

$$\sum_{y \in S} \pi_x(y) p(y, z) = \pi_x(z), \quad \forall z \neq x.$$

But, for z = x, we have

$$\sum_{y \in S} \pi_x(y) p(y, x) < 1 = \pi_x(x).$$

Exercise 3.14. Recall the renewal chain with transition probability

$$p(0,j) = f_{j+1}, \quad p(j+1,j) = 1, \quad \forall j \ge 0.$$

Use Theorem 3.26 to show that $\pi(j) = \sum_{k \ge j} f_{k+1}$ is a stationary measure for p.

Theorem 3.27. If p is irreducible and all states are recurrent, then the stationary measure is unique up to a multiple constant.

Proof. Let π be a stationary measure. Since p is irreducible, it is clear that $\pi(y) < \infty$ for all $y \in S$. Fix $a \in S$. Note that

$$\pi(z) = \sum_{y \in S} \pi(y) p(y, z) = \pi(a) p(a, z) + \sum_{y \neq a} \pi(y) p(y, z).$$

Applying the second equation to the last summation yields

$$\pi(z) = \pi(a)p(a, z) + \pi(a)\sum_{y \neq a} p(a, y)p(y, z) + \sum_{y \neq a, x \neq a} \pi(x)p(x, y)p(y, z).$$

Inductively, one has

$$\pi(z) = \sum_{m=1}^{n} \pi(a) \sum_{\substack{x_1, \dots, x_{m-1} \neq a, x_m = z \\ x_0, \dots, x_{n-1} \neq a, x_n = z}} p(a, x_1) p(x_1, x_2) \cdots p(x_{m-1}, x_m)$$

+
$$\sum_{\substack{x_0, \dots, x_{n-1} \neq a, x_n = z \\ x_0, \dots, x_{n-1} \neq a, x_n = z}} \pi(x_0) p(x_0, x_1) \cdots p(x_{n-1}, x_n)$$

\ge
$$\pi(a) \sum_{m=1}^{n} \mathbb{P}_a(X_i \neq a, 1 \le i < m, X_m = z), \quad \forall n \ge 1.$$

Since z is recurrent, this implies

$$\pi(z) \ge \pi(a) \sum_{m=1}^{\infty} \mathbb{P}_a(X_i \neq a, 1 \le i < m, X_m = z)$$
$$= \pi(a) \sum_{m=1}^{\infty} \mathbb{P}_a(T_a \ge m, X_m = z) = \pi(a)\pi_a(z),$$

where π_a is the measure in Theorem 3.26. As a result, we obtain

$$\pi(a) = \sum_{z \in S} \pi(z) p^n(z, a) \ge \pi(a) \sum_{z \in S} \pi_a(z) p^n(z, a) = \pi(a) \pi_a(a) = \pi(a).$$

This implies that if $p^n(z,a) > 0$, then $\pi(z) = \pi(a)\pi_a(z)$. Since p is irreducible, this must be true for all $z \in S$.

As a consequence of Theorem 3.26 and 3.27, we have

Theorem 3.28. If p has a stationary distribution π , then all states $y \in S$ satisfying $\pi(y) > 0$ are positive recurrent. In particular, if p is assumed further irreducible, then $\pi(x) = 1/\mathbb{E}_x T_x$ for all $x \in S$.

Proof. Note that if $\pi(y) > 0$, then

$$\sum_{x \in S} \pi(x) \sum_{n=1}^{\infty} p^n(x, y) = \sum_{n=1}^{\infty} \pi(y) = \infty.$$

This implies y has to be recurrent otherwise,

$$\sum_{x \in S} \pi(x) \sum_{n=1}^{\infty} p^n(x, y) = \sum_{x \in S} \pi(x) \frac{\rho_{xy}}{1 - \rho_{yy}} \le \frac{1}{1 - \rho_{yy}} < \infty.$$

Next, we turn to prove the second part and assume that p is irreducible. By the irreducibility of p, $\pi(x) > 0$ for all $x \in S$. By Theorems 3.26 and 3.27, x is recurrent and one may select a constant c_x such that $\pi = c_x \pi_x$. This implies

$$1 = c_x \sum_{y \in S} \pi_x(y) = c_x \sum_{y \in S} \sum_{i=0}^{\infty} \mathbb{P}_x(X_i = y, T_x > i) = c_x \sum_{i=0}^{\infty} \mathbb{P}_x(T_x > i) = c_x \mathbb{E}_x T_x,$$

which leads to $\pi(x) = c_x \pi_x(x) = c_x = 1/\mathbb{E}_x T_x$ for all $x \in S$. Hence, $\mathbb{E}_x T_x < \infty$ or equivalently x is positive recurrent.

Back to the first part, let $\pi(y) > 0$ and let C be the closed and irreducible set containing y. Let p_C be the submatrix of p indexed by C. It is an easily exercise to show that p_C is an irreducible transition probability on C and has $\pi|_C/\pi(C)$ as a (in fact, the) stationary distribution. Note that if X_n, Y_n be the Markov chain on S, C with transition probabilities p, p_C and T_x, T_x^C be the first return times of x in X_n, Y_n , then, given $X_0 = Y_0 = x$ with

 $x \in C$, T_x and T_x^C share the same distribution and, thus, $\mathbb{E}_x T_x = \mathbb{E}_x^C T_x^C$ for all $x \in C$. As an immediate result of the second part, x is positive recurrent for all $x \in C$.

Corollary 3.29. Assume that p is irreducible and all states are recurrent. Then, all states are positive recurrent if and only if there is a stationary distribution π . In particular, $\pi > 0$.

Corollary 3.30. If S is finite and p is irreducible, then all states are positive recurrent and p has exactly one stationary distribution. Conversely, if p has null recurrent states, then $|S| = \infty$.

Remark 3.16. If p is irreducible, then

$$\frac{1}{\mathbb{E}_x T_x} = \sum_{y \in S} \frac{p(y, x)}{\mathbb{E}_y T_y}, \quad \forall y \in S$$

and

$$\frac{\pi_x(y)}{\mathbb{E}_x T_x} = \frac{1}{\mathbb{E}_y T_y}, \quad \forall x, y \in S.$$

3.7. Asymptotic behavior. In this section, we will consider the long-term behavior of Markov chains on countable state spaces. Note that if y is transient, then

$$\sum_{n=1}^{\infty} p^n(x,y) = \frac{\rho_{xy}}{1 - \rho_{yy}} < \infty, \quad \forall x \in S.$$

This implies $p^n(x, y) \to 0$ as $n \to \infty$. When y is recurrent, we set

$$N_{n,y} = \sum_{m=1}^{n} \mathbf{1}_{\{X_n = y\}}.$$

Clearly, $N_{n,y} \to N_y := \sum_{m=1}^{\infty} \mathbf{1}_{\{X_m = y\}}$ as $n \to \infty$.

Theorem 3.31. Assume that y is recurrent. Then, for any $x \in S$,

$$\frac{N_{n,y}}{n} \to \frac{1}{\mathbb{E}_y T_y} \mathbf{1}_{\{T_y < \infty\}}, \quad \mathbb{P}_x\text{-}a.s.$$

Proof. Recall the following notations: Let $R_0 = 0$ and

$$R_k = T_y^{(k)}, \quad r_k = R_k - R_{k-1}, \quad \forall k \ge 1.$$

By Theorem 3.19, $r_1, r_2, ...$ are i.i.d. under \mathbb{P}_y . By the strong law of large numbers, one has

$$\frac{R_k}{k} = \frac{r_1 + r_2 + \dots + r_k}{k} \to \mathbb{E}_y T_y, \quad \mathbb{P}_y\text{-a.s.}$$

Since y is recurrent, $\mathbb{P}_y(N_y = \infty) = 1$. This implies $N_{n,y} \to \infty \mathbb{P}_y$ -a.s.. Note that $R_{N_{n,y}} \leq n < R_{N_{n,y}+1}$ and write

$$\frac{R_{N_{n,y}}}{N_{n,y}} \le \frac{n}{N_{n,y}} < \frac{R_{N_{n,y}+1}}{N_{n,y}+1} \times \frac{N_{n,y}+1}{N_{n,y}}.$$

Passing n to the infinity yields that $N_{n,y}/n \to 1/\mathbb{E}_y T_y \mathbb{P}_y$ -a.s..

Next, assume $x \neq y$. Clearly, $N_{n,y} = 0$ on $\{T_y = \infty\}$ for all $n \geq 1$. This implies $N_{n,y}/n \rightarrow 0$. On $\{T_y < \infty\}$, one may use the strong Markov property to conclude that r_1, r_2, \ldots are independent and r_2, r_3, \ldots are identically distributed. As a result, one has

$$\frac{R_k}{k} = \frac{r_1}{k} + \frac{r_2 + \dots + r_k}{k-1} \times \frac{k-1}{k} \to \mathbb{E}_y T_y, \quad \text{on } \{T_y < \infty\},$$

 \mathbb{P}_x -a.s..

Note that $N_{n,y}/n$ is uniform bounded by 1. By the Lebesgue dominated convergence theorem, if y is recurrent, then

(3.11)
$$\frac{1}{n}\sum_{m=1}^{n}p^{m}(x,y) = \frac{\mathbb{E}_{x}N_{n,y}}{n} \to \frac{\rho_{xy}}{\mathbb{E}_{y}T_{y}} \quad \text{as } n \to \infty.$$

The above convergence also holds for transient states. It is worthwhile to note that such a convergence does not implies the convergence of $p^n(x, y)$. For a counterexample, let $S = \{0, 1\}$ and p is a transition probability defined by

$$p(0,1) = p(1,0) = 1, \quad p(0,0) = p(1,1) = 0.$$

In this case, $p_{2n} = I$ and $p^{2n+1} = p$ and, thus, $p^n(x, y)$ never converges. The reason here is due to the periodicity of the appearance of states.

Definition 3.10. The *period* d of a state x is defined to be the greatest common divisor of $\{n \ge 1 : p^n(x,x) > 0\}$. If d = 1, x is also called *aperiodic*.

Lemma 3.32. If x, y are states satisfying $\rho_{xy}\rho_{yx} > 0$, then the periods of x and y are the same.

Proof. Let K > 0 and L > 0 be such that $p^{K}(x, y)p^{L}(y, x) > 0$ and d_{x}, d_{y} be the periods of x, y. Clearly, $d_{x}|(K+L)$. Note that if $p^{n}(y, y) > 0$, then $p^{K+n+L}(x, x) > 0$. This implies $d_{x}|n$ and, hence, $d_{x}|d_{y}$. Exchanging x and y in the above discussion yields $d_{x} = d_{y}$. \Box

Lemma 3.33. If x is of period 1, then there is $n_0 > 0$ such that $p^n(x, x) > 0$ for all $n \ge n_0$.

Proof. Set $I = \{n \ge 1 : p^n(x, x) > 0\}$ and $M = \min\{n - m | m, n \in I, m < n\}$. Our first step is to show that M = 1 or equivalently there exists N such that $N, N + 1 \in I$. Assume the inverse, that is M > 1. Let $n_1 \in I$ be such that $n_1 + M \in I$. Since the greatest common divisor of I is 1, we may choose $n_2 \in I$ such that $M \nmid n_2$. Write $n_2 = mM + r$ with $m \ge 0$ and 0 < r < M. Since I is closed under addition, and thus closed under multiplication,

$$(m+1)(n_1+M) \in I, \quad (m+1)n_1+n_2 \in I.$$

Clearly, these two terms are not equal and subtracting one from the other yields

$$M \le (m+1)M - n_2 = M - r < M,$$

a contradiction. Thus, M = 1.

Now assume that $N \in I$ be such that $N + 1 \in I$ and let $n_0 = N^2$. Obviously, $n_0 \in I$ and for $n > n_0$, we may write $n - n_0 = mN + r$ with 0 < r < N. This implies

$$n = n_0 + mN + r = N^2 + mN + r = N(N + m - r) + (N + 1)r \in I.$$

Theorem 3.34. Suppose p is irreducible with stationary distribution π . If all states are aperiodic, then $p^n(x, y) \to \pi(y)$ as $n \to \infty$ for all $x, y \in S$.

Proof. We prove this theorem by the method of *coupling*. Let q be a transition probability on S^2 defined by

$$q((x_1, y_1), (x_2, y_2)) = p(x_1, x_2)p(y_1, y_2).$$

Step 1: q is irreducible and aperiodic. By the irreducibility of p, let K, L be such that $p^{K}(x_1, x_2)p^{L}(y_1, y_2) > 0$. Since p is aperiodic, by Lemma 3.33, one may choose n_0 such that $p^{M}(x_2, x_2)p^{M}(y_2, y_2) > 0$ for all $M \ge n_0$. This implies

$$q^{K+L+M}((x_1, y_1), (x_2, y_2)) \ge p^K(x_1, x_2)p^{L+M}(x_2, x_2)p^L(y_1, y_2)p^{K+M}(y_2, y_2) > 0.,$$

for $M > n_0$. This finishes the first step.

Step 2: Let X_n, Y_n are independent Markov chains on S with transition probability p and initial distributions μ_X, μ_Y . Then, (X_n, Y_n) is a Markov chain on S^2 with transition probability q and initial distribution $\mu_X \times \mu_Y$. Clearly, $(x,y) \in S^2 \mapsto \pi(x)\pi(y)$ defines a stationary distribution for q. This means that all states in S^2 are positive recurrent. Set $T_{(x,x)} = \inf\{n \ge 1\}$ $1|(X_n, Y_n) = (x, x)\}$ and

$$T = \inf_{x \in S} T_{(x,x)} = \inf\{n \ge 1 | X_n = Y_n\}.$$

Since q is irreducible and all states in S are recurrent, $\mathbb{P}_{\mu}(T_{(x,x)} < \infty) = 1$ for any initial distribution μ and $x \in S$, which implies $\mathbb{P}_{\mu}(T < \infty) = 1$. Step 3: By the Markov property, one has

$$\mathbb{P}_{\mu}(X_{n} = y, T \leq n) = \sum_{m=1}^{n} \sum_{x \in S} \mathbb{P}_{\mu}(T = m, X_{m} = x, X_{n} = y)$$

$$= \sum_{m=1}^{n} \sum_{x \in S} \mathbb{P}_{\mu}(T = m, X_{m} = x) \mathbb{P}_{\mu}(X_{n} = y | T = m, X_{m} = x)$$

$$= \sum_{m=1}^{n} \sum_{x \in S} \mathbb{P}_{\mu}(T = m, Y_{m} = x) \mathbb{P}_{\mu}(Y_{n} = y | T = m, Y_{m} = x)$$

$$= \mathbb{P}_{\mu}(Y_{n} = y, T \leq n)$$

This implies

$$\mathbb{P}_{\mu}(X_n = y) - \mathbb{P}_{\mu}(Y_n = y) \le \mathbb{P}_{\mu}(X_n = y, T > n)$$

Exchanging X_n, Y_n and summing up y gives

$$\sum_{y \in S} |\mathbb{P}_{\mu}(X_n = y) - \mathbb{P}_{\mu}(Y_n = y)| \le 2\mathbb{P}_{\mu}(T > n).$$

Let $\mu(s,t) = \delta_x(s)\pi(t)$ for $(s,t) \in S^2$. This implies

$$\sum_{y \in S} |p^n(x, y) - \pi(y)| \le 2\mathbb{P}_{\mu}(T > n) \to 0$$

as $n \to \infty$.

In the following, we consider the periodic cases.

Lemma 3.35. Let p be irreducible and recurrent with period d > 1. Fix $x \in S$ and set, for each $y \in S$, $K_y = \{n \ge 1 : p^n(x, y) > 0\}.$

- (1) There is a unique $r_y \in \{0, 1, ..., d-1\}$ such that $K_y \subset r_y + d\mathbb{Z}$. (2) For $r \in \{0, 1, ..., d-1\}$, let $S_r = \{y \in S : r_y = r\}$. Then, for any $y_i \in S_i$ and $y_j \in S_j$, $\{n \ge 1 : p^n(y_i, y_j) > 0\} \subset (j - i) + d\mathbb{Z}.$

Such a partition $S_0, ..., S_{d-1}$ of S is independent of the choice of $x \in S$.

(3) For $0 \le i < d$, p^d is an irreducible and aperiodic transition probability on S_i .

Proof. For (1), let m be such that $p^m(y,x) > 0$. Then, for $n \in K_y$, $p^{n+m}(x,x) > 0$. This implies that d|(n+m). By letting $r_y = (d-m) \mod d$, we have $K_y \subset r_y + d\mathbb{Z}$. To see the uniqueness, let r'_{y} be another integer in $\{0, 1, ..., d-1\}$ such that $K_{y} \subset r'_{y} + d\mathbb{Z}$. Then, $d|(r_y - r'_y)$ and this can be true only if $r_y = r'_y$.

For (2), let n, m > 0 be such that $p^n(y_i, y_j) p^m(x, y_i) > 0$. Then, d|(m-i) and d|(m+n-j). This implies d|(n - (j - i)). For (3), it follows immediately from (2) that $(p^d)|_{S_i \times S_i}$ is an irreducible transition probability on S_i for all $0 \le i < d$. Note that, for $x \in S_i$, if x has period c under p^d , then x has period cd under p. Hence, p^d is aperiodic.

 \Box

Remark 3.17. The sets S_0, S_1, \dots, S_{d-1} are called the cyclic decomposition of S.

Theorem 3.36. Let p be irreducible with stationary distribution π . Assume that all states in S are of period d and $S_0, S_1, ..., S_{d-1}$ be the cyclic decomposition of S in Lemma 3.35 corresponding to x. Then, for $y \in S_r$,

$$\lim_{n \to \infty} p^{r+nd}(x, y) = d\pi(y)$$

Proof. Set $\tilde{p} = p^d|_{S_0 \times S_0}$. By Lemma 3.35, \tilde{p} is irreducible and aperiodic on S_0 . Note that, for $z \in S_0$,

$$\sum_{y \in S_0} \pi(y)\widetilde{p}(y,z) = \sum_{y \in S} \pi(y)p^d(y,z) = \pi(z).$$

This implies that $\pi|_{S_0}$ is a stationary measure for \widetilde{p} . By Theorem 3.34, as $x \in S_0$,

(3.12)
$$\lim_{n \to \infty} \tilde{p}^n(x, y) = \frac{\pi(y)}{\pi(S_0)}, \quad \forall y \in S_0.$$

Let $(X_n)_{n=0}^{\infty}$ be a Markov chain on S with transition probability p and set $Y_n = X_{nd}$. Clearly, $(Y_n)_{n=0}^{\infty}$ is a Markov chain on S_0 . Set $\widetilde{T}_y = \inf\{n \ge 1 | Y_n = y\}$ and $T_y = \inf\{n \ge 1 | X_n = y\}$. It is easy to check that, under \mathbb{P}_x , $d\widetilde{T}_y = T_y$ and, by (3.11), we have

$$\frac{1}{n}\sum_{k=1}^{n}\widetilde{p}^{k}(x,y) \to \frac{1}{\mathbb{E}_{y}\widetilde{T}_{y}} = \frac{d}{\mathbb{E}_{y}T_{y}} = d\pi(y), \quad \forall y \in S_{0}$$

In addition with (3.12), this implies $\pi(S_0) = 1/d$. As a result, it follows that, for 0 < r < dand $y \in S_r$,

$$p^{nd+r}(x,y) = \sum_{z \in S_0} p^{nd}(x,z) p^r(z,y) \to \sum_{z \in S_0} d\pi(z) p^r(z,y) = d\sum_{z \in S} \pi(z) p^r(z,y) = d\pi(y).$$

For null recurrent states, we have the following observation.

Theorem 3.37. Suppose p is irreducible and all states are null recurrent. Then,

$$\lim_{n \to \infty} p^n(x, y) = 0, \quad \forall x, y \in S.$$

Proof. We first consider the case that p is aperiodic. Let $x, y \in S$. Since y is null recurrent, $\mathbb{P}_y(T_y < \infty) = 1$ and $\mathbb{E}_y T_y = \infty$. Let $\epsilon > 0$ and choose N > 0 such that

$$\sum_{m=1}^{N} \mathbb{P}_{y}(T_{y} > m) \ge 2/\epsilon$$

Note that, for $n \geq N$,

$$1 \ge \mathbb{P}_x(X_m = y, \text{ for some } n - N \le m \le n)$$
$$= \sum_{k=n-N}^n \mathbb{P}_x(X_k = y, X_{k+1} \ne y, ..., X_n \ne y)$$
$$= \sum_{k=n-N}^n p^k(x, y) \mathbb{P}_y(T_y > n - k) = \sum_{m=0}^N p^{n-m}(x, y) \mathbb{P}_y(T_y > m).$$

This implies that there is $0 \le m \le N$ such that $p^{n-m}(x,y) \le \epsilon/2$ or equivalently

$$\min_{0 \le m \le N} p^{n+m}(x,y) \le \epsilon/2, \quad \forall n \ge 0.$$

Recall the coupling in the proof of Theorem 3.34 and let q be the corresponding transition probability. As before, q is irreducible and aperiodic. Note that if q is transient, then

$$0 = \lim_{n \to \infty} q^n((x, x)(y, y)) = \lim_{n \to \infty} p^n(x, y)^2, \quad \forall n \ge N.$$

If q is recurrent, then the coupling time T satisfies $\mathbb{P}_{\mu \times \nu}(T < \infty) = 1$ for any probabilities μ, ν on S. By setting $\mu = \delta_x$ and $\nu = p^m(x, \cdot)$ with m = 1, 2, ..., N, we have

$$|p^n(x,y) - p^{n+m}(x,y)| \le \mathbb{P}_{\mu \times \nu}(T > n) \to 0, \quad \text{as } n \to \infty.$$

As a consequence, we may select M > 0 such that

$$\max_{0 \le m \le N} |p^n(x, y) - p^{n+m}(x, y)| \le \epsilon/2, \quad \forall n \ge M,$$

which leads to

$$p^{n}(x,y) \le \max_{0\le m\le N} |p^{n}(x,y) - p^{n+m}(x,y)| + \min_{0\le m\le N} p^{n+m} \le \epsilon, \quad \forall n\ge M.$$

The proof for periodic p is similar to that in Theorem 3.34 and is omitted.