
3. Markov chains

3.1. Definitions and examples.

Definition 3.1. Let (S, C) be a measurable space, (Fn)
∞
n=0 be a filtration and (Xn)

∞
n=0 be

a stochastic process taking valued on S. Xn is called a Markov chain w.r.t. Fn if Xn is
Fn-measurable and

P(Xn+1 ∈ B|Fn) = P(Xn+1 ∈ B|Xn), ∀B ∈ C, n ≥ 0.

The distribution of X0 is called the initial distribution.

Lemma 3.1. A sequence of random elements Xn taking values in (S, C) is a Markov chain
w.r.t. a filtration Fn if and only if

(3.1) E(f(Xn+1)|Fn) = E(f(Xn+1)|Xn),

where f : S → R is any bounded C-measurable function.

Proof. The sufficient condition for Markov chains is clear. For the necessary condition, let H
be the class of all bounded C-measurable function f such that (3.1) holds. Obviously, H is a
linear space containing the constant function 1 and the multiplicative system {1B : B ∈ C}.
Also, H is closed under the bounded convergence. By the multiplicative system theorem, H
contains all bounded C-measurable functions. �
Example 3.1 (Random walks). Let X0, ξ1, ξ2, ... be independent random elements taking values
in Rd. Let Xn = X0+ξ1+· · ·+ξn and Fn = F(X0, ξ1, ..., ξn). Then Xn is a Markov chain w.r.t.
Fn. To see this fact, let µn be the distribution of ξn. Note that, for any random elements X,Y
taking values on (R,B) and (S, C), if Y is F-measurable, F(X) is independent of F and φ is
a random variable defined on (R×S,B×C) satisfying E|φ(X,Y )| <∞, then E(φ(X,Y )|F) =
ϕ(Y ), where ϕ(y) = Eφ(X, y). Replacing X,Y,F , φ(x, y) with ξn+1, Xn,Fn,1B(x+ y) yields

P(Xn+1 ∈ B|Fn) = µn+1(B −Xn),

where E1B(ξn+1, xn) = P(xn+ξn+1 ∈ B) = µn+1(B−xn) is used. Similarly, one has P(Xn+1 ∈
B|Xn) = µn+1(B −Xn).

Remark 3.1. It follows immediately from (3.1) that, for bounded C-measurable functions
f0, ..., fk with k ≥ 1,

E

(
k∏

i=0

fi(Xn+i)

∣∣∣∣Fn

)
= E

(
k−1∏
i=0

fi(Xn+i)E(fk(Xn+k)|Fn+k−1)

∣∣∣∣Fn

)

= E

(
k−2∏
i=0

fi(Xn+i)g(Xn+k−1)|Fn

)
,

where
∏−1

i=0 := 1 and g(x) = fk−1(x)E(fk(Xn+k)|Xn+k−1 = x), which is bounded and C-
measurable. By induction, one has

E

(
k−2∏
i=0

fi(Xn+i)g(Xn+k−1)|Fn

)
= E

(
k−2∏
i=0

fi(Xn+i)g(Xn+k−1)|Xn

)

= E

(
k−1∏
i=0

fi(Xn+i)E(fk(Xn+k)|Fn+k−1)

∣∣∣∣Xn

)

= E

(
k∏

i=0

fi(Xn+i)

∣∣∣∣Xn

)
.
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As a result, we obtain

(3.2) E

(
k∏

i=0

fi(Xn+i)

∣∣∣∣Fn

)
= E

(
k∏

i=0

fi(Xn+i)

∣∣∣∣Xn

)
, ∀k ≥ 0,

where the case of k = 0 is obvious.

Thereafter, we need the following notations. For n ≥ 0, let Cn+1 = C ⊗ · · · ⊗ C be the
product σ-field over Sn+1 and C∞ = C ⊗ C ⊗ · · · be the product σ-field over S∞.

Lemma 3.2. Let Xn be a Markov chain on (S, C) w.r.t. Fn and C∞. For any bounded
C∞-measurable function f , one has

E(f(Xn, Xn+1, ...)|Fn) = E(f(Xn, Xn+1, ...)|Xn).

Proof. By the Lebesgue dominated convergence theorem, it suffices to prove that

P((Xn, Xn+1, ...) ∈ B|Fn) = P((Xn, Xn+1, ...) ∈ B|Xn).

By the π-λ lemma, it remains to consider the case B = B0×· · ·×Bk×S∞, where B0, ..., Bk ∈ C,
S∞ = S × S × · · · and k ≥ 0, and this is given by (3.2) with fi = 1Bi , as desired. �

Remark 3.2. It follows immediately from Lemma 3.2 that, for n ∈ N and any bounded Cn+1-
measurable and C∞-measurable functions f, g,

E(f(X0, ..., Xn)g(Xn, Xn+1, ...)|Xn) = E(f(X0, ..., Xn)|Xn)E(g(Xn, Xn+1, ...)|Xn).

In particular, for A ∈ F(X0, X1, ..., Xn) and B ∈ F(Xn, Xn+1, ...),

P(A ∩B|Xn) = P(A|Xn)P(B|Xn).

Definition 3.2. Let (S, C) be a measurable space. A function p : S × C → R is said to be a
transition probability or transition function if:

(1) For each x ∈ S, p(x, ·) is a probability on (S, C);
(2) For each A ∈ C, p(·, A) is a C-measurable function.

A process Xn is said to be a Markov chain w.r.t. Fn with transition probabilities pn if

P(Xn+1 ∈ B|Fn) = pn(Xn, B) ∀B ∈ C, n ≥ 1.

Remark 3.3. Note that if p : S × C → R is a transition probability and f is a bounded
C-measurable function, then the following map

(3.3) x 7→
∫
S
f(y)p(x, dy)

is C-measurable. To see the details, let H be the class of all bounded C-measurable functions
satisfying (3.3). It is obvious that H is a linear space containing 1S and is closed under
bounded convergence. Since 1B ∈ H for all B ∈ C, the multiplicative system theorem implies
that H is the class of all bounded C-measurable functions.

Theorem 3.3. Let Xn be a Markov chain on (S, C) with transition probabilities pn and initial
distribution µ. Fix m ≥ 1 and let f be a bounded Cm+1-measurable function. Set

φ(x) =

∫
S
pn(x, dy1) · · ·

∫
S
pn+m−1(ym−1, dym)f(x, y1, ..., ym).

Then, φ is well-defined, C-measurable and

E(f(Xn, ..., Xn+m)|Fn) = φ(Xn), ∀n ≥ 0.
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In particular,

(3.4) Ef(X0, ..., Xm) =

∫
S
µ(dx0)

∫
S
p0(x0, dx1) · · ·

∫
S
pm−1(xm−1, dxm)f(x0, ..., xm).

and, for B0, ..., Bn ∈ C,

(3.5) P(Xm ∈ Bm, 0 ≤ m ≤ n) =

∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn).

Proof. The second and third identities are special cases of the first one. For the first identity,
it suffices to consider f(y0, ..., ym) =

∏m
i=0 fi(yi), where f0, .., fm are bounded C-measurable

functions, by the multiplicative system theorem. The well-definedness and C-measurability of
φ can be proved by induction and the details are skipped. For the identity, the case of m = 1
is immediate from Proposition 1.10. For m > 1, note that E(fm(Xn+m)|Fn+m−1) = g(Xn+m),
where g(x) =

∫
S pn+m−1(x, dym)fm(ym). By induction, we may write

E(f(Xn, ..., Xn+m)|Fn) = E[E(f(Xn, ..., Xn+m)|Fn+m−1)|Fn]

=E[f0(Xn) · · · fm−2(Xn+m−2)(fm−1g)(Xn+m−1)|Fn] = φ̃(Xn),

where

φ̃(x) =

∫
S
pn(x, dy1) · · ·

∫
S
pn+m−2(ym−2, dym−1)f0(x)f1(y1) · · · fm−1(ym−1)g(ym−1) = φ(x),

as desired. �

Note that (3.1) can be rewritten as

P(Xm ∈ Bm, 0 ≤ m ≤ n) =

∫
S
µ(dx0)

∫
S
p0(x0, dx1) · · ·

∫
S
1B0×···×Bnpn−1(xn−1, dxn).

Based on this observation, it is natural to consider the following function

(3.6) P(n)
µ (A) =

∫
S
µ(dx0)

∫
S
p0(x0, dx1) · · ·

∫
S
1Apn−1(xn−1, dxn),

for all A ∈ Cn+1 and n ≥ 0. By (3.4), (3.6) defines a probability on (Sn+1, Cn+1) and

P(n+1)
µ (A× S) = P(n)

µ (A), ∀A ∈ Cn+1, n ≥ 0.

Lemma 3.4. Let P(n)
µ be the probability in (3.6). For n ≥ 0, set Xn(ω) = ωn for ω =

(ωn)
∞
n=0 ∈ S∞ and Fn = Cn+1. Assume that there is a probability Pµ on (S∞, C∞) satisfying

Pµ(A × S∞) = P(n)
µ (A) for all A ∈ Cn+1 and n ≥ 0. Then, Xn is a Markov chain w.r.t. Fn

with initial distribution µ and transition probability pn.

Proof. It is clear that Xn is adapted to Fn. Note that, for A = {Xi ∈ Bi, 0 ≤ i ≤ n} and
Bn+1 ∈ C,∫

A
1{Xn+1∈Bn+1}dPµ = Pµ(A,Xn+1 ∈ Bn+1) = Pµ(B0 × · · · ×Bn+1 × S∞)

=P(n)
µ (B0 × · · · ×Bn+1) =

∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn)pn(xn, Bn+1).

By the multiplicative system theorem, one can show that∫
B0

µ(dx0)

∫
B1

p0(x0, dx1) · · ·
∫
Bn

pn−1(xn−1, dxn)f(xn) =

∫
A
f(Xn)dPµ,
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for any bounded C-measurable function f . As pn(·, Bn+1) is C-measurable, this implies∫
A
1{Xn+1∈Bn+1}dPµ =

∫
A
pn(Xn, Bn+1)dPµ.

As a consequence of the π-λ lemma, the above identity holds for all A ∈ Fn or equivalently
Pµ(Xn+1 ∈ B|Fn) = pn(Xn, B). Since pn(Xn, B) is F(Xn)-measurable, we obtain

Pµ(Xn+1 ∈ B|Fn) = Eµ

(
1{Xn+1∈B}|Fn

)
= Eµ

(
E
(
1{Xn+1∈B}|Fn

)
|Xn

)
= Pµ(Xn+1 ∈ B|Xn),

where Eµ denotes the expectation under Pµ. �
Note that the transition probability is closely related to the regular condition probability

and distribution. Recall that (S, C) is a Borel space if there is R ∈ B(R) and a bijection
φ : (S, C) → (R,B(R)), where B(R) = {R∩E|E ∈ B(R)}, such that φ and φ−1 are measurable.

Lemma 3.5. Let Xn be a Markov chain on (S, C) w.r.t. Fn. If (S, C) is a Borel space, then
there exist transition probabilities for Xn.

Proof. Since (S, C) is a Borel space, there exists a regular conditional distribution for Xn+1

given Xn = x and we write it as pn, which means that, for any x ∈ S, pn(x, ·) is a probability
and, for any B ∈ C, pn(x,B) is a version for P(Xn+1 ∈ B|Xn = x). This implies that pn is a
transition probability and

P(Xn+1 ∈ B|Fn) = P(Xn+1 ∈ B|Xn) = pn(Xn, B) ∀B ∈ C, n ≥ 0.

�
Theorem 3.6. Let µ be a probability measure and pn be a sequence of transition functions
on S × C. If (S, C) is a Borel space, then there exists a Markov chains Xn on (S, C) with
transition probability pn and initial distribution µ.

Proof. For n ≥ 0, let P(n)
µ be the probability defined by (3.6). Note that P(n)

µ possesses the
consistency property and (S, C) is a Borel space. By the Kolmogorov extension theorem, there

is an extension probability on (S∞, C∞), say Pµ, such that Pµ(A×S∞) = P(n)
µ (A) for A ∈ Cn+1

and n ≥ 0. The remaining proof is then given by Lemma 3.4. �
Example 3.2 (Markov chains with discrete state spaces). Assume that S is a countable set
and C = 2S . It is clear that (S, C) is a Borel space. Suppose pn(i, j) ≥ 0 and

∑
j pn(i, j) = 1

for all i ∈ S and n ≥ 0. Then, pn(i, A) =
∑

j∈A pn(i, j) defines a transition probability. By
Theorem 3.6, there is a Markov chain on S with transition probabilities pn and this implies
pn(i, j) = P (Xn+1 = j|Xn = i).

Exercise 3.1. Let Pµ and X = (X0, X1, ...) be the probability and the stochastic process
created in the proofs of Theorem 3.6 and Lemma 3.4. If µ = δx, the Dirac measure at x, we
simply write Px for Pδx . Prove that, for B ∈ C∞, the map x 7→ Px(B) is C-measurable and

Pµ(B) =

∫
S
µ(dx)Px(B), ∀B ∈ C∞.

Use the above equality to conclude that, for B ∈ C∞,

Pµ(X ∈ B|X0 = x) = Px(X ∈ B).

Hint: The π-λ lemma.

Remark 3.4. It follows immediately from Exercise 3.1 that, for any bounded C∞-measurable
function f ,

Eµ(f(X)|X0 = x) = Exf(X), Eµf(X) =

∫
S
µ(dx)Exf(X).
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Example 3.3 (Branching processes). Let S = {0, 1, ...} and ξni , i, n ≥ 1, be i.i.d. nonnegative
integer-valued random variables. Set

p(i, j) = P

(
i∑

k=1

ξnk = j

)
.

Let Zn be the number of the population at time n. Then, Zn forms a (time homogeneous)
Markov chain w.r.t. Fn = F(ξmi , i ≥ 0,m ≤ n) with common transition probability p. In
details, one has

P(Zn+1 = j|Z1 = i1, ..., Zn−1 = in−1, Zn = i)

= P

(
i∑

k=1

ξn+1
k = j

)
= p(i, j) = P(Zn+1 = j|Zn = i)

Example 3.4 (Renewal chains). Let ak be a sequence of nonnegative real numbers summing
up to 1. A renewal chain is a (time homogeneous) Markov chain with common transition
probability p given by

p(i, j) =


ak+1 if (i, j) = (0, k), k ≥ 0

1 if (i, j) = (k, k − 1)

0 o.w.

Concerning the meaning of a renewal chain, let’s consider the following setting. Let ξ1, ξ2, ...
be i.i.d. random variables with P(ξn = j) = aj and T0 = i0. For k > 0, set Tk = Tk−1 + ξk.
Tk should be viewed as a sequence of renewal times. It is worthwhile to note that Tk forms a
Markov chain. Let

Ym =

{
1 if m ∈ {T0, T1, ...}
0 o.w.

and set Xn = inf{m − n : Ym = 1, m ≥ n}. Xn is the amount of time until the first renewal
after time n. We shall prove in the following that Xn is a (time homogeneous) Markov chain
w.r.t. Fn = F(ξ1, ..., ξn) with common transition probability p.

Note that Tk is adapted to Fk. Let Nn = inf{k : Tk ≥ n}. Clearly, Nn is a stopping time
on the filtration Fn = F(ξ1, ..., ξn). It is easy to see that TNn = Xn + n and this implies

F(TN1 , ..., TNn) = F(X1, ..., Xn).

Since Nn is nondecreasing in n, for i1 ≤ · · · ≤ in−1 ≤ in and k ≥ 0,

{TNj = ij , 1 ≤ j ≤ n,Nn = k} =
⋃

0≤ℓ1≤···≤ℓn−1≤ℓn=k

{Tℓj = ij , Nj = ℓj , 1 ≤ j ≤ n} ∈ Fk.

This yields

F(TN1 , ..., TNn) ⊂ FNn = F(ξ1, ξ2, ..., ξNn).

If Xn = i > 0, then Xn+1 = i− 1. This implies

P(Xn+1 = i− 1|Xn = i,Xn−1 = in−1, ..., X1 = i1) = 1 = P(Xn+1 = i− 1|Xn = i).

If Xn = 0, then Xn+1 = ξNn+1 − 1. Since P(Nn < ∞) = 1, FNn is independent of F(ξNn+1)
and ξNn+1 has the same distribution as ξ1. (Why?) Hence, we have

P(Xn+1 = k|Xn = 0, Xn−1 = in−1, ..., X1 = i1) = ak+1 = P(Xn+1 = k|Xn = 0).

This proves that Xn is a Markov chain with transition probability p.
37



Example 3.5 (Ehrenfest chain). An Ehrenfest chain is a (time homogeneous) Markov chain on
{0, 1, ..., r} with the following common transition probability.

p(i, i+ 1) = 1− i/r for 0 ≤ i < r

p(i, i− 1) = i/r for 0 < i ≤ r

p(i, j) = 0 otherwise

Paul Ehrenfest uses this chain to model the diffusion of air molecules between two chambers
connected by a small hole and explain the second law of thermodynamics.

Proposition 3.7. Let S be a countable set and Xn is a Markov chain on S with transition
probability pn and initial distribution µ. Then, for n ≥ 1, P(Xn = j) = (µp0p1 · · · pn−1)(j) for
j ∈ S, where

(p0p1 · · · pm)(i, j) =
∑
k∈S

(p0p1 · · · pm−1)(i, k)pm(k, j)

and µpn is the multiplication of the row vector µ and pn.

Proof. Immediate from the following fact.

P(Xk = ik, 0 ≤ k ≤ n) = µ(x0)

n−1∏
k=0

p(xk, xk+1).

�
Exercise 3.2. Let S = {0, 1} and Xn be a (time homogeneous) Markov chain on S with
common transition probability p given by

p =

(
1− a a
b 1− b

)
.

Show that for n ≥ 0,

P(Xn = 0) =
b

a+ b
+ (1− a− b)n

(
µ(0)− b

a+ b

)
.

Exercise 3.3. Let ξ1, ξ2, ... be i.i.d. random variables taking values on {1, 2, ..., N} satisfying
P(ξ1 = i) = 1/N for 1 ≤ i ≤ N . Set Xn = |{ξ, ..., ξn}| where |A| denotes the number
of different elements in A. Prove that Xn is a Markov chain and describe the transition
probability.

Exercise 3.4. Let ξ1, ξ2, ... be i.i.d. random variables satisfying P(ξ1 = 1) = P (ξ1 = −1) =
1/2. Let S0 = 0, Sn = ξ1 + · · · + ξn and set Xn = max{Sm : 0 ≤ m ≤ n}. Show that Xn is
not a Markov chain.

3.2. Markov property and strong Markov property. A naive way to define a time
homogeneous Markov chain Xn is to consider the following identity

(3.7) P(Xn+1 ∈ B|Xn = x) = P(X1 ∈ B|X0 = x), ∀B ∈ C, n ≥ 0,

where the equality means that there is a common version for P(Xn+1 ∈ B|Xn = x) and
P(X1 ∈ B|X0 = x). Note that such a definition of homogeneity for Markov chains can’t be
easily fulfilled and any theorem like Lemmas 3.1 and 3.2 may be generated with complicated
priori assumptions. However, if Xn possesses a common transition probability, then (3.7)
turns out an obvious request. Thus, it is reasonable to consider the following definition.

Definition 3.3. A Markov chain Xn on (S, C) with transition probability pn is time homoge-
neous if pn = p0 for all n ≥ 0.
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Throughout the remaining of this section, all Markov chains taking values on (S, C) are
restricted to stochastic processes (Xn)

∞
n=0, where Xn(ω) = ωn for all ω = (ωn)

∞
n=0 ∈ S∞

and n ≥ 0 and Fn = F(X0, ..., Xn). When we say that (Xn)
∞
n=0 is a Markov chain with

transition probability pn and initial distribution µ, it means that (S∞, C∞) is equipped with
the probability Pµ generated in the proof of Theorem 3.6. We will use Eµ to denote the
expectation under Pµ. If µ = δx, we simply write Px,Ex, for short. Remember that if (S, C)
is a Borel space, then Pµ always exists for any probability µ on (S, C).

Theorem 3.8 (Markov property). Let Xn be a time homogeneous Markov chain on (S, C) with
respect to Fn with transition probability p. Then, for any bounded C∞-measurable function f ,

Eµ(f(Xn, Xn+1, ...)|Fn) = φ(Xn) Pµ-a.s.,

for all n ≥ 0, where φ(x) = Exf(X0, X1, ...).

Proof. By the multiplicative system theorem, it suffices to prove the above identity with
f(x0, x1, ...) = g(x0, ..., xm), where g is a bounded Cm+1-measurable function, and m ≥ 0. By
Theorem 3.3, one has

Eµ[g(Xn, , ..., Xn+m)|Fn] = ϕ(Xn),

where

ϕ(x) =

∫
S
p(x, dx1)

∫
S
p(x1, dx2) · · ·

∫
S
p(xm−1, dxm)g(x, x1, ..., xm) = φ(x),

as desired. �

Corollary 3.9 (Chapman-Kolmogorov equation). Let Xn be a time homogeneous Markov
chain on (S, C). Then, for B ∈ C,

Px(Xm+n ∈ B) =

∫
S
Py(Xn ∈ B)Px(Xm ∈ dy).

Proof. By the Markov property, one has

Px(Xm+n ∈ B) = Ex(Px(Xm+n ∈ B|Fm)) = Exφ(Xm),

where φ(y) = Py(Xn ∈ B). This implies

Px(Xm+n ∈ B) =

∫
S
φ(y)Px(Xm ∈ dy) =

∫
S
Py(Xn ∈ B)Px(Xm ∈ dy).

�

Corollary 3.10. Let Xn be a time homogeneous Markov chain on (S, C) and An, Bn ∈ C be
events satisfying

Pµ

( ∞⋃
i=n+1

{Xi ∈ Bi}
∣∣∣∣Xn

)
≥ δ > 0 on {Xn ∈ An}.

Then, Pµ({Xn ∈ An i.o.} \ {Xn ∈ Bn i.o.}) = 0.

Proof. Let A = {Xn ∈ An i.o.}, B = {Xn ∈ Bn i.o.} and B̃n =
⋃

m>n{Xn ∈ Bn}. Then,
1
B̃n

→ 1B as n→ ∞. By the Markov property and Theorem 2.26, we have

Eµ(1B̃n
|Xn) = Eµ(1B̃n

|Fn)
a.s.→ Eµ(1B|F∞) = 1B,

where F∞ = σ(
⋃

nFn). Note that, almost surely on A, 1Bn ≥ δ for infinitely many n . This
implies A ⊂ B almost surely. �
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Exercise 3.5. Let Xn be a time homogeneous Markov chains. A state a ∈ S is called an
absorbing state if Pa(X1 = a) = 1. Let D = {Xn = a for some n} and h(x) = Px(D). Show
that h(Xn) → 0 Pµ-a.s. on D

c for any initial distribution µ.

Recall the concept of stopped σ-fileds as follows. Let F be a σ-field over Ω and Fn be a
filtration contained in F . For any stopping time N for Fn, FN is the smallest σ-field containing
events A ∈ F satisfying A ∩ {N = n} ∈ Fn for all n < ∞. Clearly, if Xn is adapted to Fn,
then XN1{N<∞} is FN -measurable.

Theorem 3.11 (Strong Markov property). Let Xn be a time homogeneous Markov chain
on (S, C) and N be a stopping time for Fn. Then, for any sequence of uniformly bounded
C∞-measurable functions, (fn)

∞
n=0,

Eµ(fN (XN , XN+1, ...)|FN ) = φ(XN , N) on {N <∞},
where φ(x, n) := Exfn(X0, X1, ...).

Remark 3.5. If fn = f for all n ≥ 0, then the strong Markov property becomes

Eµ(f(XN , XN+1, ...)|FN ) = φ(XN ) on {N <∞},
where φ(x) = Exf(X0, X1, ...).

Proof. Note that, for A ∈ FN ,

Eµ(fN (XN , XN+1, ...);A ∩ {N <∞}) =
∞∑
n=0

Eµ(fn(Xn, Xn+1, ...);A ∩ {N = n}).

Since φ(XN , N)1{N<∞} is FN -measurable (why?), it remains to show that

Eµ(fn(Xn, Xn+1, ...);A ∩ {N = n}) = Eµ(φ(Xn, n);A ∩ {N = n}),
which is, in fact, given by the Markov property. �
Example 3.6 (Reflection principle). Let S0, ξ1, ξ2, ... be independent random variables and
ξ1, ξ2, ... are identically distributed with distributions symmetric about 0. Set Sn = S0 + ξ1 +
· · ·+ ξn. Then, for a > 0,

P
(

max
1≤m≤n

Sm > a

)
≤ 2P(Sn > a).

We prove the inequality by the strong Markov property. Set, for m ≤ n and ω = (ωn)
∞
n=0,

fm(ω) =

{
1 if ωn−m > a

0 o.w.

and N = inf{1 ≤ m ≤ n : Sm > a} with inf ∅ = ∞. Then,

{N <∞} = {N ≤ n} =

{
max

0≤m≤n
Sm > a

}
.

Note that, on {N ≤ n}, fN (ωN , ωN+1, ...) = 1 if ωn > a and 0 otherwise. Since Sn is a Markov
chain, by the strong Markov property,

E(fN (SN , SN+1, ...)|FN ) = φ(SN , N) on {N ≤ n},
where φ(y,m) = Eyfm(S0, S1, ...). Observe that, for y > a and m ≤ n,

φ(y,m) :=Eyfm(S0, S1, ...) = Py(Sn−m > a) ≥ Py(Sn−m ≥ y)

=Py(Sn−m − S0 ≥ 0) ≥ 1/2,
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where the last inequality uses the symmetry of P0(Sn−m − S0 ∈ ·). Thus, on {N < ∞} =
{N ≤ n}, φ(SN , N) ≥ 1/2. As a consequence, we obtain

1
2P(N ≤ n) ≤ E(φ(XN , N);N ≤ n) = E(E(fN (SN , SN+1, ...)|FN );N ≤ n)

= P(Sn > a,N ≤ n) = P(Sn > a).

In the following two exercises, we consider Markov chians Xn on countable state spaces S
with transition probability p and set

τA = inf{n ≥ 0 : Xn ∈ A}, TA = inf{n ≥ 1 : Xn ∈ A}.
Briefly, we write τy = τ{y} and Ty = T{y}.

Exercise 3.6. [First entrance decomposition] Show that, for n ≥ 1 and x, y ∈ S,

Px(Xn = y) =

n∑
m=1

Px(Ty = m)Py(Xn−m = y)

and, for k ≥ 0,
n∑

m=0

Px(Xm = x) ≥
n+k∑
m=k

Px(Xm = x).

Exercise 3.7. Suppose that S \ C is a finite set and, for each x ∈ S \ C, Px(τC < ∞) > 0.
Show that there exist N > 0 and ϵ > 0 such that

(3.8) Px(τC > kN) ≤ (1− ϵ)k ∀k ≥ 1, x ∈ S \ C.
Use this to conclude that Px(τC <∞) = 1 for all x /∈ C.

Example 3.7. Let S be a countable set and Xn be a time homogeneous Markov chain on S
with transition probability p. A function h defined on S is called harmonic on E ⊂ S if

h(x) =
∑
y∈S

h(y)p(x, y) ∀x ∈ E.

Let A,B be disjoint subsets of S such that (A ∪ B)c is finite. By Exercise 3.7, Px(τA∪B <
∞) = 1 for all x ∈ (A ∪ B)c. We claim that if Px(τA∪B < ∞) > 0 for all x ∈ (A ∪ B)c, then
Px(τA < τB) is the unique function h on S, which is harmonic on (A∪B)c and satisfies h = 1
on A and h = 0 on B. First, we shall prove the following statements in order.

(1) The mapping x 7→ Px(τA < τB) is harmonic on (A ∪B)c.
(2) Let h be a bounded function on S. If h is harmonic on (A ∪B)c, then h(Xn∧τA∪B ) is

a martingale under Px for x ∈ (A ∪B)c.

Proof. Set f(x) = Px(τA < τB). Obviously, f = 1 on A and f = 0 on B. Note that, for
x /∈ A ∪B, Px(τA > 0) = Px(τB > 0) = 1. For E ⊂ S, set

fE(x0, x1, ...) = inf{k ≥ 0|xk ∈ E}, ∀(x0, x1, ...) ∈ S∞.

Clearly, fE is C∞-measurable and τE = fE(X0, X1, ...). Note that if fE(x0, x1, ...) > 0, then

fE(x0, x1, ...) = fE(x1, x2, ...) + 1.

By the Markov property, we have that, for x /∈ A ∪B,

f(x) = Px(τA < τB) = Ex(Px(fA(X1, X2, ...) < fB(X1, X2, ...)|X1))

= Exf(X1) =
∑
y∈S

f(y)p(x, y).

This proves (1).
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For (2), let x ∈ (A ∪B)c. Note that τA∪B is a stopping time for Fn and, for D ∈ Fn∧τA∪B ,

D ∩ {τA∪B = k} ∈ Fk, ∀k < n, D ∩ {τA∪B ≥ n} ∈ Fn.

This implies D ∈ Fn and, thus, D ∩ {τA∪B = n} and D ∩ {τA∪B > n} are in Fn. Write∫
D
h(X(n+1)∧τA∪B

)dPx =
n∑

k=0

∫
D∩{τA∪B=k}

h(Xk)dPx +

∫
D∩{τA∪B>n}

h(Xn+1)dPx.

Observe that, by the Markov property, Ex(h(Xn+1)|Fn) = φ(Xn), where

φ(y) = Eyh(X1) =
∑
z∈S

h(z)p(y, z) = h(y), ∀y ∈ (A ∪B)c.

Sice D ∩ {τA∪B > n} ∈ Fn, this yields∫
D∩{τA∪B>n}

h(Xn+1)dPx = Ex(Ex(h(Xn+1)|Fn);D ∩ {τA∪B > n})

= Ex(h(Xn);D ∩ {τA∪B > n})

As a consequence, we obtain∫
D
h(X(n+1)∧τA∪B

)dPx =

n−1∑
k=0

∫
D∩{τA∪B=k}

h(Xk)dPx +

∫
D∩{τA∪B≥n}

h(Xn)dPx

=

∫
D
h(Xn∧τA∪B )dPx,

which proves (2). �

Back to our example. Let h be a function which is harmonic on (A∪B)c and satisfies h = 1
on A and h = 0 on B. By (2), we have that h(x) = Exh(X0) = Exh(Xn∧τA∪B ) for all n ≥ 0.
Since Px(τA∩B <∞) = 1 for all x ∈ S and h is bounded, the martingale convergence theorem
implies

h(x) = lim
n→∞

Exh(Xn∧τA∪B ) = Exh(XτA∪B ) = Px(τA < τB).

3.3. Asymptotic stationarity. In this subsection, all Markov chains are assumed to be time
homogeneous. As before, let Xn be the coordinate representation process defined on (S∞, C∞)
and p be a transition probability on (S, C). Assume that, for any probability µ on (S, C), there
is a probability Pµ on (S∞, C∞) such that Xn is a Markov chain on (S, C) with transition
probability p and initial distribution µ.

If there is a probability µ on (S, C) such that

lim
n→∞

Pµ(Xn ∈ B) = π(B), ∀B ∈ C,

then one can show that π is a finitely additive probability on (S, C) and, for any C-measurable
simple function f ,

lim
n→∞

Eµf(Xn) =

∫
S
f(x)π(dx).

Fix B ∈ C. Assume in addition that π is a probability. Then, for any bounded C-measurable
function g and ϵ > 0, we may choose a C-measurable simple function f such that supx |g(x)−
f(x)| < ϵ. This implies

|Eµg(Xn)− Eµf(Xn)| ≤ ϵ,

∣∣∣∣∫
S
g(x)π(dx)−

∫
S
f(x)π(dx)

∣∣∣∣ ≤ ϵ.
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Letting n→ ∞ and then ϵ→ 0 yields

(3.9) lim
n→∞

Eµg(Xn) =

∫
S
g(x)π(dx).

In particular, for g = p(·, B), the above limit turns out

lim
n→∞

Eµp(Xn, B) =

∫
S
p(x,B)π(dx).

Note that, by the Markov property, one has

Pµ(Xn+1 ∈ B) =

∫
S
p(x,B)Pµ(Xn ∈ dx) = Eµp(Xn, B).

As a result, we obtain

(3.10) π(B) =

∫
S
p(x,B)π(dx), ∀B ∈ C.

Definition 3.4. Let Xn be a Markov chain on (S, C) with transition probability p. A proba-
bility π on (S, C) is said to be a stationary distribution if (3.10) holds.

Remark 3.6. If π is a stationary distribution of a Markov chain with transition probability p,
then Pπ(Xn = ·) = π(·) for all n.

Lemma 3.12. Suppose there is a probability µ on (S, C) such that

lim
n→∞

Pµ(Xn ∈ B) = π(B), ∀B ∈ C.

If π is a probability on (S, C), then it’s a stationary distribution.

Definition 3.5. A process Xn taking values on (S, C) is said to be stationary if

P((X0, X1, ...) ∈ B) = P((Xn, Xn+1, ...) ∈ B), ∀B ∈ C∞, n ≥ 0.

Proposition 3.13. Let Xn be a Markov chain with transition probability p. If π is a stationary
distribution for Xn, then (X0, X1, ...) is a stationary process under Pπ.

Proof. By the Markov property, we have

Pπ((Xn, Xn+1, ...) ∈ B|Xn = x) = Px((X0, X1, ...) ∈ B), ∀B ∈ C∞, n ≥ 0.

Since π is a stationary distribution, Pπ(Xn ∈ ·) = π(·) for all n ≥ 0. Integrating both sides of
the above equation w.r.t. π leads to the desired identity. �

Proposition 3.14. Let Xn be a Markov chain on (S, C) with transition probability p. Assume
that there are probabilities µ, π on (S, C) such that

lim
n→∞

Pµ(Xn ∈ B) = π(B), ∀B ∈ C.

Then, for any bounded C∞-measurable function f ,

lim
n→∞

Eµ(f(Xn, Xn+1, ...)) = Eπf(X0, X1, ...).

In particular, for B ∈ C∞,

lim
n→∞

Pµ((Xn, Xn+1, ...) ∈ B) = Pπ((X0, X1, ...) ∈ B).

Remark 3.7. The above proposition says that under Pµ, the process Xn is asymptotically
stationary.
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Proof of Proposition 3.14. In a similar reasoning for (3.10), it suffices to consider the case that
f = 1B with B ∈ C∞. Fix B ∈ C∞ and set φ(x) = Px((X0, X1, ...) ∈ B). By the Markov
property, Pµ((Xn, Xn+1, ...) ∈ B|Fn) = φ(Xn). This implies

Pµ((Xn, Xn+1, ...) ∈ B) = Eµ(Pµ((Xn, Xn+1, ...) ∈ B|Fn))

= Eµφ(Xn) =

∫
S
φ(y)Pµ(Xn ∈ dy).

As a result of (3.9), we obtain

lim
n→∞

∫
S
φ(y)Pµ(Xn ∈ dy) =

∫
S
Py((X0, X1, ...) ∈ B)π(dy) = Pπ((X0, X1, ...) ∈ B).

�
One natural question arises. How many stationary distributions a Markov chain may pos-

sess?

Lemma 3.15. Let Π be the set of all stationary distributions for a Markov chain on (S, C).
If Π is nonempty, then Π forms a convex set in the space of all probability measures on (S, C).

Proof. Suppose p is the transition probability of the Markov chain. Let µ, ν ∈ Π and set, for
a ∈ (0, 1), πa = aµ+ (1− a)ν. Then, for B ∈ C,∫

S
p(x,B)πa(dx) = a

∫
S
p(x,B)µ(dx) + (1− a)

∫
S
p(x,B)ν(dx)

= aπ(B) + (1− a)π(B) = π(B).

�
3.4. Recurrence and transience. In this section, all Markov chains are assumed to have

countable state spaces. Let T
(0)
y = 0 and set, for k ≥ 1,

T (k)
y = min{n > T (k−1)

y : Xn = y}.

T k
y is the time of the k-th return to state y. Briefly, we let Ty = T

(1)
y . Set ρxy = Px(Ty < ∞)

for x, y ∈ S.

Definition 3.6. A state y is said to be recurrent if ρyy = 1 and transient if ρyy < 1.

Theorem 3.16. For all x, y ∈ S and k ≥ 1, Px(T
(k)
y <∞) = ρxyρ

(k−1)
yy , where 00 := 1.

Proof. The case k = 1 is clear. Let k > 1 and set N = T
(k−1)
y ,

f(ω) =

{
1 if ωn = y for some n ≥ 1

0 o.w.

Note that, on {N <∞}, f(XN , XN+1, ...) = 1 if and only if T
(k)
y <∞. Since N is a stopping

time for Xn, by the strong Markov property, one has XN = y and

Ex(f(XN , XN+1, ...)|FN ) = φ(XN ) = φ(y) = ρyy on {N <∞},
where φ(z) = Ez(f(X0, X1, ...)). Putting all above together, we have

Px(T
(k)
y <∞) = Ex(f(XN , XN+1, ...);N <∞) = ρyyPx(T

(k−1)
y <∞).

The desired identity is then proved by induction. �
Corollary 3.17. y is recurrent if and only if Py(Xn = y i.o.) = 1; y is transient if and only
if Py(Xn = y i.o.) = 0.
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Proof. Note that {Xn = y i.o.} = {T (k)
y < ∞, ∀k > 0}. By Theorem 3.16, one has Py(T

(k)
y <

∞) = ρkyy for all k ≥ 0. The desired property is obvious from these observations. �

Theorem 3.18. y is recurrent if and only if
∑∞

n=1 p
n(y, y) = ∞.

Proof. Let Ny =
∑∞

n=1 1{Xn=y}. By definition, Ny is the number of visits to y at positive
times and

{Ny ≥ k} = {T (k)
y <∞}.

As a result of this equation and Theorem 3.16, one has

ExNy =

∞∑
k=1

Px(Ny ≥ k) =

∞∑
k=1

Px(T
(k)
y <∞) =

∞∑
k=1

ρxyρ
k−1
yy .

Note that EyNy =
∑∞

n=1 p
n(y, y). If y is transient, that is, ρyy < 1, then ExNy = ρxy/(1 −

ρyy) <∞ for all x ∈ S. If y is recurrent, then EyNy = ∞. �
Remark 3.8. If y is transient, then

ExNy =
ρxy

1− ρyy
∀x ∈ S.

Remark 3.9. We summarize the above discussion as follows. The following are equivalences
of recurrence,

(1) y is recurrent;
(2) Py(Ty <∞) = Py(Xn = y for some n > 0) = 1;

(3) Py(Xn = y i.o.) = Py(T
(k)
y <∞, ∀k > 0) = 1;

(4)
∑

n Py(Xn = y) = EyNy = ∞.

and the following are equivalences of transience,

(5) y is transient;
(6) Py(Ty <∞) = Py(Xn = y for some n > 0) < 1;

(7) Py(Xn = y i.o.) = Py(T
(k)
y <∞, ∀k > 0) = 0;

(8)
∑

n Py(Xn = y) = EyNy <∞.

From the view point of generating functions, let

ux(s) =
∞∑
n=0

pn(x, x)sn, fx(s) =
∞∑
n=1

Px(Tx = n)sn.

Exercise 3.8. Show that ux(s) = 1/(1− fx(s)) for all s ∈ [0, 1] and x ∈ S, where 1/0 := ∞.

Exercise 3.9. Prove that if x is transient, then

Px(Tx = ∞) =

( ∞∑
n=0

pn(x, x)

)−1

.

Exercise 3.10. Let Xn be a simple random walk on Z with transition probability

p(i, i+ 1) = p, p(i, i− 1) = q = 1− p ∀i ∈ Z.
Use Taylor’s expansion for (1− x)−1/2 to show that, for all i ∈ Z,

ui(s) = (1− 4pqs2)−1/2, fi(s) = 1− (1− 4pqs2)1/2, ∀s ∈ [0, 1],

and determine ρ00.

Assume that y is recurrent and set Rk = T
(k)
y for k ≥ 0 and rk = Rk − Rk−1. Here, the

sequence Rk is called the renewal time of state y.
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Theorem 3.19. If y is recurrent, then, under Py, the sequence (rk, XRk−1
, ..., XRk−1) with

k ≥ 1 are i.i.d. and, for n ≥ 1, x0, ..., xn ∈ S,

Py((rk, XRk−1
, ...,XRk−1) = (n, x0, ..., xn−1))

= δy(x0)

(
n−2∏
i=0

p(xi, xi+1)(1− δy(xi+1))

)
p(xn−1, y).

Proof. Let f1(x) = δy(x) and, for n > 1, let fn be a function on Sn defined by

fn(y0, y1, ..., yn−1) = δy(y0)

(
n−2∏
i=0

p(yi, yi+1)(1− δy(yi+1))

)
p(yn−1, y), ∀y0, ..., yn−1 ∈ Sn.

Since the range of (rk, XRk−1
, ..., XRk−1) is countable, it suffices to show that for m ≥ 1,

a1, ..., am ∈ N and xi,j ∈ S with 0 ≤ j < ai and 1 ≤ i ≤ m,

Py(Xbi+j = xi,j , ri = ai,∀0 ≤ j < ai,∀1 ≤ i ≤ m) =

m∏
i=1

fai(xi,0, ..., xi,ai−1)

where b1 = 0 and bi = a1 + · · ·+ ai−1. It is clear that the above identity holds if xi,0 6= y for
some 1 ≤ i ≤ m or xi,j = y for some 1 ≤ i ≤ m and some 0 < j < ai. Assuming xi,0 = y for
all 1 ≤ i ≤ m and xi,j 6= y for all 1 ≤ i ≤ m and all 0 ≤ j < ai, one has

{Xbi+j = xi,j , ri = ai,∀0 ≤ j < ai,∀1 ≤ i ≤ m}
={Xbi+j = xi,j ,∀0 ≤ j < ai,∀1 ≤ i ≤ m,Xbm+1 = y}.

By the Markov property, we obtain

Py(Xbi+j = xi,j , ∀0 ≤ j < ai, ∀1 ≤ i ≤ m,Xbm+1 = y)

=Py(Xbm+j = xm,j , ∀0 < j < ai, Xbm+1 = y|Xbi+j = xi,j ,∀0 ≤ j < ai,∀1 ≤ i < m,Xbm = y)

× Py(Xbi+j = xi,j ,∀0 ≤ j < ai,∀1 ≤ i < m,Xbm = y)

=fam(xm,0, ..., xm,am−1)Py(Xbi+j = xi,j ,∀0 ≤ j < ai,∀1 ≤ i < m,Xbm = y).

The desired identity is then given by induction. �

3.5. Group property of states.

Theorem 3.20. If x is recurrent and ρxy > 0, then y is recurrent and ρxy = ρyx = 1.

Proof. Define K = inf{k : pk(x, y) > 0}. Since ρxy > 0, K < ∞. Let y1, ..., yK−1 be states in
S such that

K∏
i=1

p(yi−1, yi) > 0,

where y0 = x and yK = y. It is easy to see from the definition of K that yi /∈ {x, y} for all
1 ≤ i < K. By the Markov property, we obtain

Px(Tx = ∞) ≥ Px(Xi = yi,∀1 ≤ i ≤ K,Xi 6= x,∀i > K) =
K∏
i=1

p(yi−1, yi)(1− ρyx).

Thus, the recurrence of x implies ρyx = 1. Since ρyx > 0, one may choose L > 0 such that
pL(y, x) > 0. Putting all above together and then applying Theorem 3.18 gives

∞∑
n=1

pn(y, y) ≥
∞∑
n=1

pn+K+L(y, y) ≥
∞∑
n=1

pL(y, x)pn(x, x)pK(x, y) = ∞.
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This means that y is recurrent. The fact ρxy = 1 is immediate from this theorem with the
exchange of x and y. �

Remark 3.10. If ρxy > 0 but ρyx = 0, then x must be transient.

Exercise 3.11. Prove by using the strong Markov property that ρxz ≥ ρxyρyz.

Corollary 3.21. If x is transient and ρyx > 0, then y is transient.

Definition 3.7. A set C ⊂ S is said to be closed if x ∈ C and ρxy > 0 implies y ∈ C. A set
D is said to be irreducible if ρxy > 0 for all x, y ∈ D.

Remark 3.11. ρxy > 0 if and only if there exists K > 0 such that pK(x, y) > 0.

Remark 3.12. C is closed if and only if Px(Xn ∈ C) = 1 for all n ≥ 1 and x ∈ C.

Corollary 3.22. Let R be the set of all recurrent states. Then, R is closed. Moreover,
R =

⋃
iRi, where Ri’s are closed and irreducible.

Proof. The closedness of R is obvious from Theorem 3.20. To see a decomposition of R, let
Rx be a subset of R defined by

Rx = {y ∈ R : ρxy > 0}.

As a result of Theorem 3.20 and Exercise 3.11, Rx is closed and it remains to show that
Rx = Ry for all y ∈ Rx. Let z ∈ Ry. Then, ρyz = 1. By Exercise 3.11, this implies
ρxz ≥ ρxyρyz = 1. Hence, we have Ry ⊂ Rx. Note that {x, y} ⊂ Rx ∩ Ry. Since x ∈ Ry, we
have Rx ⊂ Ry. �

Proposition 3.23. Let C be finite and closed. Then, C must contain a recurrent state.
Moreover, if C is irreducible, then all states in C are recurrent.

Proof. For the first part, recall the notation Ny =
∑∞

n=1 1{Xn=y}. By Fubini’s theorem, we
have, for x ∈ C,∑

y∈C
ExNy =

∑
y∈C

∞∑
n=1

pn(x, y) =
∞∑
n=1

∑
y∈C

pn(x, y) =
∞∑
n=1

1 = ∞.

Since C is finite, ExNy = ∞ for some y ∈ C and x ∈ C. This implies that y must be recurrent,
otherwise, by Remark 3.8,

ExNy =
ρxy

1− ρyy
<∞,

which is a contradiction. The second part is clear from the irreducibility. �

Definition 3.8. A recurrent state x is called positive recurrent if ExTx <∞ and null recurrent
if ExTx = ∞.

Theorem 3.24. If x is positive recurrent and ρxy > 0, then y is positive recurrent and
ExTy <∞.

Proof. The case y = x is obvious and we assume in the following that y 6= x. Recall that, in
Theorem 3.19, if x is recurrent with recurrent time Rk and rk = Rk − Rk−1, then, under Px,
(rk, XRk−1

, ..., XRk−1) with k ≥ 1 are i.i.d.
For k ≥ 1, set

Vk =

{
1 if Xm = y for some Rk−1 < m < Rk

0 o.w.
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and

Uk =

k∑
i=1

Vi, V = inf{k ≥ 1 : Uk = 2}.

Note that Px(V <∞) = 1 and, on {V = k}, T (2)
y ≤ Rk. This implies

ExT
(2)
y =

∞∑
k=1

E(T (2)
y ;V = k) ≤

∞∑
k=1

E(Rk;V = k)

=
∞∑
k=1

k∑
l=1

E(rl;V = k) =
∞∑
l=1

E(rl;V ≥ l)

By Theorem 3.19, since {V ≥ l} = {V ≤ l − 1}c ∈ FRl−1−1, {V ≥ l} and rl are independent.
This implies

ExT
(2)
y ≤

∞∑
l=1

ExrlPx(V ≥ l) = ExTxExV.

As V1, V2, ... are i.i.d., we have, for l ≥ 1

Px(V > l) =

l∑
i=1

Px(Vi = 1, Vj = 0, ∀j 6= i, j ≤ l) + Px(Vi = 0,∀1 ≤ i ≤ l)

= lPx(V1 = 1)Px(V1 = 0)l−1 + Px(V1 = 0)l,

which yields

ExV ≤ 2

Px(V1 = 1)
.

By Theorem 3.18, as y is recurrent, one may choose K > 0 such that

Px(Xi 6= x, ∀1 ≤ i < K,XK = y) > 0.

A a consequence, Px(V1 = 1) > 0 and then ExV <∞. Since x is positive recurrent, ExT
(2)
y <

∞, which leads to ExTy <∞ and

∞ > Ex(T
(2)
y − Ty) = Ex(Ex(T

(2)
y − Ty|FTy)) = EyTy.

�

Corollary 3.25. Let R be the set of recurrent states. Then, for any closed and irreducible
subset of R, either all states are positive recurrent or all states are null recurrent.

Remark 3.13. We will prove in the next subsection that all states in a finite and closed set
C ⊂ S are positive recurrent.

3.6. Stationary distributions.

Definition 3.9. A measure π on S is said to be a stationary measure if∑
y∈S

π(y)p(y, x) = π(x), ∀x ∈ S.

If π is a probability, then we call it a stationary distribution.

Example 3.8 (Random walks on Z). Let p be a transition probability on S = Z given by

p(i, i+ 1) = p, p(i, i− 1) = q = 1− p, ∀i ∈ Z,
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with p ∈ (0, 1). Set π(i) = (p/q)i. Then, π is a stationary distribution since∑
i∈Z

π(i)p(i, j) = π(j − 1)p(j − 1, j) + π(j + 1)p(j + 1, j)

= (p/q)j−1p+ (p/q)j+1q = (p/q)j(q + p) = (p/q)j .

Example 3.9. Consider the Ehrenfest chain on {0, 1, ..., r}, that is, the transition probability
p is defined by

p(i, i+ 1) = 1− i

r
, ∀0 ≤ i < r; p(i, i− 1) =

i

r
, ∀0 < i ≤ r.

Set π(i) =
(
r
i

)
2−r. Then, π is a stationary distribution.

Example 3.10 (Birth and Death chains). A birth and death chain is a Markov chain on S =
{0, 1, 2, ...} with transition probability

p(i, i+ 1) = pi, p(i, i) = ri, p(i, i− 1) = qi,

where pi + qi + ri = 1 and q0 = 0. Assume that qi > 0 for all i > 0 and set

π(i) =

i∏
j=1

pj−1

qj
.

Then, π is a stationary measure.

Exercise 3.12. Let π be a positive stationary distribution for a Markov chain Xn with
transition probability p and set

q(x, y) =
π(y)p(y, x)

π(x)
, ∀x, y ∈ S.

Let Ym = Xn−m. Show that, if X0 has distribution π, then Y0, ..., Yn forms a Markov chain
with transition probability q. Here, Ym is called the reverse or dual Markov chain for Xn and
q is called the dual transition probability.

Exercise 3.13. Let π and q be as in Exercise 3.12. If q = p, then π is called a reversible
distribution for p. Show that if π is reversible for p, then π is stationary.

Theorem 3.26. Let x be a recurrent state. Then, the following map

y 7→ πx(y) = Ex

(
Tx−1∑
i=0

1{Xi=y}

)
=

∞∑
i=0

Px(Xi = y, Tx > i)

defines a stationary measure for p.

Remark 3.14. Note that πx(x) = 1 and πx(y) < ∞. Let y ∈ S and assume that ρxy > 0. By
Theorem 3.26, we have

1 = πx(x) =
∑
z∈S

πx(z)p
n(z, x) ≥ πx(y)p

n(y, x), ∀n > 0.

By Theorem 3.20, since x is recurrent and ρxy > 0, one has ρyx = 1. This implies πx(y) <∞.
As a result, if p is irreducible, then πx(y) <∞ for all y ∈ S.

Proof of Theorem 3.26. We prove this theorem using cycle trick. Note that, for y 6= x,

Tx−1∑
i=0

1{Xi=y} =

Tx∑
i=1

1{Xi=y} =

Tx−1∑
i=1

1{Xi=y}.
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By Fubini’s theorem, it is easy to see that∑
y∈S

πx(y)p(y, z) =
∞∑
i=0

∑
y∈S

Px(Xi = y, Tx > i)p(y, z).

By the Markov property, if z 6= x, then∑
y∈S

Px(Xi = y, Tx > i)p(y, z) =
∑
y∈S

Px(Xi = y, Tx > i,Xi+1 = z)

=
∑
y∈S

Px(Xi = y,Xi+1 = z, Tx > i+ 1) = Px(Xi+1 = z, Tx > i+ 1).

This implies ∑
y∈S

πx(y)p(y, z) =

∞∑
i=0

Px(Xi+1 = z, Tx > i+ 1) = πx(z).

If z = x, we have∑
y∈S

Px(Xi = y, Tx > i)p(y, x) =
∑
y∈S

Px(Xi = y, Tx > i,Xi+1 = x)

=
∑
y∈S

Px(Xi = y, Tx = i+ 1) = Px(Tx = i+ 1).

Since x is recurrent, this implies∑
y∈S

πx(y)p(y, x) =

∞∑
i=0

Px(Tx = i+ 1) = 1 = πx(x).

�
Remark 3.15. If x is transient, then∑

y∈S
πx(y)p(y, z) = πx(z), ∀z 6= x.

But, for z = x, we have ∑
y∈S

πx(y)p(y, x) < 1 = πx(x).

Exercise 3.14. Recall the renewal chain with transition probability

p(0, j) = fj+1, p(j + 1, j) = 1, ∀j ≥ 0.

Use Theorem 3.26 to show that π(j) =
∑

k≥j fk+1 is a stationary measure for p.

Theorem 3.27. If p is irreducible and all states are recurrent, then the stationary measure
is unique up to a multiple constant.

Proof. Let π be a stationary measure. Since p is irreducible, it is clear that π(y) < ∞ for all
y ∈ S. Fix a ∈ S. Note that

π(z) =
∑
y∈S

π(y)p(y, z) = π(a)p(a, z) +
∑
y ̸=a

π(y)p(y, z).

Applying the second equation to the last summation yields

π(z) = π(a)p(a, z) + π(a)
∑
y ̸=a

p(a, y)p(y, z) +
∑

y ̸=a,x̸=a

π(x)p(x, y)p(y, z).
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Inductively, one has

π(z) =

n∑
m=1

π(a)
∑

x1,...,xm−1 ̸=a,xm=z

p(a, x1)p(x1, x2) · · · p(xm−1, xm)

+
∑

x0,...,xn−1≠a,xn=z

π(x0)p(x0, x1) · · · p(xn−1, xn)

≥ π(a)

n∑
m=1

Pa(Xi 6= a, 1 ≤ i < m,Xm = z), ∀n ≥ 1.

Since z is recurrent, this implies

π(z) ≥ π(a)
∞∑

m=1

Pa(Xi 6= a, 1 ≤ i < m,Xm = z)

= π(a)

∞∑
m=1

Pa(Ta ≥ m,Xm = z) = π(a)πa(z),

where πa is the measure in Theorem 3.26. As a result, we obtain

π(a) =
∑
z∈S

π(z)pn(z, a) ≥ π(a)
∑
z∈S

πa(z)p
n(z, a) = π(a)πa(a) = π(a).

This implies that if pn(z, a) > 0, then π(z) = π(a)πa(z). Since p is irreducible, this must be
true for all z ∈ S. �

As a consequence of Theorem 3.26 and 3.27, we have

Theorem 3.28. If p has a stationary distribution π, then all states y ∈ S satisfying π(y) > 0
are positive recurrent. In particular, if p is assumed further irreducible, then π(x) = 1/ExTx
for all x ∈ S.

Proof. Note that if π(y) > 0, then∑
x∈S

π(x)
∞∑
n=1

pn(x, y) =
∞∑
n=1

π(y) = ∞.

This implies y has to be recurrent otherwise,∑
x∈S

π(x)

∞∑
n=1

pn(x, y) =
∑
x∈S

π(x)
ρxy

1− ρyy
≤ 1

1− ρyy
<∞.

Next, we turn to prove the second part and assume that p is irreducible. By the irreducibility
of p, π(x) > 0 for all x ∈ S. By Theorems 3.26 and 3.27, x is recurrent and one may select a
constant cx such that π = cxπx. This implies

1 = cx
∑
y∈S

πx(y) = cx
∑
y∈S

∞∑
i=0

Px(Xi = y, Tx > i) = cx

∞∑
i=0

Px(Tx > i) = cxExTx,

which leads to π(x) = cxπx(x) = cx = 1/ExTx for all x ∈ S. Hence, ExTx <∞ or equivalently
x is positive recurrent.

Back to the first part, let π(y) > 0 and let C be the closed and irreducible set containing
y. Let pC be the submatrix of p indexed by C. It is an easily exercise to show that pC is
an irreducible transition probability on C and has π|C/π(C) as a (in fact, the) stationary
distribution. Note that if Xn, Yn be the Markov chain on S,C with transition probabilities
p, pC and Tx, T

C
x be the first return times of x in Xn, Yn, then, given X0 = Y0 = x with
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x ∈ C, Tx and TC
x share the same distribution and, thus, ExTx = EC

x T
C
x for all x ∈ C. As an

immediate result of the second part, x is positive recurrent for all x ∈ C. �
Corollary 3.29. Assume that p is irreducible and all states are recurrent. Then, all states
are positive recurrent if and only if there is a stationary distribution π. In particular, π > 0.

Corollary 3.30. If S is finite and p is irreducible, then all states are positive recurrent and
p has exactly one stationary distribution. Conversely, if p has null recurrent states, then
|S| = ∞.

Remark 3.16. If p is irreducible, then

1

ExTx
=
∑
y∈S

p(y, x)

EyTy
, ∀y ∈ S

and
πx(y)

ExTx
=

1

EyTy
, ∀x, y ∈ S.

3.7. Asymptotic behavior. In this section, we will consider the long-term behavior of
Markov chains on countable state spaces. Note that if y is transient, then

∞∑
n=1

pn(x, y) =
ρxy

1− ρyy
<∞, ∀x ∈ S.

This implies pn(x, y) → 0 as n→ ∞. When y is recurrent, we set

Nn,y =
n∑

m=1

1{Xn=y}.

Clearly, Nn,y → Ny :=
∑∞

m=1 1{Xm=y} as n→ ∞.

Theorem 3.31. Assume that y is recurrent. Then, for any x ∈ S,

Nn,y

n
→ 1

EyTy
1{Ty<∞}, Px-a.s.

Proof. Recall the following notations: Let R0 = 0 and

Rk = T (k)
y , rk = Rk −Rk−1, ∀k ≥ 1.

By Theorem 3.19, r1, r2, .. are i.i.d. under Py. By the strong law of large numbers, one has

Rk

k
=
r1 + r2 + · · · rk

k
→ EyTy, Py-a.s.

Since y is recurrent, Py(Ny = ∞) = 1. This implies Nn,y → ∞ Py-a.s.. Note that RNn,y ≤
n < RNn,y+1 and write

RNn,y

Nn,y
≤ n

Nn,y
<
RNn,y+1

Nn,y + 1
× Nn,y + 1

Nn,y
.

Passing n to the infinity yields that Nn,y/n→ 1/EyTy Py-a.s..
Next, assume x 6= y. Clearly, Nn,y = 0 on {Ty = ∞} for all n ≥ 1. This implies Nn,y/n →

0. On {Ty < ∞}, one may use the strong Markov property to conclude that r1, r2, ... are
independent and r2, r3, ... are identically distributed. As a result, one has

Rk

k
=
r1
k

+
r2 + · · ·+ rk

k − 1
× k − 1

k
→ EyTy, on {Ty <∞},

Px-a.s.. �
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Note that Nn,y/n is uniform bounded by 1. By the Lebesgue dominated convergence theo-
rem, if y is recurrent, then

(3.11)
1

n

n∑
m=1

pm(x, y) =
ExNn,y

n
→ ρxy

EyTy
as n→ ∞.

The above convergence also holds for transient states. It is worthwhile to note that such a
convergence does not implies the convergence of pn(x, y). For a counterexample, let S = {0, 1}
and p is a transition probability defined by

p(0, 1) = p(1, 0) = 1, p(0, 0) = p(1, 1) = 0.

In this case, p2n = I and p2n+1 = p and, thus, pn(x, y) never converges. The reason here is
due to the periodicity of the appearance of states.

Definition 3.10. The period d of a state x is defined to be the greatest common divisor of
{n ≥ 1 : pn(x, x) > 0}. If d = 1, x is also called aperiodic.

Lemma 3.32. If x, y are states satisfying ρxyρyx > 0, then the periods of x and y are the
same.

Proof. Let K > 0 and L > 0 be such that pK(x, y)pL(y, x) > 0 and dx, dy be the periods of
x, y. Clearly, dx|(K +L). Note that if pn(y, y) > 0, then pK+n+L(x, x) > 0. This implies dx|n
and, hence, dx|dy. Exchanging x and y in the above discussion yields dx = dy. �
Lemma 3.33. If x is of period 1, then there is n0 > 0 such that pn(x, x) > 0 for all n ≥ n0.

Proof. Set I = {n ≥ 1 : pn(x, x) > 0} and M = min{n −m|m,n ∈ I,m < n}. Our first step
is to show that M = 1 or equivalently there exists N such that N,N + 1 ∈ I. Assume the
inverse, that is M > 1. Let n1 ∈ I be such that n1 +M ∈ I. Since the greatest common
divisor of I is 1, we may choose n2 ∈ I such that M - n2. Write n2 = mM + r with m ≥ 0
and 0 < r < M . Since I is closed under addition, and thus closed under multiplication,

(m+ 1)(n1 +M) ∈ I, (m+ 1)n1 + n2 ∈ I.

Clearly, these two terms are not equal and subtracting one from the other yields

M ≤ (m+ 1)M − n2 =M − r < M,

a contradiction. Thus, M = 1.
Now assume that N ∈ I be such that N + 1 ∈ I and let n0 = N2. Obviously, n0 ∈ I and

for n > n0, we may write n− n0 = mN + r with 0 < r < N . This implies

n = n0 +mN + r = N2 +mN + r = N(N +m− r) + (N + 1)r ∈ I.

�
Theorem 3.34. Suppose p is irreducible with stationary distribution π. If all states are
aperiodic, then pn(x, y) → π(y) as n→ ∞ for all x, y ∈ S.

Proof. We prove this theorem by the method of coupling. Let q be a transition probability on
S2 defined by

q((x1, y1), (x2, y2)) = p(x1, x2)p(y1, y2).

Step 1: q is irreducible and aperiodic. By the irreducibility of p, let K,L be such that
pK(x1, x2)p

L(y1, y2) > 0. Since p is aperiodic, by Lemma 3.33, one may choose n0 such that
pM (x2, x2)p

M (y2, y2) > 0 for all M ≥ n0. This implies

qK+L+M ((x1, y1), (x2, y2)) ≥ pK(x1, x2)p
L+M (x2, x2)p

L(y1, y2)p
K+M (y2, y2) > 0.,

for M > n0. This finishes the first step.
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Step 2: Let Xn, Yn are independent Markov chains on S with transition probability p and
initial distributions µX , µY . Then, (Xn, Yn) is a Markov chain on S2 with transition probability
q and initial distribution µX × µY . Clearly, (x, y) ∈ S2 7→ π(x)π(y) defines a stationary
distribution for q. This means that all states in S2 are positive recurrent. Set T(x,x) = inf{n ≥
1|(Xn, Yn) = (x, x)} and

T = inf
x∈S

T(x,x) = inf{n ≥ 1|Xn = Yn}.

Since q is irreducible and all states in S are recurrent, Pµ(T(x,x) < ∞) = 1 for any initial
distribution µ and x ∈ S, which implies Pµ(T <∞) = 1.
Step 3: By the Markov property, one has

Pµ(Xn = y, T ≤ n) =

n∑
m=1

∑
x∈S

Pµ(T = m,Xm = x,Xn = y)

=
n∑

m=1

∑
x∈S

Pµ(T = m,Xm = x)Pµ(Xn = y|T = m,Xm = x)

=

n∑
m=1

∑
x∈S

Pµ(T = m,Ym = x)Pµ(Yn = y|T = m,Ym = x)

= Pµ(Yn = y, T ≤ n)

This implies
Pµ(Xn = y)− Pµ(Yn = y) ≤ Pµ(Xn = y, T > n).

Exchanging Xn, Yn and summing up y gives∑
y∈S

|Pµ(Xn = y)− Pµ(Yn = y)| ≤ 2Pµ(T > n).

Let µ(s, t) = δx(s)π(t) for (s, t) ∈ S2. This implies∑
y∈S

|pn(x, y)− π(y)| ≤ 2Pµ(T > n) → 0

as n→ ∞. �
In the following, we consider the periodic cases.

Lemma 3.35. Let p be irreducible and recurrent with period d > 1. Fix x ∈ S and set, for
each y ∈ S, Ky = {n ≥ 1 : pn(x, y) > 0}.

(1) There is a unique ry ∈ {0, 1, ..., d− 1} such that Ky ⊂ ry + dZ.
(2) For r ∈ {0, 1, ..., d− 1}, let Sr = {y ∈ S : ry = r}. Then, for any yi ∈ Si and yj ∈ Sj,

{n ≥ 1 : pn(yi, yj) > 0} ⊂ (j − i) + dZ.
Such a partition S0, ..., Sd−1 of S is independent of the choice of x ∈ S.

(3) For 0 ≤ i < d, pd is an irreducible and aperiodic transition probability on Si.

Proof. For (1), let m be such that pm(y, x) > 0. Then, for n ∈ Ky, p
n+m(x, x) > 0. This

implies that d|(n + m). By letting ry = (d − m) mod d, we have Ky ⊂ ry + dZ. To see
the uniqueness, let r′y be another integer in {0, 1, ..., d − 1} such that Ky ⊂ r′y + dZ. Then,
d|(ry − r′y) and this can be true only if ry = r′y.

For (2), let n,m > 0 be such that pn(yi, yj)p
m(x, yi) > 0. Then, d|(m− i) and d|(m+n−j).

This implies d|(n − (j − i)). For (3), it follows immediately from (2) that (pd)|Si×Si is an
irreducible transition probability on Si for all 0 ≤ i < d. Note that, for x ∈ Si, if x has period
c under pd, then x has period cd under p. Hence, pd is aperiodic. �
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Remark 3.17. The sets S0, S1, ..., Sd−1 are called the cyclic decomposition of S.

Theorem 3.36. Let p be irreducible with stationary distribution π. Assume that all states
in S are of period d and S0, S1, ..., Sd−1 be the cyclic decomposition of S in Lemma 3.35
corresponding to x. Then, for y ∈ Sr,

lim
n→∞

pr+nd(x, y) = dπ(y).

Proof. Set p̃ = pd|S0×S0 . By Lemma 3.35, p̃ is irreducible and aperiodic on S0. Note that, for
z ∈ S0, ∑

y∈S0

π(y)p̃(y, z) =
∑
y∈S

π(y)pd(y, z) = π(z).

This implies that π|S0 is a stationary measure for p̃. By Theorem 3.34, as x ∈ S0,

(3.12) lim
n→∞

p̃n(x, y) =
π(y)

π(S0)
, ∀y ∈ S0.

Let (Xn)
∞
n=0 be a Markov chain on S with transition probability p and set Yn = Xnd. Clearly,

(Yn)
∞
n=0 is a Markov chain on S0. Set T̃y = inf{n ≥ 1|Yn = y} and Ty = inf{n ≥ 1|Xn = y}.

It is easy to check that, under Px, dT̃y = Ty and, by (3.11), we have

1

n

n∑
k=1

p̃k(x, y) → 1

EyT̃y
=

d

EyTy
= dπ(y), ∀y ∈ S0.

In addition with (3.12), this implies π(S0) = 1/d. As a result, it follows that, for 0 < r < d
and y ∈ Sr,

pnd+r(x, y) =
∑
z∈S0

pnd(x, z)pr(z, y) →
∑
z∈S0

dπ(z)pr(z, y) = d
∑
z∈S

π(z)pr(z, y) = dπ(y).

�
For null recurrent states, we have the following observation.

Theorem 3.37. Suppose p is irreducible and all states are null recurrent. Then,

lim
n→∞

pn(x, y) = 0, ∀x, y ∈ S.

Proof. We first consider the case that p is aperiodic. Let x, y ∈ S. Since y is null recurrent,
Py(Ty <∞) = 1 and EyTy = ∞. Let ϵ > 0 and choose N > 0 such that

N∑
m=1

Py(Ty > m) ≥ 2/ϵ.

Note that, for n ≥ N ,

1 ≥ Px(Xm = y, for some n−N ≤ m ≤ n)

=

n∑
k=n−N

Px(Xk = y,Xk+1 6= y, ..., Xn 6= y)

=
n∑

k=n−N

pk(x, y)Py(Ty > n− k) =
N∑

m=0

pn−m(x, y)Py(Ty > m).

This implies that there is 0 ≤ m ≤ N such that pn−m(x, y) ≤ ϵ/2 or equivalently

min
0≤m≤N

pn+m(x, y) ≤ ϵ/2, ∀n ≥ 0.
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Recall the coupling in the proof of Theorem 3.34 and let q be the corresponding transition
probability. As before, q is irreducible and aperiodic. Note that if q is transient, then

0 = lim
n→∞

qn((x, x)(y, y)) = lim
n→∞

pn(x, y)2, ∀n ≥ N.

If q is recurrent, then the coupling time T satisfies Pµ×ν(T < ∞) = 1 for any probabilities
µ, ν on S. By setting µ = δx and ν = pm(x, ·) with m = 1, 2, ..., N , we have

|pn(x, y)− pn+m(x, y)| ≤ Pµ×ν(T > n) → 0, as n→ ∞.

As a consequence, we may select M > 0 such that

max
0≤m≤N

|pn(x, y)− pn+m(x, y)| ≤ ϵ/2, ∀n ≥M,

which leads to

pn(x, y) ≤ max
0≤m≤N

|pn(x, y)− pn+m(x, y)|+ min
0≤m≤N

pn+m ≤ ϵ, ∀n ≥M.

The proof for periodic p is similar to that in Theorem 3.34 and is omitted. �
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