
2. Martingales

Consider a game of flipping a coin infinitely and independently. Suppose that the head
appears with probability p, while the tail comes up with probability 1 − p. Each time a bet,
say d dollars, is set before the coin is flipped. As a result, the gambler wins the bet on heads
but loses it otherwise. For the gambler, it is crucial to know the probability of ruin when the
gambler starts with s dollars?

Let Z1, Z2, ... be a sequence of i.i.d. random variables with P(Z1 = 1) = p and P(Z1 =
−1) = 1−p and bn be the bet set for the nth flip. Assume that bn is a function of Z1, ..., Zn−1.
Let Sn be the total asset after the nth flip. Clearly, one has

(2.1) S0 = d, Sn = Sn−1 + Znbn(Z1, ..., Zn−1), ∀n ≥ 1,

where 0 < bn+1 ≤ Sn. By setting τ := inf{n ≥ 1 : Sn = 0} with inf ∅ := ∞, the ruin
probability is given by P(τ <∞). In some computations, we obtain

E(Sn+1|S1, ..., Sn)


= Sn a.s. for p = 1/2

< Sn a.s. for p < 1/2

> Sn a.s. for p > 1/2

, when Sn > 0.

The gambler may conclude from the above observation that the sequence of games Z1, Z2, ...
is fair if p = 1/2, unfavorable if p < 1/2 and favorable if p > 1/2.

2.1. Definitions and properties.

Definition 2.1. A sequence of σ-fields, (Fn)
∞
n=0, is a filtration if

F0 ⊂ F1 ⊂ F2 ⊂ · · · .
A process (Xn)

∞
n=0 is adapted to a filtration (Fn)

∞
n=0 if Xn is Fn-measurable for all n ≥ 0. We

briefly say that Xn is adapted to Fn.

Definition 2.2. Let (Ω,F ,P) be a probability space and (Fn)
∞
n=0 be a filtration with Fn ⊂ F .

A stochastic process, (Xn)
∞
n=0, defined on (Ω,F) is a martingale (resp. submartingale and

supermartingale) w.r.t. (Fn)
∞
n=0, or briefly Xn is a martingale (resp. submartingale and

supermartingale) w.r.t. Fn if

(1) (Xn)
∞
n=0 is adapted to (Fn)

∞
n=0;

(2) E|Xn| <∞ for all n ≥ 0;
(3) E(Xn+1|Fn) = Xn a.s. (resp. ≥ Xn a.s. and ≤ Xn a.s.) for all n ≥ 0.

In the case that Fn = F(X0, ..., Xn) for n ≥ 0, we briefly call (Xn)
∞
n=0 or Xn a martingale

(resp. submartingale and supermartingale) when (2) and (3) hold.

Remark 2.1. If (Xn)
∞
n=0 is a submartingale w.r.t. (Fn)

∞
n=0, then (−Xn)

∞
n=0 is a supermartingale

w.r.t. (Fn)
∞
n=0. Besides, (Xn)

∞
n=0 is a martingale w.r.t. (Fn)

∞
n=0 if and only if (Xn)

∞
n=0 is both

a submartingale and a supermartingale w.r.t. (Fn)
∞
n=0

Example 2.1. Let (Ω,F ,P) be a probability space and let Xn be a sequence of i.i.d. random
variables on Ω satisfying P(X1 = 1) = p and P(X1 = −1) = 1 − p with p ∈ (0, 1). Fix d ∈ R
and set

S0 = d, Sn = d+X1 +X2 + · · ·+Xn, ∀n ≥ 1,

and

F0 = {∅,Ω}, Fn = F(X1, ..., Xn), ∀n ≥ 1.

Then, Sn is a martingale (resp. submartingale and supermartingale) w.r.t. Fn if p = 1/2
(resp. p > 1/2 and p < 1/2).
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Example 2.2. Let X be a random variable with E|X| <∞ and (Fn)
∞
n=0 be a filtration. Then,

Yn = E(X|Fn) is a martingale w.r.t. Fn.

Proposition 2.1. Suppose Xn is a martingale (resp. submartingale and supermartingale)
with respect to Fn. Then,

(1) F(X0, X1, ..., Xn) ⊂ Fn for n ≥ 0.
(2) For any filtration Gn satisfying

F(X0, ..., Xn) ⊂ Gn ⊂ Fn,

Xn is a martingale (resp. submartingale and supermartingale) with respect to Gn. In
particular, Xn is a martingale (resp. submartingale and supermartingale).

Proof. Immediately from Proposition 1.4(4). �
Remark 2.2. Why we call them supermartingales? Such a denomination can be related to the
superharmonic function f on Rd, which is defined by

f(x) ≥ 1

|B(0, r)|

∫
B(x,r)

f(y)dy ∀x ∈ R, r > 0,

where B(x, r) is the open ball in Rd with radius r and center x, and |B(0, r)| is the Lebesgue
measure of B(0, r).

Exercise 2.1. Let X1, X2, ... be i.i.d. random elements with values on Rd and uniform dis-
tributed on B(0, 1). Set X0 = x and Sn = X0 + · · · + Xn for n ≥ 0. Prove that f(Sn) is a
supermartingale w.r.t. F(X0, ..., Xn) for any superharmonic function f on Rd.

Exercise 2.2. Let Xn be a submartingale w.r.t. Fn. Prove that

(1) EXn ≤ EXn+1 for all n ≥ 0.
(2) supn E|Xn| <∞ if and only if supn EX+

n <∞, where t+ = t ∨ 0.

Derive similar statements for supermatringales?

Theorem 2.2. Let Xn be a random variable and Fn be a filtration. Then, Xn is a martingale
(resp. submartingale and supermartingale) w.r.t. Fn if and only if

E(Xn|Fm)
a.s.
= Xm ∀n > m. (resp. ≥ Xm a.s. and ≤ Xm a.s.)

Proof. We prove the case for martingales, while the other cases can be shown in a similar way.
The sufficiency for martingales is clear by choosing m = n − 1. For the necessity, assume
that Xn is a martingale w.r.t. Fn and let n = m + k. Clearly, the theorem holds for k = 1.

Inductively, if E(Xm+k|Fm)
a.s.
= Xm, then

E(Xm+k+1|Fm)
a.s.
= E(E(Xm+k+1|Fm+k)|Fm)

a.s.
= Xm.

�
Theorem 2.3. Assume that Xn is a martingale w.r.t. Fn and φ is a convex function on R
satisfying E|φ(Xn)| <∞ for all n ≥ 0. Then, φ(Xn) is a submartingale w.r.t. Fn.

Proof. Since φ is convex, one has

E(φ(Xn)|C)
a.s.
≥ φ(E(Xn|C))

for any σ-field C ⊂ F . This leads to

E(φ(Xn+1)|Fn)
a.s.
≥ φ(E(Xn+1|Fn))

a.s.
= φ(Xn).

�
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Exercise 2.3. Let Xn be a submartingale w.r.t. Fn. Assume that Xn takes values on an
interval I for all n and φ is a non-decreasing convex function on I satisfying E|φ(Xn)| < ∞.
Show that φ(Xn) is a submartingale w.r.t. Fn. Give a similar statement for supermartingales?

Corollary 2.4. Assume that Xn is a martingale w.r.t. Fn. For p ∈ [1,∞), if E|Xn|p < ∞,
then |Xn|p is a submartingale.

Corollary 2.5. For s, t ∈ R, let s ∨ t and s ∧ t be the maximum and minimum of s, t. Fix
a ∈ R.

(1) If Xn is a submartingale w.r.t. Fn, then Xn ∨ a is a submartingale w.r.t. Fn.
(2) If Xn is a supermartingale w.r.t. Fn, then Xn ∧ a is a supermartingale w.r.t. Fn.

Definition 2.3. A sequence of random variables Hn is predictable w.r.t. a filtration Fn if Hn

is Fn−1-measurable for n ≥ 1.

Theorem 2.6. Let Xn be a martingale (resp. supermartingale and submartingale) w.r.t. Fn,
Hn be predictable w.r.t. Fn and set

S0 = 0, Sn =

n∑
i=1

Hi(Xi −Xi−1), ∀n ≥ 1.

Assume that Hn is nonnegative and bounded with probability one. Then, Sn is a martingale
(resp. supermartingale and submartingale) w.r.t. Fn.

Proof. Suppose that Xn is a submartingale w.r.t. Fn. By the triangle inequality, one has
E|Sn| <∞. This implies

E(Sn+1|Fn)
a.s.
= Sn + E(Hn+1(Xn+1 −Xn)|Fn)

a.s.
= Sn +Hn+1E(Xn+1 −Xn|Fn)

a.s.
≥ Sn.

Other cases can be proved in a similar way and omitted. �
Remark 2.3. In the above theorem, Hn ≥ 0 is not required for the case of martingales.

Remark 2.4. Referring to (2.1), Theorem 2.6 says that if the game is “unfavorable”, i.e. the
gambling system is a supermartingale, then the asset function is always a supermartingale
whatever predictable strategy is applied.

Definition 2.4. A stopping time τ for a filtration Fn is defined to be a random variable
taking values on {0, 1, 2, ...} ∪ {∞} satisfying {τ = n} ∈ Fn for all n.

Remark 2.5. Equivalently, τ is a stopping time for Fn if {τ ≤ n} ∈ Fn for all n ≥ 0.

Theorem 2.7. If Xn is a martingale (resp. supermartingale and submartingale) w.r.t. Fn

and τ is a stopping time for Fn, then Xτ∧n is a martingale (resp. supermartingale and
submartingale) w.r.t. Fn.

Proof. For n ≥ 1, set Hn = 1{τ≥n} and Sn =
∑n

i=1Hi(Xi − Xi−1). It is clear that Hn is
predictable w.r.t. Fn. By Theorem 2.6, if Xn is a martingale w.r.t. Fn, then so is Sn. The
desired property is then given by the identity Sn = Xτ∧n −X0. �

2.2. Optional sampling theorem. In this subsection, we introduce the preservation of mar-
tingales through optional samplings.

Definition 2.5. For any process X0, X1, X2, ..., we call a sequence τ0, τ1, τ2, ... sampling vari-
ables of (Xn)

∞
n=0 if τn is a random variable taking values on non-negative integers and satisfying

(1) 0 ≤ τ0 ≤ τ1 ≤ τ2 ≤ · · · ;
(2) {τk = j} ∈ F(X0, ..., Xj) for all j, k <∞.
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Theorem 2.8 (Optional sampling theorem). Let (Xn)
∞
n=0 be a process, (τn)

∞
n=0 be sampling

variables of (Xn)
∞
n=0 and Yn = Xτn. Assume that Xn is a martingale (resp. submartingale

and supermartingale), E|Yn| <∞ and

(2.2) lim inf
k→∞

∫
{τn>k}

|Xk|dP = 0 ∀n ≥ 1.

Then, Yn is a martingale (resp. submartingale and supermartingale).

Proof. We prove the case of martingale by showing∫
A
Yn+1dP =

∫
A
YndP, ∀A ∈ F(Y0, ..., Yn).

Let A ∈ F(Y0, ..., Yn) and set Dj = A ∩ {τn = j}. To finish the proof, it suffices to show∫
Dj

Yn+1dP =

∫
Dj

YndP ∀j ≥ 0.

By writing A = {(Y0, ..., Yn) ∈ B} for some B ∈ B(Rn+1), one has

Dj = {(Y0, ..., Yn) ∈ B, τn = j}

=
⋃

0≤j0≤···≤jn=j

{(Xj0 , ..., Xjn) ∈ B, τ0 = j0, ..., τn−1 = jn−1, τn = jn}

This implies Dj ∈ F(X0, ..., Xj) for all j ≥ 0. Set
∫
Dj
Yn+1dP = I1(k)+ I2(k) for k ≥ j, where

I1(k) =

k∑
i=j

∫
Dj∩{τn+1=i}

XidP+

∫
Dj∩{τn+1>k}

XkdP

and

I2(k) =

∫
Dj∩{τn+1>k}

Yn+1dP−
∫
Dj∩{τn+1>k}

XkdP.

Note that {τn+1 > k− 1} = {τn+1 ≤ k− 1}c ∈ F(X0, ..., Xk−1). By Theorem 2.2, this implies∫
Dj∩{τn+1=k}

XkdP+

∫
Dj∩{τn+1>k}

XkdP =

∫
Dj∩{τn+1>k−1}

Xk−1dP, ∀k > j,

or, equivalently, I1(k) = I1(k − 1) for k > j. Since Dj ⊂ {τn ≥ j}, we have

I1(k) = I1(j) =

∫
Dj

XjdP =

∫
Dj

YndP.

Combining all above gives∫
Dj

Yn+1dP−
∫
Dj

YndP = I2(k) ∀k > j.

By (2.2), one may choose a subsequence (ml)
∞
l=1 such that E(|Xml

|1{τn+1>ml}) → 0. In
addition with E|Yn+1| <∞, this implies I2(ml) → 0. �
Corollary 2.9. Let (Xn)

∞
n=0 be a submartingale, (τn)

∞
n=0 be sampling variables of (Xn)

∞
n=0

and Yn = Xτn. Assume that supn EX+
n <∞ and

(2.3) lim inf
k→∞

∫
{τn>k}

|Xk|dP = 0 ∀n ≥ 0.

Then Yn is a submartingale. Moreover, one has

(2.4) EX0 ≤ EYn ≤ sup
n≥0

EXn, E|Yn| ≤ 2 sup
n≥0

EX+
n − EX0.
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Proof. By Theorem 2.8, if the third inequality in (2.4) holds, then Yn is a submartingale. Note
that, by Theorem 2.7, (Xτn∧m)∞m=0 is a submartingale and, hence,

EX−
τn∧m ≤ EX+

τn∧m − EX0, ∀n,m ≥ 0.

Next, fix n ≥ 0. By (2.3), we may select a subsequence (mk)
∞
k=1 of N with m0 = 0 such that

lim
k→∞

∫
{τn>mk}

|Xmk
|dP = 0.

Since X+
n is a submartingale, one has

EY +
n =

∞∑
j=0

∫
{τn=j}

X+
j dP ≤ lim sup

k→∞

mk∑
j=0

∫
{τn=j}

X+
mk
dP = lim sup

k→∞
EX+

mk
= sup

n≥1
EX+

n <∞.

Note that

(2.5) EY +
n = lim

k→∞

mk∑
j=0

∫
{τn=j}

X+
j dP+

∫
{τn>mk}

X+
mk
dP

 = lim
k→∞

EX+
τn∧mk

and, similarly,

(2.6) EY −
n = lim

k→∞
EX−

τn∧mk
≤ lim sup

k→∞
EX+

τn∧mk
− EX0 = EY +

n − EX0.

Putting all above together yields

E|Yn| ≤ 2EY +
n − EX0 ≤ 2 sup

n≥0
EX+

n − EX0.

This proves the third inequality of (2.4).
By Theorem 2.8, (Yn)

∞
n=0 is a submartingale and, by (2.5) and (2.6), one has

EYn = lim
k→∞

EXτn∧mk
≥ EXτn∧0 ≥ EX0.

Since (Xn)
∞
n=0 is a submartingale and τn is a stopping time for (Xn)

∞
n=0, we have

EXτn∧mk
=

mk∑
j=0

∫
{τn=j}

XjdP+

∫
{τn>mk}

Xmk
dP

≤
mk∑
j=0

∫
{τn=j}

Xmk
dP+

∫
{τn>mk}

Xmk
dP = EXmk

≤ sup
n≥0

EXn.

Passing k to the infinity gives the second inequality of (2.4). �
The following proposition should be considered as a generalization of Kolmogorov’s inequal-

ity and Chebyshev’s inequality.

Proposition 2.10 (Doob’s inequality). Let Xn be a submartingale. For ϵ > 0, one has

P
(
max
0≤j≤k

Xj > ϵ

)
≤

EX+
k

ϵ
, P

(
min
0≤j≤k

Xj < −ϵ
)

≤
EX+

k − EX0

ϵ
.

Proof. For the first inequality, let τ0, τ1, ... be sampling variables defined by

τ0 = inf{j ≤ k : Xj > ϵ}
and τ0 = k if the infimum is taken over an empty set. For n ≥ 1, set τn = k. Then, Yn := Xτn

satisfies

E|Yn| ≤
k∑

j=0

E|Xj | <∞ ∀n ≥ 0,

∫
{τn>ℓ}

|Xℓ|dP = 0 ∀ℓ > k.
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By the optional sampling theorem, Yn is a submartingale and

P
(
max
0≤j≤k

Xj > ϵ

)
= P(Y0 > ϵ) ≤

∫
{Y0>ϵ} Y0dP

ϵ
≤

∫
{Y0>ϵ} Y1dP

ϵ
≤

EX+
k

ϵ
.

For the second inequality, we set τ ′0 = 0 and τ ′n = k for n ≥ 2. For n = 1, set

τ ′1 = inf{j ≤ k : Xj < −ϵ}

and τ ′1 = k if the infimum is taken over an empty set. Let Zn = Xτ ′n . As before, we have

E|Zn| <∞ ∀n ≥ 1,

∫
{τ ′n>ℓ}

|Xℓ|dP = 0 ∀ℓ > k.

By Theorem 2.8, Zn is a submartingale and

EX0 ≤ EZ1 =

∫
{Z1≥−ϵ}

Z1dP+

∫
{Z1<−ϵ}

Z1dP

≤
∫
{Z1≥−ϵ}

XkdP− ϵP
(

min
0≤j≤k

Xj < −ϵ
)

≤ EX+
k − ϵP

(
min
0≤j≤k

Xj < −ϵ
)
.

�

Exercise 2.4. Prove that if X0, X1, ... is a martingale satisfying EX2
n <∞, then

P
(
max
0≤j≤k

|Xj | > ϵ

)
≤

EX2
k

ϵ2
∀ϵ > 0.

2.3. Martingale convergence theorem. We use Theorem 2.6 to derive the convergence
theorem of martingales.

Lemma 2.11 (Upcrossing lemma). Let Xn be a submartingale and a, b be real numbers sat-
isfying a < b. Set N0 = −1 and, for k ≥ 1, define

N2k−1 = inf{j > N2k−2 : Xj ≤ a}, N2k = inf{j > N2k−1 : Xj ≥ b},

where inf ∅ := ∞. For n ≥ 1, set Un = sup{k ≥ 0 : N2k ≤ n}. Then, (b − a)EUn ≤
E(Xn − a)+ − E(X0 − a)+.

Proof. First, it is easy to see that (Nj)
∞
j=0 are stopping times for F(X0, ..., Xn). Let Yn =

Xn ∨ a. Since Xn is a submartingale, Yn is a submartingale. For m ≥ 0, set

Hm =

{
1 if N2k−1 < m ≤ N2k for some k

0 o.w.

Observe that

{Hm = 1} = {N2k−1 < m ≤ N2k} = {N2k−1 < m} ∩ {N2k < m}c ∈ F(X0, ..., Xm−1).

This implies that Hn is predictable w.r.t. F(X0, ..., Xn). For n ≥ 0, set S0 = S′
0 = 0 and

Sn =

n∑
i=1

Hi(Yi − Yi−1), S′
n =

n∑
i=1

(1−Hi)(Yi − Yi−1).

By Theorem 2.6, Sn, S
′
n are submartingales. Note that Sn ≥ (b−a)Un and Yn−Y0 = Sn+S

′
n.

This implies ES′
n ≥ ES′

0 = 0 and

(b− a)EUn ≤ ESn ≤ EYn − EY0 = E(Xn − a)+ − E(X0 − a)+.

�
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Theorem 2.12 (Martingale convergence theorem). Let Xn be a submartingale satisfying
supn EX+

n <∞. Then, Xn converges a.s. to some random variable X with E|X| <∞.

Proof. Let Un be the random variable defined in Lemma 2.11 and U = sup{k ≥ 0 : N2k <
∞}. Note that Un is non-decreasing, non-negative and converges to U . By the monotone
convergence theorem and the upcrossing lemma, we have

EU = lim
n→∞

EUn ≤ 1

b− a

(
|a|+ sup

n≥0
EX+

n

)
<∞, ∀a < b.

This implies U <∞ a.s. for any a < b. As a result, the following event⋃
a,b∈Q, a<b

{
ω ∈ Ω : lim inf

n→∞
Xn(ω) < a < b < lim sup

n→∞
Xn(ω)

}
has probability 0 and then lim infnXn = lim supnXn a.s.. Set X = limnXn. By Fatou’s
lemma, we have

E|X| = E lim inf
n→∞

|Xn| ≤ lim inf
n→∞

E|Xn| ≤ sup
n≥0

E|Xn| <∞.

�
Remark 2.6. For any process (Xt)t∈[S,T ] with S <∞ and T ∈ (S,∞], set

Ua,b = sup{k : N2k(a, b) <∞},
where N0(a, b) = S and

N2k−1(a, b) = inf{N2k−2(a, b) < t < T : Xt ≤ a}
and

N2k(a, b) = inf{N2k−1(a, b) < t < T : Xt ≥ b}.
If Ua,b < ∞ a.s. for all rational numbers a < b, then lim supt→T Xt = lim inft→T Xt a.s., but
the converse is generally not true. However, in the case of {0, 1, 2...}, lim supnXn = lim infnXn

a.s. if and only if Ua,b <∞ a.s. all rational numbers a < b.

Corollary 2.13. If Xn is a submartingale uniformly bounded from above, then Xn converges
a.s. to some random variable X with E|X| <∞ and EX ≥ EX0.

Proof. The almost sure convergence of Xn comes immediately from Theorem 2.12. To see the
last inequality, let M > 0 be a constant such that supnXn ≤ M a.s.. Clearly, X ≤ M and,
by Fatou’s lemma, one has

0 ≤ E(M −X) ≤ lim inf
n→∞

E(M −Xn) ≤M − EX0 <∞.

This implies EX ≥ EX0. �
Example 2.3. (Martingales that converge a.s. but not in L1) Let X1, X2, ... be i.i.d. random
variables with P(X1 = 1) = P(X1 = −1) = 1/2. Let d ∈ Z+ and set

Sn = d+
n∑

i=1

Xi, ∀n ≥ 1.

Clearly, Sn is a martingale. Consider the stopping time N = min{n ≥ 0 : Sn = 0} and set
Yn = SN∧n. By Theorem 2.7, Yn is a martingale. Since Yn is nonnegative, Corollary 2.13
implies that Yn converges almost surely to some random variable Y satisfying E|Y | < ∞.
Note that |Sn+1 −Sn| = 1 for all n ≥ 1. This implies {Yn converges} ⊂ {N <∞} and, hence,

P(N <∞) = 1, Y = lim
n→∞

SN∧n = SN = 0 a.s..
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But, EYn = EY0 = d > 0 and this means that Yn does not converge in L1.

Example 2.4 (Martingales that converge in probability but not a.s.). Let Ω = [0, 1), F be the
Borel σ-field over Ω and P be the Lebesgue measure on (Ω,F). Let X0 ≡ 0 and X1, X2, X3, ...
be defined iteratively as follows. For n ≥ 0, let an,1 = 0, an,in = 1 and let an,2, ..., an,in−1 be
discontinuous points of Xn. If Xn(an,j) = 0, set

Xn+1(t) = 1[an,j ,an,j+ϵ)(t)− 1[an,j+ϵ,an,j+2ϵ)(t), ∀t ∈ [an,j , an,j+1),

where ϵ =
an,j+1−an,j

2(n+1) . If Xn(an,j) 6= 0, set

Xn+1(t) = (n+ 1)Xn(an,j)1[an,j ,an,j+ϵ)(t), ∀t ∈ [an,j , an,j+1),

where ϵ =
an,j+1−an,j

n+1 . This process has X1 = 1[0,1/2)−1[1/2,1) and X2 = 2(1[0,1/4)−1[1/2,3/4)).
One can show by induction that Xn is an integer-valued martingale.

Let An = {an,j : ∀1 ≤ j ≤ in, n ≥ 1} and A =
⋃

nAn. Clearly, An ⊂ An+1 and |An+1| =
2|An|−1. This implies that A is a countable set. Observe that, for t ∈ Ac, if Xm(x) = 0, then
|Xn(t)| = 1 for some n > m. If Xm(t) 6= 0, then Xn(t) = 0 for some n > m. This implies that
Xn diverges on Ac. As P(Xn 6= 0) = 1/n, Xn converges to 0 in probability.

Example 2.5 (Martingales that tend to infinity). Let X1, X2, ... be independent random vari-
ables with

P(Xn = n) = n−2, P(Xn = −(n− n−1)−1) = 1− n−2.

and set Sn = X1 + · · · + Xn. As EXn = 0, Sn forms a martingale. By the Borel-Cantelli
lemma, P(Xn = n i.o.) = 0. This implies that, with probability 1,

Xn = − 1

n− 1/n
≤ − 1

n
for n large enough.

Hence, Sn → −∞ almost surely.

Exercise 2.5. Let X1, X2, ... be independent random variable satisfying EXn = 0 and EX2
n <

∞. For n ≥ 1, set Sn =
∑n

i=1Xi and s
2
n =

∑n
i=1 EX2

i . Show that

(1) S2
n − s2n is a martingale;

(2) If sn converges, then Sn converges almost surely.

Exercise 2.6. Let X1, X2, ... be i.i.d. non-negative random variables satisfying EX1 = 1 and
P(X1 = 1) < 1. For n ≥ 1, set Yn =

∏n
i=1Xi. Show that

(1) Yn is a martingale,
(2) Yn converges 0 a.s.,
(3) 1

n log Yn converges a.s. to c ∈ [−∞, 0).

2.4. Branching processes. Let {ξni : n ≥ 0, i ≥ 0} be a family of i.i.d. nonnegative integer
valued random variables. Set Z0 = 1 and define, for n ≥ 0,

Zn+1 :=

Zn∑
i=1

ξn+1
i if Zn > 0, Zn+1 := 0 if Zn = 0.

In the above setting, Zn is called a Galton-Watson process. An idea behind this definition is
that Zn refers to the number of people at the nth generation and each member gives birth
independently to an identically distributed number of children. After that, all individuals of
the nth generation pass away and the number of new-born offsprings amounts to Zn+1. To
analyze this process, we set pk = P(ξni = k) and call (pk)

∞
k=0 the offspring distribution.

Proposition 2.14. Let Fn = F(ξmi , i ≥ 0, 0 ≤ m ≤ n) and µ = Eξni . Assume that µ ∈ (0,∞).
Then Zn/µ

n is a martingale w.r.t. Fn.
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Proof. It is clear that Zn is adapted to Fn. To see EZn <∞, observe that EZ0 = 1 <∞ and,
for n ≥ 0,

EZn+1 =

∞∑
k=1

E

(
k∑

i=1

ξn+1
i 1{Zn=k}

)
=

∞∑
i=1

kµP(Zn = k) = µEZn <∞,

where the first equality uses the monotone convergence theorem. By induction, we obtain
EZn = µn <∞, which implies

E(Zn+1|Fn) =
∞∑
k=1

k∑
i=1

E(ξn+1
i 1{Zn=k}|Fn) =

∞∑
k=1

kµ1{Zn=k} = µZn.

This proves that Zn/µ
n is a martingale w.r.t. Fn. �

Concerning the extinction of spices, we define the stopping time T = inf{n ≥ 0 : Zn =
0}. Note that, when 0 < µ < ∞, Zn/µ

n is nonnegative with mean 1. By the martingale
convergence theorem, Zn/µ

n converges almost surely to some integrable random variable.

Theorem 2.15. If µ ∈ (0, 1), then P(T <∞) = 1 and Zn/µ
n → 0 almost surely.

Proof. By Proposition 2.14, EZn = µnEZ0 = µn. This implies

P(Zn > 0) = P(Zn ≥ 1) ≤ EZn = µn → 0 as n→ ∞,

which means that Zn converges to 0 in probability. Let kn be a subsequence such that Zkn

converges to 0 almost surely. As Zn is integer-valued and Zn = 0 implies Zn+1 = 0, we may
conclude that P(Zn = 0 for some n ≥ 0) = 1 or P(Zn/µ

n = 0 for some n ≥ 0) = 1. �

Theorem 2.16. If µ = 1 and p1 < 1, then P(T <∞) = 1.

Proof. By Proposition 2.14, Zn is a martingale and, by the martingale convergence theorem,
Zn converges almost surely to some integrable random variable Z∞. Since Zn is integer valued,
we have P(Zn = Z∞ for n large enough) = 1. To finish the proof, it remains to show that
P(Z∞ = 0) = 1. Note that, for k > 0,

P(Zn+1 = k|Zn = k, Zn−1 = an−1, ..., Z1 = a1) = P(ξn+1
1 + · · ·+ ξn+1

k = k) =: ck < 1,

where the last inequality uses the assumption of µ = 1 and p1 < 1. This implies

P(Zn = k, ∀n ≥ N) = lim
ℓ→∞

P(ZN+ℓ = · · · = ZN = k) = P(ZN = k) lim
ℓ→∞

cℓk = 0, ∀N > 0.

As a result, we obtain P(Z∞ = k) = P(Zn = k for n large enough) = 0 for k > 0. �

Remark 2.7. Note that, when µ = 1, p1 < 1 is equivalent to p0 > 0.

Theorem 2.17. If µ ∈ (1,∞), then P(T = ∞) > 0.

Proof. Consider the following generating function of the offspring distribution.

φ(s) = p0 +
∞∑
k=1

pks
k, ∀|s| ≤ 1.

Clearly, φ is analytic on (−1, 1) and

φ′(s) = p1 +
∞∑
k=2

kpks
k−1, φ′′(s) = 2p2 +

∞∑
k=3

k(k − 1)pks
k−2, ∀|s| < 1.
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As µ > 1, we must have pk > 0 for some k ≥ 2. This implies that φ is increasing and convex
on (0, 1) and

lim
s<1,s→1

φ(s)− φ(1)

s− 1
= lim

s<1,s→1

∞∑
k=1

pk(1 + s+ · · ·+ sk−1) = µ > 1.

Since φ(1) = 1 and φ(0) = p0 ∈ [0, 1), there is ρ ∈ [0, 1) such that φ(ρ) = ρ. Moreover, one
has φ(x) > x for x ∈ (0, ρ) and φ(x) < x for x ∈ (ρ, 1).

Next, we set θm = P(Zm = 0). Obviously, θ0 = 0. Note that each individual of the offspring
generation can be regarded as an ancestor of a Galton-Watson process. This implies

θm = p0 +

∞∑
k=1

pkθ
k
m−1 = φ(θm−1) ∀m ≥ 1.

If ρ = 0, then θm = 0 for all m. If ρ > 0, then 0 ≤ θm < θm+1 < ρ. Let θ∞ be the limit of
φm. By the continuity of φ, one has φ(θ∞) = θ∞ and this implies θ∞ = ρ. Consequently, we
achieve

P(T <∞) = lim
m→∞

P(Zm = 0) = ρ < 1.

�
Corollary 2.18. For p0 > 0, the probability that the species is finally extinct equals the
smallest fixed point of the generating function of the offspring distribution on [0, 1].

Proof. The proof for µ > 1 has been given in the proof of Theorem 2.17. Let φ(s) = p0 +∑∞
k=1 pks

k. We first assume µ ∈ [0, 1). In this case, it is clear that φ′(1) < 1 and this implies
that φ has only one fixed point on [0, 1], which is 1.

Next, we consider the case µ = 1 and p1 < 1. Clearly, p0 > 0 and pk > 0 for some k ≥ 2.
This implies that φ is strictly convex on (0, 1) and, hence, 1 is the unique fixed point of
φ. When p1 = 1, all points in [0, 1] are fixed points of φ and 0 is the smallest one, while
P(T <∞) = 0. �
Remark 2.8. Galton and Watson who invented the process that bears their names were inter-
ested in the survival of family names. Suppose that each family has exactly m children but
their sex is determined by a fair coin. In 1800s, only male children kept the family name. The
male offsprings then lead to an offspring distribution

pk =

(
m

k

)
2−m ∀0 ≤ k ≤ m.

By Theorems 2.15-2.17, a family name disappears when m ≤ 2 and has a positive probability
to survive forever when m > 2.

2.5. Uniform integrability. In this subsection, we use E(X;A) to denote
∫
AXdP. If A =

{X ∈ B} for some B ∈ B(R), we simple write E(X;X ∈ B) for E(X; {X ∈ B}).

Definition 2.6. A family of random variables {Xi : i ∈ I} is uniformly integrable if

lim
x→∞

sup
i∈I

E(|Xi|; |Xi| > x) = 0.

Exercise 2.7. Show that (Xn)
∞
n=0 is uniformly integrable if and only if E|Xn| < ∞ for all n

and lim supn E(|Xn|; |Xn| > x) → 0 as x→ ∞.

Exercise 2.8. Prove the following statements.

(1) If (Xi)i∈I is uniformly integrable, then supi∈I E|Xi| <∞.
(2) If |Xi| ≤ X for all i ∈ I and EX <∞, then (Xi)i∈I is uniformly integrable.
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Proposition 2.19. If X is a random variable on (Ω,F ,P) with E|X| < ∞, then the family
{E(X|G) : G is a sub-σ-field of F} is uniformly integrable.

Proof. Let ϵ > 0. Since X is integrable, one may select δ > 0 such that E(|X|;A) < ϵ for
all A ∈ F satisfying P(A) < δ. Note that, for any x > E|X|/δ, one may use the Markov
inequality and Jensen’s inequality to get

P(E(|X||G) > x) ≤ E(E(|X||G))
x

=
E|X|
x

< δ,

and

E(|E(X|G)|; |E(X|G)| > x) ≤ E(E(|X||G);E(|X||G) > x) = E(|X|;E(|X||G) > x) < ϵ,

for any sub-σ-field G ⊂ F . This implies supG⊂F E(|E(X|G)|; |E(X|G)| > x) ≤ ϵ for x >
E|X|/δ. �
Exercise 2.9. Let φ : [0,∞) → [0,∞) be a function satisfying φ(x)/x → ∞ as x → ∞.
(For instance, φ(x) = xp with p ∈ (1,∞) and φ(x) = x log+ x := x(log x)+.) Prove that if
supi Eφ(|Xi|) <∞, then (Xi)i∈I is uniformly integrable.

Proposition 2.20. Let Xn, X be real-valued random variables. Assume that Xn converges to
X in probability and E|Xn| <∞. Then, the following are equivalent.

(1) (Xn)
∞
n=0 is uniformly integrable.

(2) Xn converges to X in L1.
(3) E|Xn| → E|X| with E|X| <∞.

Proof. For (1)⇒(2), let φM (x) = (x ∧ M) ∨ (−M) for M > 0. Clearly, |φM (x) − x| =
(|x| −M)+ ≤ |x|1[M,∞)(|x|). By the triangle inequality, one has

|Xn −X| ≤ |Xn − φM (Xn)|+ |φM (Xn)− φM (X)|+ |φM (X)−X|.
To prove E|Xn −X| → 0, it is equivalent to show that, for any subsequence kn, there exists
a further subsequence k′n such that E|Xk′n − X| → 0. Let kn be a subsequence of {1, 2, ...}.
Since Xn → X in probability, we may choose a subsequence k′n of kn such that Xk′n converges
to X a.s.. By the Lebesgue dominated convergence theorem and Fatou’s lemma, this implies

lim
n→∞

E|φM (Xk′n)− φM (X)| = 0, ∀M > 0, E|X| ≤ lim inf
n→∞

E|Xk′n | <∞,

where the second inequality uses the uniform integrability of (Xn)
∞
n=1. Putting all above

together yields

lim sup
n→∞

E|Xk′n −X| ≤ sup
n≥1

E(|Xk′n |; |Xk′n | > M) + E(|X|; |X| > M).

Passing M → ∞ gives E|Xk′n −X| → 0.
(2)⇒(3) is obvious. For (3)⇒(1), let ψM be a piecewise linear function on [0,∞) defined

by

ψM (x) =


x for x ∈ [0,M − 1]

(M − 1)(M − x) for x ∈ [M − 1,M ]

0 for x ≥M

Obviously, x1(M,∞)(x) ≤ x−ψM (x) ≤ x1(M−1,∞)(x) for x ≥ 0. A similar argument as before
implies EψM (|Xn|) → EψM (|X|). This leads to

lim sup
n→∞

E(|Xn|; |Xn| > M) ≤ lim sup
n→∞

[E|Xn| − EψM (|Xn|)]

= E|X| − EψM (|X|) ≤ E(|X|; |X| > M − 1).

Since E|X| <∞, letting M → ∞ gives (1). �
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Theorem 2.21. Let Xn be a submartingale. Then, the following are equivalent.

(1) (Xn)
∞
n=0 is uniformly integrable;

(2) Xn converges a.s. and in L1;
(3) Xn converges in L1.

Proof. First, suppose (1) holds. By Exercise 2.8 and Theorem 2.12, Xn converges a.s. and,
by Proposition 2.20, Xn converges in L1. This proves (2). (2)⇒(3) is obvious and (3)⇒(1)
follows immediately from Proposition 2.20. �
Proposition 2.22. If Xn is a martingale w.r.t. Fn and Xn converges to X∞ in L1, then
Xn = E(X∞|Fn) for n ≥ 0.

Proof. By Theorem 2.2, E(Xn|Fm) = Xm for all n > m. Since Xn converges to X∞ in L1,
E(Xn|Fm) → E(X|Fm) in L1 as n→ ∞. This implies Xm = E(X∞|Fm) almost surely. �
Corollary 2.23. For any martingale Xn w.r.t. Fn, the following are equivalent.

(1) (Xn)
∞
n=0 is uniformly integrable;

(2) Xn converges a.s. and in L1;
(3) Xn converges in L1;
(4) There exists X with E|X| <∞ such that Xn = E(X|Fn) for all n.

Proof. The equivalence of (1), (2) and (3) is given by Theorem 2.21. (3)⇒(4) is given by
Proposition 2.22 and (4)⇒(1) is implied by Proposition 2.19. �
Theorem 2.24. Let (Ω,F , P ) be a probability space, X be a random variable on Ω and Fn

be a filtration in F . Set F∞ = σ(
⋃

nFn) and assume E|X| < ∞. Then, E(X|Fn) converges
to E(X|F∞) almost surely and in L1.

Proof. Set Yn = E(X|Fn). It is clear that, for n > m,

E(Yn|Fm) = E(E(X|Fn)|Fm) = E(X|Fm) = Ym.

This implies that Yn is a martingale w.r.t. Fn. By Proposition 2.19, (Yn)
∞
n=0 is uniformly

integrable and, by Theorem 2.21, Yn converges almost surely and in L1 to some random
variable Y∞. By Proposition 2.22, E(X|Fn) = E(Y∞|Fn) a.s. for all n. Consider the following
class.

D = {A ∈ F∞ : E(X;A) = E(Y∞;A)}.
Note that D is a λ-system,

⋃
nFn is a π-system and

⋃
nFn ⊂ D. By the π − λ lemma,

D = F∞. As Y∞ is F∞-measurable, we obtain Y∞ = E(X|F∞). �
Corollary 2.25 (Lévy’s zero-one law). Let Fn be a filtration in F and A ∈ F∞ = σ(

⋃
nFn).

Then, E(1A|Fn) converges almost surely to 1A.

Remark 2.9. Let X1, X2, ... be independent random variables and Fn = F(X1, ..., Xn). Let A
be a tail event, that is, A ∈ ∩nF(Xn, Xn+1, ...). Then, E(1A|Fn) = P(A) almost surely. By
Lévy’s zero-one law, we have P(A) = 1A almost surely. This implies P(A) ∈ {0, 1}, which is
exactly Kolmogorov’s zero-one law.

Exercise 2.10. Let X be a random variable on the probability space ([0, 1),B([0, 1)),P),
where P is the Lebesgue measure on [0, 1). Assume that E|X| <∞ and set, for n ≥ 1,

Xn(x) = 2nE(X; [k2−n, (k + 1)2−n)), ∀x ∈ [k2−n, (k + 1)2−n), 0 ≤ k < 2n.

Prove that Xn converges to X almost surely and in L1. Using a variant of this exercise, one
may conclude that, for any integrable function f on R and ϵ > 0, there is a step function g
such that

∫
R |f − g|dx < ϵ. Hint: Apply Theorem 2.24 on the following filtrations

Fn = F
({

[k2−n, (k + 1)2−n) : 0 ≤ k < 2n
})
, F∞ = B([0, 1)).
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Exercise 2.11. Let ([0, 1),B([0, 1)),P) be as in Exercise 2.10. LetX be a Lipschitz continuous
function on [0, 1) and set, for n ≥ 1,

Xn =
2n−1∑
k=0

X((k + 1)2−n)−X(k2−n)

2−n
1{[k2−n,(k+1)2−n)}.

Prove that Xn is a martingale, Xn converges to X∞ a.s. and in L1 and

X(b)−X(a) = E(X∞; [a, b)) ∀0 ≤ a < b < 1.

This exercise says that Lipschitz continuous functions are absolutely continuous.

Exercise 2.12. Let X1, X2, ... be a process taking values on [0,∞) and having 0 as an absorb-
ing states, that is, Xn = 0 implies Xm = 0 for all m > n. Let D = {Xn = 0 for some n > 0}
and assume that, for any x > 0, there is δ(x) > 0 such that

(2.7) P(D|X1, ..., Xn)
a.s.
≥ δ(x) on {Xn ≤ x}, ∀n ≥ 1.

Prove that P(D ∪ {limnXn = ∞}) = 1. Hint: Use Lévy’s zero-one law or Exercise 2.13.

Theorem 2.26. Let Fn be a filtration and F∞ = σ(
⋃
Fn). Assume that Xn converges a.s.

to X∞ and |Xn| ≤ Y with EY <∞. Then, E(Xn|Fn) converges a.s. to E(X∞|F∞).

Proof. For N ≥ 1, set ZN = sup{|Xn −Xm| : n,m ≥ N}. Then, ZN ≤ 2Y . As |Xn −X∞| ≤
ZN almost surely for n ≥ N , one may use Theorem 2.24 to derive

lim sup
n→∞

E(|Xn −X∞||Fn) ≤ lim sup
n→∞

E(ZN |Fn) = E(ZN |F∞) ∀N > 0,

By the dominated convergence theorem, E(ZN |F∞) → 0 a.s. and this implies

|E(Xn|Fn)− E(X∞|Fn)| ≤ E(|Xn −X∞||Fn)
a.s.→ 0 as n→ ∞.

The desired limit is then given by the fact of E(X∞|Fn) → E(X∞|F∞) a.s.. �
Exercise 2.13. Let X1, X2, ... be a process and A,B ∈ B(R). Suppose

P(Xm ∈ B for some m > n|X1, ..., Xn) ≥ δ > 0 a.s. on {Xn ∈ A}.
Prove that {Xn ∈ A i.o.} ⊂ {Xn ∈ B i.o.} a.s..

Exercise 2.14. Let Fn be a filtration and F∞ = σ(
⋃

nFn). Show that

(1) If E|X| <∞ and Xn → X in L1, then E(Xn|Fn) → E(X|F∞) in L1;
(2) If (Xn)

∞
n=1 is uniformly integrable and converges to X almost surely, then E(Xn|F) →

E(X|F) in L1 for any σ-field F .

The following example shows that Theorem 2.26 can fail when |Xn| ≤ Y with EY < ∞ is
replaced by the uniform integrability of (Xn)

∞
n=0.

Example 2.6. Consider independent random variables X1, X2, ..., Y1, Y2, ... defined by

P(Xn = 1) = 1/n, P(Xn = 0) = 1− 1/n,

and
P(Yn = n) = 1/n, P(Yn = 0) = 1− 1/n.

Set Zn = XnYn, Fn = F(X1, ..., Xn) and F∞ = F(X1, X2, ...). Then Zn is uniformly integrable
since

E(|Zn|; |Zn| > x) ≤ E(XnYn;Xn = 1, Yn = n) = 1/n ∀n, x > 0.

Note that P(Zn > 0) = 1/n2. By the Borel-Cantelli lemma, we have P(Zn > 0 i.o.) = 0
and this implies Zn → 0 almost surely. Note that E(Zn|Fn) = XnEYn = Xn. As P(Xn =
1 i.o.) = P(Xn = 0 i.o.) = 1, E(Zn|Fn) diverges almost surely. In fact, Xn and, thus E(Zn|Fn),
converges to 0 in L1.
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2.6. Backward martingales.

Definition 2.7. Let (Fn)n≤0 be a non-decreasing sequence of σ-field, that is, Fn ⊂ Fn+1

for n < 0. A process indexed by non-positive integers (Xn)n≤0 is a backward martingale
(submartingale) w.r.t. (Fn)n≤0, if Xn is Fn-measurable, E|Xn| < ∞ and E(Xn+1|Fn) = Xn

(≥ Xn) for n < 0.

Remark 2.10. Clearly, if Xn is a backward martingale w.r.t. Fn, then Xn = E(Xn+1|Fn) =
E(X0|Fn). By Proposition 2.19, (Xn)n≤0 is uniformly integrable.

Theorem 2.27. Let Xn be a backward submartingale w.r.t. Fn. Then, lim infnXn =
lim supnXn < ∞ a.s. and, by setting X−∞ := limnXn and F−∞ =

⋂
n≤0Fn, the follow-

ing are equivalent.

(1) Xn is uniformly integrable.
(2) Xn → X−∞ a.s. and in L1.
(3) Xn → X−∞ in L1.
(4) E|X−∞| <∞ and E(Xn|F−∞) ≥ X−∞ for all n ≤ 0.
(5) limn EXn > −∞.

In particular, if Xn is a backward martingale w.r.t. Fn, then X−∞ = E(Xn|F−∞) for all n.

Proof. For n ≥ 0, let Un(a, b) be the upcrossing number of (a, b) by X−n, ..., X0. Clearly,
Un(a, b) is also the downcrossing number of (a, b) by X0, X−1, ..., X−n and thus non-decreasing.
Set U = limn Un. By Lemma 2.11, (b− a)EUn ≤ E(X0 − a)+. By the monotone convergence
theorem, passing n to ∞ leads to P(U(a, b) <∞) = 1 for any a < b and, hence, lim infnXn =
lim supnXn almost surely. Set X−∞ = limnXn. To show X−∞ <∞ a.s., it suffices to proved
that X+

−∞ <∞ a.s. or further EX+
−∞ <∞. As X+

−∞ = limnX
+
n a.s., one may apply Fatou’s

lemma to conclude
EX+

−∞ ≤ lim inf
n→−∞

EX+
n ≤ EX+

0 <∞,

where the second inequality uses the fact that X+
n is a backward submartingale.

For (1)⇒(2), assume that Xn is uniformly integrable. By Exercise 2.8, supn E|Xn| < ∞.
Again, by Fatou’s lemma, one has

E|X−∞| ≤ lim inf
n→−∞

E|Xn| < sup
n≤0

E|Xn| <∞.

This implies Xn → X−∞ a.s. and then in probability. By Proposition 2.20, Xn → X−∞ in
L1. (2)⇒(3) is clear. For (3)⇒(4), note that

(2.8) E(Xn+1|F−∞) = E(E(Xn+1|Fn)|F−∞) ≥ E(Xn|F−∞)

and
E|E(Xn|F−∞)−X−∞| ≤ E|Xn −X−∞| → 0, as n→ −∞.

This implies E(Xn|F−∞) → X−∞ in L1 and then in probability. By selecting a subsequence
kn such that E(Xkn |F−∞) → X−∞ a.s, one may use (2.8) to conclude E(Xn|F−∞) ≥ X−∞
a.s..

(4)⇒(5) is clear. For (5)⇒(1), set L = − infn EXn. Note that, for x > 0,

P(|Xn| > x) ≤ x−1E|Xn| = x−1(2EX+
n − EXn) ≤ x−1(2EX+

0 + L), ∀n ≤ 0.

Let ϵ > 0. As EXn → −L, we may select N < 0 such that EXN − EXn < ϵ/2 for n ≤ N .
This implies that, for n ≤ N ,

E(|Xn|;Xn < −x) = −E(Xn;Xn < −x) = −EXn + E(Xn;Xn ≥ −x)
≤ −EXn + E(XN ;Xn ≥ −x) = EXN − EXn − E(XN ;Xn < −x)
≤ ϵ/2 + E(|XN |; |Xn| > x).
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Also, one has

E(|Xn|;Xn > x) = E(X+
n ;Xn > x) ≤ E(X+

0 ;Xn > x) ≤ E(X+
0 ; |Xn| > x).

As supn P(|Xn| > x) → 0, we may choose x such that

sup
n

E(|XN |; |Xn| > x) < ϵ/4, sup
n

E(X+
0 ; |Xn| > x) < ϵ/4.

Consequently, the above discussion leads to supn≤N E(|Xn|; |Xn| > x) < ϵ, as desired.
When Xn is a backward martingale, Remark 2.10 implies that Xn is uniformly integrable.

By the L1-convergence, we have

E(X−∞;A) = lim
n→−∞

E(Xn;A) = E(X0;A), ∀A ∈ F−∞.

As X−∞ is F−∞-measurable, this implies X−∞ = E(X0|F−∞). �
Exercise 2.15. Let (Fn)n≤0 be a non-decreasing sequence of σ-fields and F−∞ =

⋂
n≤0Fn.

Prove that if X is a random variable satisfying E|X| < ∞, then E(X|Fn) converges a.s. and
in L1 to E(X|F−∞) as n→ −∞.

Exercise 2.16. Let Fn ⊂ Fn+1 for n < 0 and set F−∞ =
⋂

n≤0Fn. Suppose that Xn

converges a.s to X and |Xn| ≤ Y and EY < ∞. Prove that E(Xn|Fn) converges a.s. to
E(X|F−∞) as n→ −∞.

Let (S,G, µ) be a probability space and set

(2.9) Ω = S × S × · · · , F = G ⊗ G ⊗ · · · , P = µ× µ× · · · .
For any permutation of N and ω ∈ Ω, define π(ω) := (ωπ(n))

∞
n=1. An event A ∈ F is called

permutable if π(A) := {π(ω) : ω ∈ A} = A for any finite permutation π. A sub-σ-field E of
F is called exchangeable if E is generated by permutable events. In fact, all events in E are
permutable. By the π − λ lemma, it is easy to check P(π(A)) = P(A) for A ∈ F and π is any
finite permutation.

Theorem 2.28 (The Hewitt-Savage zero-one law). Let (Ω,F ,P) be the probability space de-
fined in (2.9) and E is an exchangeable σ-field. Then, P(A) ∈ {0, 1} for all A ∈ E.

Proof. Let A ∈ E and set Gn+1 = Gn×G. As
⋃∞

n=1{B×Ω : B ∈ Gn} is a field generating F , one
may select An = Bn ×Ω with Bn ∈ Gn such that P(An∆A) → 0. This implies P(An) → P(A).
Let π be the following permutation

(1, n+ 1)(2, n+ 2) · · · (n, 2n)
and let A′

n = π(A) = Sn ×Bn × S∞. Clearly, one has P(An∆A) = P(π(An∆A)) = P(A′
n∆A).

Note that B \C ⊂ (B \D)∪ (D \C) for any set D, which implies B∆C ⊂ (B∆D)∪ (D∆C).
Immediately, this yields

P(An∆A
′
n) ≤ P(An∆A) + P(A′

n∆A) = 2P(An∆A) → 0, as n→ ∞.

Thus, |P(An) − P(An ∩ A′
n)| ≤ P(An∆A

′
n) → 0 and then P(An ∩ A′

n) → P(A). Since An and
A′

n are independent, we have P(An ∩ A′
n) = P(An)P(A′

n) → P(A)2. Consequently, P(A) ∈
{0, 1}. �
Example 2.7 (The law of large numbers). Let X1, X2, ... be i.i.d. random variables with
E|X1| <∞. Set Sn = X1 +X2 + · · ·+Xn, Y−n = Sn/n and

F−n = F(Sn, Sn+1, ...) = F(Sn, Xn+1, Xn+1, ...).

Note that

E(Xn+1|F−n−1) =
Sn+1

n+ 1
= Y−n−1 a.s..
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This implies

E(Y−n|F−n−1) =
E(Sn+1|F−n−1)− E(Xn+1|F−n−1)

n

a.s.
=

(n+ 1)Y−n−1 − Y−n−1

n
= Y−n−1,

and, hence, (Yn)n≤0 is a backward martingale. By Theorem 2.27, Sn/n converges a.s. to
E(X1|F−∞). The strong law of large numbers is then given by the Hewitt-Savage 0-1 law.

2.7. Doob’s inequality and Lp-convergence. In this subsection, we consider the Lp-
convergence of submartingales for p ∈ (1,∞). Recall that, in the proof of Doob’s inequality,
we have in fact derived the following fact. For any nonnegative submartingale X0, ..., Xn, one
has

(2.10) P(X̄n > ϵ) ≤ ϵ−1E(Xn; X̄n > ϵ) ≤ ϵ−1EXn, ∀ϵ > 0,

where X̄n = max{X0, ..., Xn}.

Example 2.8. Let ξ1, ξ2, ... be independent random variables satisfying Eξn = 0 and σ2n =
Eξ2n < ∞. Set Sn = ξ1 + · · · + ξn and Xn = S2

n. Then, Xn is a submartingale. Applying
Doob’s inequality with ϵ = x2, we obtain Kolmogorov’s inequality, that is,

P
(

max
1≤m≤n

|Sm| > x

)
≤ Var(Sn)

x2
.

Exercise 2.17. Let ξ1, ξ2, ... be independent and satisfy |ξn| ≤ K for all n. Set Sn = ξ1 +
· · ·+ ξn. Prove that if Eξn = 0, then

P
(

max
1≤m≤n

|Sm| ≤ x

)
≤ (x+K)2

Var(Sn)

Hint: Use the fact that S2
n − s2n is a martingale, where s2n = σ21 + · · ·+ σ2n and σ2n = Eξ2n.

Exercise 2.18. Let Xn be a martingale satisfying X0 ≡ 0 and EX2
n <∞. Show that

P
(

max
1≤m≤n

Xm ≥ x

)
≤ EX2

n

EX2
n + x2

, ∀x > 0.

Hint: Use the fact that (Xn + c)2 is a submartingale and optimize the inequality over c.

Theorem 2.29. Let (Xn)
∞
n=0 be a nonnegative submartingale satisfying supn EX

p
n < ∞ for

some p ∈ (1,∞). Then, Xn converges a.s. and in Lp. In particular, if (Xn)
∞
n=0 is a martingale

satisfying supn E|Xn|p <∞ for some p ∈ (1,∞), then Xn converges in Lp.

To prove this theorem, we need the following proposition.

Proposition 2.30 (Lp maximum inequality). Let p ∈ (1,∞) and (Xm)nm=0 be a nonnegative
submartingale. Set X̄n = max1≤m≤nXm. Then,

EX̄p
n ≤ (p/(p− 1))pEXp

n.

Proof of Theorem 2.29. Note that (EXn)
p ≤ EXp

n. By the martingale convergence theorem,
Xn converges a.s. to some integrable random variable, say X∞. Set Y = supnXn. By
Proposition 2.30, one has

E
(

max
1≤m≤n

Xm

)p

≤
(

p

p− 1

)p

EXp
n ≤

(
p

p− 1

)p

sup
n≥1

EXp
n.

Letting n tend to infinity implies EY p <∞. Observe that |Xn−X∞| = limm |Xn−Xm| ≤ 2|Y |
with probability one. By the Lebesgue dominated convergence theorem, Xn converges to X∞
in Lp. �

25



Proof of Proposition 2.30. Note that, for K > 0 and x > 0,

{X̄n ∧K > x} =

{
{X̄n > x} if K > x

∅ if K ≤ x

By Proposition 2.10, one has

P(X̄n ∧K > x) ≤ x−1E(Xn; X̄n ∧K > x), ∀K,x > 0.

Consider the following computations.

E(X̄n ∧K)p =

∫ ∞

0
P((X̄n ∧K)p > x)dx =

∫ ∞

0
pyp−1P(X̄n ∧K > y)dy,

where the last equality applies the change of variables x = yp. As a consequence, this implies

E(X̄n ∧K)p ≤
∫ ∞

0
pyp−2

∫
Ω
Xn1{X̄n∧K>y}dP =

∫
Ω
Xn

∫ X̄n∧K

0
pyp−2dydP

=
p

p− 1
E(Xn(X̄n ∧K)p−1) ≤ p

p− 1
(E(Xn)

p)1/p(E(X̄n ∧K)p)1/q

where q is the exponent conjugate of p and the last inequality is Hölder’s inequality. Since
E(X̄n ∧K)p <∞, we obtain

E(X̄n ∧K)p ≤
(

p

p− 1

)p

E(Xn)
p.

Letting K → ∞ gives the desired inequality. �

Exercise 2.19. Prove that if Xn is a submartingale, then

EX̄n ≤ (1− 1/e)−1[1 + E(X+
n log+(X+

n ))]

where X̄n = max1≤m≤nX
+
m, log+ t = max{log t, 0} and 0 log 0 := 0.

Hint: First, show that

E(X̄n ∧K) ≤ 1 +

∫
Ω
X+

n log(X̄n ∧K)dP

and then apply the following inequality

a log b ≤ a log a+
b

e
≤ a log+ a+

b

e
.

2.8. Other materials.

2.8.1. Bounded increments.

Theorem 2.31. Let X1, X2, ... be a martingale satisfying P(|Xn+1 −Xn| ≤M) = 1 for some
constant M with X0 = 0. Then, P(C ∪D) = 1, where

C = {Xn converges to a finite limt}, D =

{
lim sup
n→∞

Xn = ∞, lim inf
n→∞

Xn = −∞
}
.

Proof. For k ∈ N, Nk = inf{n : Xn ≤ −k}, where inf ∅ := ∞. Clearly, Nk is a stopping time
and, by Theorem 2.7, (Xn∧Nk

)∞n=1 is a martingale. Observe that, on {Nk > n}, Xn∧Nk
= Xn >

−k and, on {n ≥ Nk}, Xn∧Nk
= XNk

= XNk−1+XNk
−XNk−1 > −k−M . By Corollary 2.13,

Xn∧Nk
converges a.s. to some integrable random variable, which implies that Xn converges

a.s. on {Nk = ∞} for all k ≥ 1. Set E =
⋃∞

k=1{Nk = ∞}. Clearly, E = {infnXn > −∞}
and then P (C ∪ {infnXn = −∞}) = 1. Similarly, one can show P (C ∪ {supnXn = ∞}) = 1.
Combining both conclusions gives the desired identity. �
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Exercise 2.20. Let Xn be a submartingale with P({supnXn < ∞}) = 1 and assume
E(supn ξ+n ) < ∞, where ξn = Xn −Xn−1. Show that Xn converges a.s. to an almost surely
real-valued random variable.

Exercise 2.21. Let Fn be a filtration and Xn, Yn be nonnegative random variables adapted
to Fn. Suppose E(Xn+1|Fn) ≤ Xn + Yn and P(

∑
n Yn < ∞) = 1. Prove that Xn converges

a.s.. Hint: Consider Zn = Xn − (Y1 + Y2 + · · ·+ Yn−1).

Corollary 2.32 (The second Borel-Cantelli lemma). Let Fn be a filtration with F0 = {∅,Ω}
and An ∈ Fn. Then,

{An i.o.} a.s.
=

{ ∞∑
n=1

P(An|Fn−1) = ∞

}
.

Proof. Set X0 ≡ 0 and

Xn =

n∑
m=1

(1Am − P(Am|Fm−1)) .

Then, Xn is a martingale and |Xn −Xn−1|
a.s.
≤ 1 for all n. Let C and D be events in Theorem

2.31. Then, P(C ∪D) = 1. Note that, on C,
∞∑
n=1

1An = ∞ ⇔
∞∑
n=1

P(An|Fn−1) = ∞,

and, on D,
∞∑
n=1

1An = ∞,
∞∑
n=1

P(An|Fn−1) = ∞.

�
Exercise 2.22. Prove the following statements.

(1) Use the Borel-Cantelli lemma to show that, for pn ∈ [0, 1),
∞∏
n=1

(1− pn) = 0 ⇔
∞∑
n=1

pn = ∞.

(2) If P(∩n
m=1A

c
m) > 0 for all n and

∑∞
n=2 P(An| ∩n−1

m=1 A
c
m) = ∞, then P(An i.o.) = 1.

2.8.2. Optional stopping theorem.

Definition 2.8. Let Fn be a filtration on a measurable space (Ω,F) and N be a stopping
time w.r.t. Fn. Define FN to be a collection of events A ∈ F satisfying A ∩ {N = n} ∈ Fn

for all n.

Remark 2.11. It is easy to show that FN is a sub-σ-field of F and N is FN -measurable.
Furthermore, FN is also a collection of events A ∈ F satisfying A ∩ {N ≤ n} ∈ Fn for all
n ≥ 0.

Proposition 2.33. Let Fn be a filtration and M,N be stopping times w.r.t. Fn.

(1) M ∨N and M ∧N are stopping times.
(2) If M ≤ N , then FM ⊂ FN .
(3) If M ≤ N , then, M1A +N1Ac is a stopping time w.r.t. Fn for any A ∈ FM .
(4) If Xn is adapted to Fn, then XN1{N<∞} is FN -measurable.

Proof. Obvious from the definition. �
In the following, when Xn(ω) converges, we write X∞(ω) for its limit.
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Theorem 2.34. Let Xn be a uniformly integrable submartingale w.r.t. Fn and N be a stopping
time for Fn. Then, XN∧n is uniformly integrable and converges to XN in L1 and EX0 ≤
EXN ≤ EX∞ <∞.

Proof. SinceXn is uniform integrable, Xn converges a.s., which implies thatXN is a.s. defined.
By Theorem 2.7, XN∧n is a submartingale. As X+

n is also a submartingale, one has

EX+
N∧n = E(X+

N ;N < n) + E(X+
n ;N ≥ n) ≤ EX+

n ≤ sup
n

EX+
n <∞.

By the martingale convergence theorem, XN∧n converges to XN a.s. and E|XN | < ∞. This
leads to

(2.11)
E(|XN∧n|; |XN∧n| > x) = E(|XN |; |XN | > x, N ≤ n) + E(|Xn|; |Xn| > x, N > n)

≤ E(|XN |; |XN | > x) + sup
n

E(|Xn|; |Xn| > x)

Letting x→ ∞ proves that XN∧n is uniformly integrable.
For the inequalities, since Xn is a submartingale, one has EX0 ≤ EXN∧n ≤ EXn. As XN∧n

and Xn converge to XN and X∞ in L1, we obtain

EX0 ≤ lim
n→∞

EXN∧n = EXN ≤ lim
n→∞

EXn = EX∞.

�
Remark 2.12. It follows immediately from (2.11) that, for any process (Xn)

∞
n=0, if N is a

stopping time for Xn such that E(|XN |;N <∞) <∞ and Xn1{N>n} is uniformly integrable,
then XN∧n is uniformly integrable.

Theorem 2.35 (The optional stopping theorem). Let Xn be a submartingale with respect to
Fn and M,N be stopping times for Fn. Suppose M ≤ N and Xn is uniformly integrable.
Then, XM ≤ E(XN |FM ). In particular, EXM ≤ EXN .

Proof of the optional stopping theorem. By Theorem 2.34, XN∧n is a uniformly integrable sub-
martingale w.r.t. Fn and E|XN | <∞. Again, by applying Theorem 2.34 with XN∧n and M ,
we have E|XM | < ∞ and EXM ≤ EXN . Let A ∈ FM and set L = M1A + N1Ac . Clearly,
L ≤ N . By Proposition 2.33, L is a stopping time for Fn. Replacing M with L in the above
discussion then yields EXL ≤ EXN or equivalently E(XM ;A) ≤ E(XN ;A). �
Theorem 2.36. Let Xn be a submartingale w.r.t. Fn and N be a stopping time for Fn.
Suppose EN <∞ and there exists a constant c > 0 such that

(2.12) E(|Xn+1 −Xn||Fn) ≤ c on {N > n}, ∀n.
Then, XN∧n is uniformly integrable and EXN ≥ EX0.

Proof. First, let’s write

XN∧n =

n∑
k=0

1{N=k}

(
X0 +

k−1∑
i=0

(Xi+1 −Xi)

)
+
∑
k>n

1{N=k}

(
X0 +

n−1∑
i=0

(Xi+1 −Xi)

)
.

By the triangle inequality, this implies

|XN∧n| ≤ |X0|+X, X :=

∞∑
i=0

|Xi+1 −Xi|1{N>i}.

Consequently, (2.12) implies E(|Xi+1 −Xi|;N > i) ≤ cP(N > i), which leads to

EX =
∞∑
i=0

E(|Xi+1 −Xi|;N > i) ≤ c
∞∑
i=0

P(N > i) = cEN <∞.
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By Exercise 2.8(2), (XN∧n)
∞
n=0 is uniformly integrable. �

Theorem 2.37. If Xn is a nonnegative supermartingale w.r.t. Fn and N is a stopping time
for Fn, then EX0 ≥ EXN .

Proof. By Theorem 2.7, XN∧n is a nonnegative supermartingale w.r.t. Fn and thus EXN∧n ≤
EX0. By Corollary 2.13, Xn and XN∧n converge a.s. and this implies XN is almost surely
defined and E|XN | < ∞. Applying the monotone convergence theorem and Fatou’s lemma,
we obtain

E(XN ;N <∞) = lim
n→∞

E(XN ;N ≤ n), E(XN ;N = ∞) ≤ lim inf
n→∞

E(Xn;N > n).

Consequently, this leads to EXN ≤ lim infn EXN∧n ≤ EX0. �

Exercise 2.23. Let Xn be a nonnegative supermartingale. Show that P(supnXn > ϵ) ≤
EX0/ϵ.

In the following, (Xn)
∞
n=1 refers to a sequence of i.i.d. random variables, Sn = X1+ · · ·+Xn

and Fn = F(X1, X2, ..., Xn).

Theorem 2.38 (Wald’s identity). Let N be a stopping time for Fn and φ(λ) = EeλX1.
Assume that EN < ∞, 1 ≤ φ(λ0) < ∞ for some real λ0 6= 0 and there is c > 0 such that
|Sn| < c on {N > n} for all n. Then, E(eλ0SN /φ(λ0)

N ) = 1.

Proof. Set Yn = eλ0Sn/φ(λ0)
n. Clearly, Yn is a martingale w.r.t. to Fn. Note that

E(|Yn+1 − Yn||Fn) =
eλ0Sn

φ(λ0)n
E
∣∣∣∣eλ0Xn+1

φ(λ0)
− 1

∣∣∣∣ ≤ 2ec|λ0| on {N > n}.

By Theorem 2.36, EYN = EY0 = 1. �

Example 2.9. Consider the random walk on Z with P(X1 = 1) = p and P(X1 = −1) = 1− p.
For i ∈ Z, set Ti = min{n ≥ 0|Sn = i}. Fix a < 0 < b and let N = Ta ∧ Tb. Clearly, Ta, Tb
and N are stopping times for Fn.
Claim 1: P(N <∞) = 1.

Proof. Consider the process SN∧n. Note that SN∧n is a uniformly bounded martingale if
p = 1/2 (resp. submartingale if p > 1/2 and supermartingale if p < 1/2). The martingale
convergence theorem implies that SN∧n converges a.s. and in L1. Since SN∧n is integer-
valued, SN∧n converges a.s. if and only if SN∧n ∈ {a, b} for n large enough. This implies
P(N <∞) = 1. �

Claim 2: If p = 1/2, then P(SN = a) = b/(b− a).

Proof. By Claim 1, SN∧n converges a.s. and in L1 to SN . As SN∧n is a martingale, we
have 0 = ES0 = ESN = bP(Tb < Ta) + aP(Ta < Tb). The desired probability is given by
P(Ta > Tb) = 1− P(Ta < Tb) = 1− P(SN = a). �

For Claims 3 and 4, we assume p ∈ (1/2, 1) and set φ(x) = ((1− p)/p)x.
Claim 3: φ(SN∧n) is a martingale.

Proof. It is easy to check that φ(Sn) is a martingale. By Theorem 2.7, φ(SN∧n) is a martingale.
�

Claim 4: P(Ta < Tb) =
φ(b)−1

φ(b)−φ(a) .
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Proof. Since φ(SN∧n) is a martingale taking values on a finite set, φ(SN∧n) converges a.s. and
in L1 to φ(SN ). Thus, we have

1 = Eφ(S0) = Eφ(SN ) = φ(b)P(Tb < Ta) + φ(a)P(Tb > Ta).

A similar computation as in Claim 2 yields the desired probability. �

Claim 5: If p = 1/2, then P(Ta <∞) = P(Tb <∞) = 1. If p ∈ (1/2, 1), then P(Tb <∞) = 1
and P(Ta <∞) = (p/(1− p))a.

Proof. Note that Tb → ∞ pointwise as b→ ∞. This implies {Ta <∞} =
⋃∞

b=1{Ta < Tb}. By
Claim 2, when p = 1/2,

P(Ta <∞) = lim
b→∞

P(Ta < Tb) = 1,

while the symmetry of the random walk implies P(Tb < ∞) = 1. When p ∈ (1/2, 1), Claim 4
implies

P(Ta <∞) = lim
b→∞

P(Ta < Tb) = 1/φ(a), P(Tb <∞) = lim
a→−∞

P(Tb < Ta) = 1.

�

2.8.3. Orthogonality of martingale increments.

Proposition 2.39. Let Xn be a martingale w.r.t. Fn satisfying EX2
n < ∞. Then, E((Xn −

Xm)Y ) = 0 for m ≤ n, where Y is any Fm-measurable random variable satisfying EY 2 <∞.
In particular, E(XnXm) = EX2

m for m ≤ n.

Proof. Since Xn and Y are in L2, E|(Xn −Xm)Y | <∞. This implies

E((Xn −Xm)Y ) = E[E((Xn −Xm)Y |Fm)] = E[Y E(Xn −Xm|Fm)] = 0.

�

Corollary 2.40. If Xn is a martingale w.r.t. Fn satisfying EX2
n <∞, then for m ≤ n,

E((Xn −Xm)2|Fm) = E(X2
n|Fm)−X2

m.

The above corollary can be regarded as a formula on the conditional variance of Xn given
Fm.

Exercise 2.24. Let Xn and Yn be L2 martingales w.r.t. Fn. Show that

E(XnYn)− E(X0Y0) =

n∑
m=1

E[(Xm −Xm−1)(Ym − Ym−1)].

Exercise 2.25. Let Xn be a martingale and ξn = Xn −Xn−1. Show that:

(1) If EX2
0 <∞ and

∑∞
n=1 Eξ2n <∞, then Xn converges a.s. and in L2.

(2) If bn ↑ ∞ and
∑∞

n=1 Eξ2n/b2n <∞, then Xn/bn → 0 a.s..

Example 2.10. Recall the branching process introduced before. Let {ξni : i, n ≥ 0} be a family

of i.i.d. non-negative integer-valued random variables and Zn+1 =
∑Zn

i=1 ξ
n+1
i . Let µ = Eξni

and Xn = Zn/µ
n. It was proved that Xn is a martingale and EXn = 1 for all n ≥ 1. Assume

in the following that Var(ξni ) = σ2 <∞. By Corollary 2.40, one has

EX2
n = EX2

n−1 + E(Xn −Xn−1)
2.
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Note that

E[(Xn −Xn−1)
2;Zn−1 = i] = µ−2nE

 i∑
j=1

ξnj − iµ

2

;Zn−1 = i


=µ−2nE

 i∑
j=1

(ξnj − µ)

2P(Zn−1 = i) = µ−2nσ2iP(Zn−1 = i).

Summing up i gives E(Xn − Xn−1)
2 = µ−n−1σ2. By induction, this implies EX2

n = 1 +
σ2
∑n

i=1 µ
−k−1. Assume that µ > 1. Clearly, the above computation leads to supn EX2

n <∞.
By Theorem 2.29, Xn converges in L2 to some random variable X. Applying the fact of
EXn = 1, we obtain EX = 1, which yields P(Zn > 0 for all n) ≥ P(X > 0) > 0.

2.9. Some other exercises.

Exercise 2.26. If Xn and Yn are submartingales w.r.t. Fn, then Xn ∨ Yn is a submartingale
w.r.t. Fn.

Exercise 2.27. Prove the following statements.

(1) If yn > −1 satisfies
∑

n |yn| <∞, then
∏

n(1 + yn) <∞.
(2) Let Xn, Yn be positive random variables adapted to Fn. Assume that EXn < ∞,

E(Xn+1|Fn) ≤ Xn(1 + Yn) and
∑

n Yn converges a.s. Then, Xn converges a.s..

Exercise 2.28 (The switching principle). Assume that Xn and Yn be supermartingales w.r.t.
Fn and N is a stopping time for Fn such that XN ≥ YN on {N <∞}. Set

Zn = Xn1{N>n} + Yn1{N≤n}, Wn = Xn1{N≥n} + Yn1{N<n}.

Then, Zn and Wn are supermartingales w.r.t. Fn.

Exercise 2.29 (Dubins’ inequality). Let Xn be a nonnegative supermartingale. Fix 0 < a < b
and set N0 = −1 and, for k ≥ 1,

N2k−1 = inf{j > N2k−2 : Xj ≤ a}, N2k = inf{j > N2k−1 : Xj ≥ b}.
Let U = sup{k : N2k <∞}. Prove that

P(U ≥ k) ≤
(a
b

)k
E
(
X0

a
∧ 1

)
.

Hint: Let Yn = 1 for 0 ≤ n < N1 and for j ≥ 1,

Yn =

{(
b
a

)j−1 Xn
a for N2j−1 ≤ n < N2j(

b
a

)j
for N2j ≤ n < N2j+1

Prove by induction (on j) that Yn∧Nj is a supermartingale and apply the fact of EYn∧N2k
≤ EY0

with n→ ∞.

Exercise 2.30. Let Z1, Z2, ... be i.i.d. random variables with E|Z1| < ∞. Let θ be another
random variable which has finite mean and is independent of Zn. For n ≥ 1, set Yn =
θ + Zn. Prove that E(θ|Y1, Y2, ..., Yn) converges to θ a.s. as n → ∞. In statistics, if Z1 is of
standard normal distribution, then the distribution of θ is called the prior distribution and
P(θ ∈ ·|Y1, ..., Yn) is called the posterior distribution.

Exercise 2.31. Let Zn be the Branching process with offspring distribution pk. Prove that
if p0 > 0, then P(limn Zn ∈ {0,∞}) = 1. Hint: Use Exercise 2.12.
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Exercise 2.32. Let Fn be a filtration and Xn be random variables adapted to Fn and taking
values on [0, 1]. Let α > 0, β > 0 be such that α+ β = 1 and assume that

(2.13) P(Xn+1 = α+ βXn|Fn) = Xn, P(Xn+1 = βXn|Fn) = 1−Xn.

Then, Xn converges a.s. with P(limnXn = 1) = EX0 and P(limnXn = 0) = 1− EX0.
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