2. Martingales

Consider a game of flipping a coin infinitely and independently. Suppose that the head appears with probability p, while the tail comes up with probability 1 - p. Each time a bet, say d dollars, is set before the coin is flipped. As a result, the gambler wins the bet on heads but loses it otherwise. For the gambler, it is crucial to know the probability of ruin when the gambler starts with s dollars?

Let $Z_1, Z_2, ...$ be a sequence of i.i.d. random variables with $\mathbb{P}(Z_1 = 1) = p$ and $\mathbb{P}(Z_1 = 1)$ (-1) = 1 - p and b_n be the bet set for the *n*th flip. Assume that b_n is a function of $Z_1, ..., Z_{n-1}$. Let S_n be the total asset after the *n*th flip. Clearly, one has

(2.1)
$$S_0 = d, \quad S_n = S_{n-1} + Z_n b_n(Z_1, ..., Z_{n-1}), \quad \forall n \ge 1,$$

where $0 < b_{n+1} \leq S_n$. By setting $\tau := \inf\{n \geq 1 : S_n = 0\}$ with $\inf \emptyset := \infty$, the run probability is given by $\mathbb{P}(\tau < \infty)$. In some computations, we obtain

$$\mathbb{E}(S_{n+1}|S_1,...,S_n) \begin{cases} = S_n \text{ a.s. for } p = 1/2 \\ < S_n \text{ a.s. for } p < 1/2 , & \text{when } S_n > 0. \\ > S_n \text{ a.s. for } p > 1/2 \end{cases}$$

The gambler may conclude from the above observation that the sequence of games Z_1, Z_2, \dots is fair if p = 1/2, unfavorable if p < 1/2 and favorable if p > 1/2.

2.1. Definitions and properties.

Definition 2.1. A sequence of σ -fields, $(\mathcal{F}_n)_{n=0}^{\infty}$, is a *filtration* if

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$$

A process $(X_n)_{n=0}^{\infty}$ is adapted to a filtration $(\mathcal{F}_n)_{n=0}^{\infty}$ if X_n is \mathcal{F}_n -measurable for all $n \geq 0$. We briefly say that X_n is adapted to \mathcal{F}_n .

Definition 2.2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $(\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration with $\mathcal{F}_n \subset \mathcal{F}$. A stochastic process, $(X_n)_{n=0}^{\infty}$, defined on (Ω, \mathcal{F}) is a martingale (resp. submartingale and supermartingale) w.r.t. $(\mathcal{F}_n)_{n=0}^{\infty}$, or briefly X_n is a martingale (resp. submartingale and supermartingale) w.r.t. \mathcal{F}_n if

- (1) $(X_n)_{n=0}^{\infty}$ is adapted to $(\mathcal{F}_n)_{n=0}^{\infty}$; (2) $\mathbb{E}|X_n| < \infty$ for all $n \ge 0$;
- (3) $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ a.s. (resp. $\geq X_n$ a.s. and $\leq X_n$ a.s.) for all $n \geq 0$.

In the case that $\mathcal{F}_n = \mathcal{F}(X_0, ..., X_n)$ for $n \ge 0$, we briefly call $(X_n)_{n=0}^{\infty}$ or X_n a martingale (resp. submartingale and supermartingale) when (2) and (3) hold.

Remark 2.1. If $(X_n)_{n=0}^{\infty}$ is a submartingale w.r.t. $(\mathcal{F}_n)_{n=0}^{\infty}$, then $(-X_n)_{n=0}^{\infty}$ is a supermartingale w.r.t. $(\mathcal{F}_n)_{n=0}^{\infty}$. Besides, $(X_n)_{n=0}^{\infty}$ is a martingale w.r.t. $(\mathcal{F}_n)_{n=0}^{\infty}$ if and only if $(X_n)_{n=0}^{\infty}$ is both a submartingale and a supermartingale w.r.t. $(\mathcal{F}_n)_{n=0}^{\infty}$

Example 2.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X_n be a sequence of i.i.d. random variables on Ω satisfying $\mathbb{P}(X_1 = 1) = p$ and $\mathbb{P}(X_1 = -1) = 1 - p$ with $p \in (0, 1)$. Fix $d \in \mathbb{R}$ and set

$$S_0 = d, \quad S_n = d + X_1 + X_2 + \dots + X_n, \quad \forall n \ge 1,$$

and

$$\mathcal{F}_0 = \{\emptyset, \Omega\}, \quad \mathcal{F}_n = \mathcal{F}(X_1, ..., X_n), \quad \forall n \ge 1.$$

Then, S_n is a martingale (resp. submartingale and supermartingale) w.r.t. \mathcal{F}_n if p = 1/2(resp. p > 1/2 and p < 1/2).

Example 2.2. Let X be a random variable with $\mathbb{E}|X| < \infty$ and $(\mathcal{F}_n)_{n=0}^{\infty}$ be a filtration. Then, $Y_n = \mathbb{E}(X|\mathcal{F}_n)$ is a martingale w.r.t. \mathcal{F}_n .

Proposition 2.1. Suppose X_n is a martingale (resp. submartingale and supermartingale) with respect to \mathcal{F}_n . Then,

- (1) $\mathcal{F}(X_0, X_1, ..., X_n) \subset \mathcal{F}_n$ for $n \ge 0$.
- (2) For any filtration \mathcal{G}_n satisfying

$$\mathcal{F}(X_0, ..., X_n) \subset \mathcal{G}_n \subset \mathcal{F}_n,$$

 X_n is a martingale (resp. submartingale and supermartingale) with respect to \mathcal{G}_n . In particular, X_n is a martingale (resp. submartingale and supermartingale).

Proof. Immediately from Proposition 1.4(4).

Remark 2.2. Why we call them supermartingales? Such a denomination can be related to the superharmonic function f on \mathbb{R}^d , which is defined by

$$f(x) \ge \frac{1}{|B(0,r)|} \int_{B(x,r)} f(y) dy \quad \forall x \in \mathbb{R}, \, r > 0,$$

where B(x, r) is the open ball in \mathbb{R}^d with radius r and center x, and |B(0, r)| is the Lebesgue measure of B(0, r).

Exercise 2.1. Let $X_1, X_2, ...$ be i.i.d. random elements with values on \mathbb{R}^d and uniform distributed on B(0,1). Set $X_0 = x$ and $S_n = X_0 + \cdots + X_n$ for $n \ge 0$. Prove that $f(S_n)$ is a supermartingale w.r.t. $\mathcal{F}(X_0, ..., X_n)$ for any superharmonic function f on \mathbb{R}^d .

Exercise 2.2. Let X_n be a submartingale w.r.t. \mathcal{F}_n . Prove that

- (1) $\mathbb{E}X_n \leq \mathbb{E}X_{n+1}$ for all $n \geq 0$.
- $(2) \ \sup_n \mathbb{E} |X_n| < \infty \text{ if and only if } \sup_n \mathbb{E} X_n^+ < \infty, \text{ where } t^+ = t \vee 0.$

Derive similar statements for supermatringales?

Theorem 2.2. Let X_n be a random variable and \mathcal{F}_n be a filtration. Then, X_n is a martingale (resp. submartingale and supermartingale) w.r.t. \mathcal{F}_n if and only if

 $\mathbb{E}(X_n | \mathcal{F}_m) \stackrel{\text{a.s.}}{=} X_m \quad \forall n > m. \quad (\text{resp.} \ge X_m \text{ a.s. and } \le X_m \text{ a.s.})$

Proof. We prove the case for martingales, while the other cases can be shown in a similar way. The sufficiency for martingales is clear by choosing m = n - 1. For the necessity, assume that X_n is a martingale w.r.t. \mathcal{F}_n and let n = m + k. Clearly, the theorem holds for k = 1. Inductively, if $\mathbb{E}(X_{m+k}|\mathcal{F}_m) \stackrel{\text{a.s.}}{=} X_m$, then

$$\mathbb{E}(X_{m+k+1}|\mathcal{F}_m) \stackrel{\text{a.s.}}{=} \mathbb{E}(\mathbb{E}(X_{m+k+1}|\mathcal{F}_{m+k})|\mathcal{F}_m) \stackrel{\text{a.s.}}{=} X_m.$$

Theorem 2.3. Assume that X_n is a martingale w.r.t. \mathcal{F}_n and φ is a convex function on \mathbb{R} satisfying $\mathbb{E}|\varphi(X_n)| < \infty$ for all $n \ge 0$. Then, $\varphi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n .

Proof. Since φ is convex, one has

$$\mathbb{E}(\varphi(X_n)|\mathcal{C}) \stackrel{\text{a.s.}}{\geq} \varphi(\mathbb{E}(X_n|\mathcal{C}))$$

for any σ -field $\mathcal{C} \subset \mathcal{F}$. This leads to

$$\mathbb{E}(\varphi(X_{n+1})|\mathcal{F}_n) \stackrel{\text{a.s.}}{\geq} \varphi(\mathbb{E}(X_{n+1}|\mathcal{F}_n)) \stackrel{\text{a.s.}}{=} \varphi(X_n).$$

Exercise 2.3. Let X_n be a submartingale w.r.t. \mathcal{F}_n . Assume that X_n takes values on an interval I for all n and φ is a non-decreasing convex function on I satisfying $\mathbb{E}|\varphi(X_n)| < \infty$. Show that $\varphi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n . Give a similar statement for supermartingales?

Corollary 2.4. Assume that X_n is a martingale w.r.t. \mathcal{F}_n . For $p \in [1, \infty)$, if $\mathbb{E}|X_n|^p < \infty$, then $|X_n|^p$ is a submartingale.

Corollary 2.5. For $s, t \in \mathbb{R}$, let $s \lor t$ and $s \land t$ be the maximum and minimum of s, t. Fix $a \in \mathbb{R}$.

- (1) If X_n is a submartingale w.r.t. \mathcal{F}_n , then $X_n \vee a$ is a submartingale w.r.t. \mathcal{F}_n .
- (2) If X_n is a supermartingale w.r.t. \mathcal{F}_n , then $X_n \wedge a$ is a supermartingale w.r.t. \mathcal{F}_n .

Definition 2.3. A sequence of random variables H_n is *predictable* w.r.t. a filtration \mathcal{F}_n if H_n is \mathcal{F}_{n-1} -measurable for $n \geq 1$.

Theorem 2.6. Let X_n be a martingale (resp. supermartingale and submartingale) w.r.t. \mathcal{F}_n , H_n be predictable w.r.t. \mathcal{F}_n and set

$$S_0 = 0, \quad S_n = \sum_{i=1}^n H_i(X_i - X_{i-1}), \quad \forall n \ge 1.$$

Assume that H_n is nonnegative and bounded with probability one. Then, S_n is a martingale (resp. supermartingale and submartingale) w.r.t. \mathcal{F}_n .

Proof. Suppose that X_n is a submartingale w.r.t. \mathcal{F}_n . By the triangle inequality, one has $\mathbb{E}|S_n| < \infty$. This implies

$$\mathbb{E}(S_{n+1}|\mathcal{F}_n) \stackrel{\text{a.s.}}{=} S_n + \mathbb{E}(H_{n+1}(X_{n+1} - X_n)|\mathcal{F}_n) \stackrel{\text{a.s.}}{=} S_n + H_{n+1}\mathbb{E}(X_{n+1} - X_n|\mathcal{F}_n) \stackrel{\text{a.s.}}{\geq} S_n.$$

her cases can be proved in a similar way and omitted.

. .

Other cases can be proved in a similar way and omitted.

Remark 2.3. In the above theorem, $H_n \ge 0$ is not required for the case of martingales.

Remark 2.4. Referring to (2.1), Theorem 2.6 says that if the game is "unfavorable", i.e. the gambling system is a supermartingale, then the asset function is always a supermartingale whatever predictable strategy is applied.

Definition 2.4. A stopping time τ for a filtration \mathcal{F}_n is defined to be a random variable taking values on $\{0, 1, 2, ...\} \cup \{\infty\}$ satisfying $\{\tau = n\} \in \mathcal{F}_n$ for all n.

Remark 2.5. Equivalently, τ is a stopping time for \mathcal{F}_n if $\{\tau \leq n\} \in \mathcal{F}_n$ for all $n \geq 0$.

Theorem 2.7. If X_n is a martingale (resp. supermartingale and submartingale) w.r.t. \mathcal{F}_n and τ is a stopping time for \mathcal{F}_n , then $X_{\tau \wedge n}$ is a martingale (resp. supermartingale and submartingale) w.r.t. \mathcal{F}_n .

Proof. For $n \ge 1$, set $H_n = \mathbf{1}_{\{\tau \ge n\}}$ and $S_n = \sum_{i=1}^n H_i(X_i - X_{i-1})$. It is clear that H_n is predictable w.r.t. \mathcal{F}_n . By Theorem 2.6, if X_n is a martingale w.r.t. \mathcal{F}_n , then so is S_n . The desired property is then given by the identity $S_n = X_{\tau \wedge n} - X_0$.

2.2. Optional sampling theorem. In this subsection, we introduce the preservation of martingales through optional samplings.

Definition 2.5. For any process $X_0, X_1, X_2, ...,$ we call a sequence $\tau_0, \tau_1, \tau_2, ...$ sampling variables of $(X_n)_{n=0}^{\infty}$ if τ_n is a random variable taking values on non-negative integers and satisfying

- (1) $0 \leq \tau_0 \leq \tau_1 \leq \tau_2 \leq \cdots;$
- (2) $\{\tau_k = j\} \in \mathcal{F}(X_0, ..., X_j)$ for all $j, k < \infty$.

Theorem 2.8 (Optional sampling theorem). Let $(X_n)_{n=0}^{\infty}$ be a process, $(\tau_n)_{n=0}^{\infty}$ be sampling variables of $(X_n)_{n=0}^{\infty}$ and $Y_n = X_{\tau_n}$. Assume that X_n is a martingale (resp. submartingale and supermartingale), $\mathbb{E}|Y_n| < \infty$ and

(2.2)
$$\liminf_{k \to \infty} \int_{\{\tau_n > k\}} |X_k| d\mathbb{P} = 0 \quad \forall n \ge 1.$$

Then, Y_n is a martingale (resp. submartingale and supermartingale).

Proof. We prove the case of martingale by showing

$$\int_{A} Y_{n+1} d\mathbb{P} = \int_{A} Y_n d\mathbb{P}, \quad \forall A \in \mathcal{F}(Y_0, ..., Y_n).$$

Let $A \in \mathcal{F}(Y_0, ..., Y_n)$ and set $D_j = A \cap \{\tau_n = j\}$. To finish the proof, it suffices to show

$$\int_{D_j} Y_{n+1} d\mathbb{P} = \int_{D_j} Y_n d\mathbb{P} \quad \forall j \ge 0.$$

By writing $A = \{(Y_0, ..., Y_n) \in B\}$ for some $B \in \mathcal{B}(\mathbb{R}^{n+1})$, one has

$$D_{j} = \{(Y_{0}, ..., Y_{n}) \in B, \tau_{n} = j\}$$
$$= \bigcup_{0 \le j_{0} \le \cdots \le j_{n} = j} \{(X_{j_{0}}, ..., X_{j_{n}}) \in B, \tau_{0} = j_{0}, ..., \tau_{n-1} = j_{n-1}, \tau_{n} = j_{n}\}$$

This implies $D_j \in \mathcal{F}(X_0, ..., X_j)$ for all $j \ge 0$. Set $\int_{D_j} Y_{n+1} d\mathbb{P} = I_1(k) + I_2(k)$ for $k \ge j$, where

$$I_1(k) = \sum_{i=j}^k \int_{D_j \cap \{\tau_{n+1}=i\}} X_i d\mathbb{P} + \int_{D_j \cap \{\tau_{n+1}>k\}} X_k d\mathbb{P}$$

and

$$I_2(k) = \int_{D_j \cap \{\tau_{n+1} > k\}} Y_{n+1} d\mathbb{P} - \int_{D_j \cap \{\tau_{n+1} > k\}} X_k d\mathbb{P}.$$

$$I_j = \{ \sigma \in k \ 1 \}^c \in \mathcal{T}(Y \ Y_i) \text{ By The}$$

Note that $\{\tau_{n+1} > k-1\} = \{\tau_{n+1} \le k-1\}^c \in \mathcal{F}(X_0, ..., X_{k-1})$. By Theorem 2.2, this implies

$$\int_{D_j \cap \{\tau_{n+1}=k\}} X_k d\mathbb{P} + \int_{D_j \cap \{\tau_{n+1}>k\}} X_k d\mathbb{P} = \int_{D_j \cap \{\tau_{n+1}>k-1\}} X_{k-1} d\mathbb{P}, \quad \forall k > j,$$

ivalently, $I_1(k) = I_1(k-1)$ for $k > j$. Since $D_i \subset \{\tau_n > j\}$, we have

or, equivalently, $I_1(k) = I_1(k-1)$ for k > j. Since $D_j \subset \{\tau_n \ge j\}$, we have

$$I_1(k) = I_1(j) = \int_{D_j} X_j d\mathbb{P} = \int_{D_j} Y_n d\mathbb{P}$$

Combining all above gives

$$\int_{D_j} Y_{n+1} d\mathbb{P} - \int_{D_j} Y_n d\mathbb{P} = I_2(k) \quad \forall k > j.$$

By (2.2), one may choose a subsequence $(m_l)_{l=1}^{\infty}$ such that $\mathbb{E}(|X_{m_l}|\mathbf{1}_{\{\tau_{n+1}>m_l\}}) \to 0$. In addition with $\mathbb{E}|Y_{n+1}| < \infty$, this implies $I_2(m_l) \to 0$.

Corollary 2.9. Let $(X_n)_{n=0}^{\infty}$ be a submartingale, $(\tau_n)_{n=0}^{\infty}$ be sampling variables of $(X_n)_{n=0}^{\infty}$ and $Y_n = X_{\tau_n}$. Assume that $\sup_n \mathbb{E} X_n^+ < \infty$ and

(2.3)
$$\liminf_{k \to \infty} \int_{\{\tau_n > k\}} |X_k| d\mathbb{P} = 0 \quad \forall n \ge 0$$

Then Y_n is a submartingale. Moreover, one has

(2.4)
$$\mathbb{E}X_0 \le \mathbb{E}Y_n \le \sup_{n \ge 0} \mathbb{E}X_n, \quad \mathbb{E}|Y_n| \le 2\sup_{n \ge 0} \mathbb{E}X_n^+ - \mathbb{E}X_0.$$

Proof. By Theorem 2.8, if the third inequality in (2.4) holds, then Y_n is a submartingale. Note that, by Theorem 2.7, $(X_{\tau_n \wedge m})_{m=0}^{\infty}$ is a submartingale and, hence,

$$\mathbb{E}X_{\tau_n \wedge m}^- \le \mathbb{E}X_{\tau_n \wedge m}^+ - \mathbb{E}X_0, \quad \forall n, m \ge 0.$$

Next, fix $n \ge 0$. By (2.3), we may select a subsequence $(m_k)_{k=1}^{\infty}$ of \mathbb{N} with $m_0 = 0$ such that

$$\lim_{k \to \infty} \int_{\{\tau_n > m_k\}} |X_{m_k}| d\mathbb{P} = 0$$

Since X_n^+ is a submartingale, one has

$$\mathbb{E}Y_n^+ = \sum_{j=0}^\infty \int_{\{\tau_n = j\}} X_j^+ d\mathbb{P} \le \limsup_{k \to \infty} \sum_{j=0}^{m_k} \int_{\{\tau_n = j\}} X_{m_k}^+ d\mathbb{P} = \limsup_{k \to \infty} \mathbb{E}X_{m_k}^+ = \sup_{n \ge 1} \mathbb{E}X_n^+ < \infty.$$

Note that

(2.5)
$$\mathbb{E}Y_n^+ = \lim_{k \to \infty} \left(\sum_{j=0}^{m_k} \int_{\{\tau_n = j\}} X_j^+ d\mathbb{P} + \int_{\{\tau_n > m_k\}} X_{m_k}^+ d\mathbb{P} \right) = \lim_{k \to \infty} \mathbb{E}X_{\tau_n \wedge m_k}^+$$

and, similarly,

(2.6)
$$\mathbb{E}Y_n^- = \lim_{k \to \infty} \mathbb{E}X_{\tau_n \wedge m_k}^- \le \limsup_{k \to \infty} \mathbb{E}X_{\tau_n \wedge m_k}^+ - \mathbb{E}X_0 = \mathbb{E}Y_n^+ - \mathbb{E}X_0.$$

Putting all above together yields

$$\mathbb{E}|Y_n| \le 2\mathbb{E}Y_n^+ - \mathbb{E}X_0 \le 2\sup_{n\ge 0}\mathbb{E}X_n^+ - \mathbb{E}X_0.$$

This proves the third inequality of (2.4).

By Theorem 2.8, $(Y_n)_{n=0}^{\infty}$ is a submartingale and, by (2.5) and (2.6), one has

$$\mathbb{E}Y_n = \lim_{k \to \infty} \mathbb{E}X_{\tau_n \wedge m_k} \ge \mathbb{E}X_{\tau_n \wedge 0} \ge \mathbb{E}X_0.$$

Since $(X_n)_{n=0}^{\infty}$ is a submartingale and τ_n is a stopping time for $(X_n)_{n=0}^{\infty}$, we have

$$\mathbb{E}X_{\tau_n \wedge m_k} = \sum_{j=0}^{m_k} \int_{\{\tau_n = j\}} X_j d\mathbb{P} + \int_{\{\tau_n > m_k\}} X_{m_k} d\mathbb{P}$$
$$\leq \sum_{j=0}^{m_k} \int_{\{\tau_n = j\}} X_{m_k} d\mathbb{P} + \int_{\{\tau_n > m_k\}} X_{m_k} d\mathbb{P} = \mathbb{E}X_{m_k} \leq \sup_{n \ge 0} \mathbb{E}X_n.$$

Passing k to the infinity gives the second inequality of (2.4).

The following proposition should be considered as a generalization of Kolmogorov's inequality and Chebyshev's inequality.

Proposition 2.10 (Doob's inequality). Let X_n be a submartingale. For $\epsilon > 0$, one has

$$\mathbb{P}\left(\max_{0\leq j\leq k}X_j>\epsilon\right)\leq \frac{\mathbb{E}X_k^+}{\epsilon}, \quad \mathbb{P}\left(\min_{0\leq j\leq k}X_j<-\epsilon\right)\leq \frac{\mathbb{E}X_k^+-\mathbb{E}X_0}{\epsilon}.$$

Proof. For the first inequality, let τ_0, τ_1, \dots be sampling variables defined by

$$\tau_0 = \inf\{j \le k : X_j > \epsilon\}$$

and $\tau_0 = k$ if the infimum is taken over an empty set. For $n \ge 1$, set $\tau_n = k$. Then, $Y_n := X_{\tau_n}$ satisfies

$$\mathbb{E}|Y_n| \le \sum_{j=0}^{\kappa} \mathbb{E}|X_j| < \infty \quad \forall n \ge 0, \quad \int_{\{\tau_n > \ell\}} |X_\ell| d\mathbb{P} = 0 \quad \forall \ell > k.$$

By the optional sampling theorem, Y_n is a submartingale and

$$\mathbb{P}\left(\max_{0\leq j\leq k} X_j > \epsilon\right) = \mathbb{P}(Y_0 > \epsilon) \leq \frac{\int_{\{Y_0 > \epsilon\}} Y_0 d\mathbb{P}}{\epsilon} \leq \frac{\int_{\{Y_0 > \epsilon\}} Y_1 d\mathbb{P}}{\epsilon} \leq \frac{\mathbb{E}X_k^+}{\epsilon}$$

For the second inequality, we set $\tau'_0 = 0$ and $\tau'_n = k$ for $n \ge 2$. For n = 1, set $\tau'_1 = \inf\{j \le k : X_j < -\epsilon\}$

and $\tau'_1 = k$ if the infimum is taken over an empty set. Let $Z_n = X_{\tau'_n}$. As before, we have

$$\mathbb{E}|Z_n| < \infty \quad \forall n \ge 1, \quad \int_{\{\tau'_n > \ell\}} |X_\ell| d\mathbb{P} = 0 \quad \forall \ell > k.$$

By Theorem 2.8, Z_n is a submartingale and

$$\mathbb{E}X_{0} \leq \mathbb{E}Z_{1} = \int_{\{Z_{1} \geq -\epsilon\}} Z_{1}d\mathbb{P} + \int_{\{Z_{1} < -\epsilon\}} Z_{1}d\mathbb{P}$$

$$\leq \int_{\{Z_{1} \geq -\epsilon\}} X_{k}d\mathbb{P} - \epsilon\mathbb{P}\left(\min_{0 \leq j \leq k} X_{j} < -\epsilon\right) \leq \mathbb{E}X_{k}^{+} - \epsilon\mathbb{P}\left(\min_{0 \leq j \leq k} X_{j} < -\epsilon\right).$$

Exercise 2.4. Prove that if X_0, X_1, \dots is a martingale satisfying $\mathbb{E}X_n^2 < \infty$, then

$$\mathbb{P}\left(\max_{0\leq j\leq k}|X_j|>\epsilon\right)\leq \frac{\mathbb{E}X_k^2}{\epsilon^2}\quad\forall\epsilon>0.$$

2.3. Martingale convergence theorem. We use Theorem 2.6 to derive the convergence theorem of martingales.

Lemma 2.11 (Upcrossing lemma). Let X_n be a submartingale and a, b be real numbers satisfying a < b. Set $N_0 = -1$ and, for $k \ge 1$, define

$$N_{2k-1} = \inf\{j > N_{2k-2} : X_j \le a\}, \quad N_{2k} = \inf\{j > N_{2k-1} : X_j \ge b\},$$

where $\inf \emptyset := \infty$. For $n \ge 1$, set $U_n = \sup\{k \ge 0 : N_{2k} \le n\}$. Then, $(b-a)\mathbb{E}U_n \le \mathbb{E}(X_n - a)^+ - \mathbb{E}(X_0 - a)^+$.

Proof. First, it is easy to see that $(N_j)_{j=0}^{\infty}$ are stopping times for $\mathcal{F}(X_0, ..., X_n)$. Let $Y_n = X_n \vee a$. Since X_n is a submartingale, Y_n is a submartingale. For $m \ge 0$, set

$$H_m = \begin{cases} 1 & \text{if } N_{2k-1} < m \le N_{2k} \text{ for some } k \\ 0 & \text{o.w.} \end{cases}$$

Observe that

$$\{H_m = 1\} = \{N_{2k-1} < m \le N_{2k}\} = \{N_{2k-1} < m\} \cap \{N_{2k} < m\}^c \in \mathcal{F}(X_0, ..., X_{m-1}).$$

This implies that H_n is predictable w.r.t. $\mathcal{F}(X_0, ..., X_n)$. For $n \ge 0$, set $S_0 = S'_0 = 0$ and

$$S_n = \sum_{i=1}^n H_i (Y_i - Y_{i-1}), \quad S'_n = \sum_{i=1}^n (1 - H_i) (Y_i - Y_{i-1})$$

By Theorem 2.6, S_n, S'_n are submartingales. Note that $S_n \ge (b-a)U_n$ and $Y_n - Y_0 = S_n + S'_n$. This implies $\mathbb{E}S'_n \ge \mathbb{E}S'_0 = 0$ and

$$(b-a)\mathbb{E}U_n \le \mathbb{E}S_n \le \mathbb{E}Y_n - \mathbb{E}Y_0 = \mathbb{E}(X_n-a)^+ - \mathbb{E}(X_0-a)^+.$$

Theorem 2.12 (Martingale convergence theorem). Let X_n be a submartingale satisfying $\sup_n \mathbb{E}X_n^+ < \infty$. Then, X_n converges a.s. to some random variable X with $\mathbb{E}|X| < \infty$.

Proof. Let U_n be the random variable defined in Lemma 2.11 and $U = \sup\{k \ge 0 : N_{2k} < \infty\}$. Note that U_n is non-decreasing, non-negative and converges to U. By the monotone convergence theorem and the upcrossing lemma, we have

$$\mathbb{E}U = \lim_{n \to \infty} \mathbb{E}U_n \le \frac{1}{b-a} \left(|a| + \sup_{n \ge 0} \mathbb{E}X_n^+ \right) < \infty, \quad \forall a < b.$$

This implies $U < \infty$ a.s. for any a < b. As a result, the following event

$$\bigcup_{b \in \mathbb{Q}, a < b} \left\{ \omega \in \Omega : \liminf_{n \to \infty} X_n(\omega) < a < b < \limsup_{n \to \infty} X_n(\omega) \right\}$$

has probability 0 and then $\liminf_n X_n = \limsup_n X_n$ a.s.. Set $X = \lim_n X_n$. By Fatou's lemma, we have

$$\mathbb{E}|X| = \mathbb{E}\liminf_{n \to \infty} |X_n| \le \liminf_{n \to \infty} \mathbb{E}|X_n| \le \sup_{n \ge 0} \mathbb{E}|X_n| < \infty.$$

Remark 2.6. For any process $(X_t)_{t \in [S,T]}$ with $S < \infty$ and $T \in (S,\infty]$, set

$$U_{a,b} = \sup\{k : N_{2k}(a,b) < \infty\},\$$

where $N_0(a, b) = S$ and

$$N_{2k-1}(a,b) = \inf\{N_{2k-2}(a,b) < t < T : X_t \le a\}$$

and

$$N_{2k}(a,b) = \inf\{N_{2k-1}(a,b) < t < T : X_t \ge b\}.$$

If $U_{a,b} < \infty$ a.s. for all rational numbers a < b, then $\limsup_{t \to T} X_t = \liminf_{t \to T} X_t$ a.s., but the converse is generally not true. However, in the case of $\{0, 1, 2...\}$, $\limsup_n X_n = \liminf_n X_n$ a.s. if and only if $U_{a,b} < \infty$ a.s. all rational numbers a < b.

Corollary 2.13. If X_n is a submartingale uniformly bounded from above, then X_n converges a.s. to some random variable X with $\mathbb{E}|X| < \infty$ and $\mathbb{E}X \ge \mathbb{E}X_0$.

Proof. The almost sure convergence of X_n comes immediately from Theorem 2.12. To see the last inequality, let M > 0 be a constant such that $\sup_n X_n \leq M$ a.s.. Clearly, $X \leq M$ and, by Fatou's lemma, one has

$$0 \le \mathbb{E}(M - X) \le \liminf_{n \to \infty} \mathbb{E}(M - X_n) \le M - \mathbb{E}X_0 < \infty.$$

This implies $\mathbb{E}X \geq \mathbb{E}X_0$.

Example 2.3. (Martingales that converge a.s. but not in L^1) Let $X_1, X_2, ...$ be i.i.d. random variables with $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = 1/2$. Let $d \in \mathbb{Z}^+$ and set

$$S_n = d + \sum_{i=1}^n X_i, \quad \forall n \ge 1.$$

Clearly, S_n is a martingale. Consider the stopping time $N = \min\{n \ge 0 : S_n = 0\}$ and set $Y_n = S_{N \land n}$. By Theorem 2.7, Y_n is a martingale. Since Y_n is nonnegative, Corollary 2.13 implies that Y_n converges almost surely to some random variable Y satisfying $\mathbb{E}|Y| < \infty$. Note that $|S_{n+1} - S_n| = 1$ for all $n \ge 1$. This implies $\{Y_n \text{ converges}\} \subset \{N < \infty\}$ and, hence,

$$\mathbb{P}(N < \infty) = 1, \quad Y = \lim_{\substack{n \to \infty \\ 16}} S_{N \wedge n} = S_N = 0 \quad a.s.$$

But, $\mathbb{E}Y_n = EY_0 = d > 0$ and this means that Y_n does not converge in L^1 .

Example 2.4 (Martingales that converge in probability but not a.s.). Let $\Omega = [0, 1)$, \mathcal{F} be the Borel σ -field over Ω and \mathbb{P} be the Lebesgue measure on (Ω, \mathcal{F}) . Let $X_0 \equiv 0$ and X_1, X_2, X_3, \dots be defined iteratively as follows. For $n \ge 0$, let $a_{n,1} = 0$, $a_{n,i_n} = 1$ and let $a_{n,2}, ..., a_{n,i_n-1}$ be discontinuous points of X_n . If $X_n(a_{n,j}) = 0$, set

$$X_{n+1}(t) = \mathbf{1}_{[a_{n,j}, a_{n,j} + \epsilon)}(t) - \mathbf{1}_{[a_{n,j} + \epsilon, a_{n,j} + 2\epsilon)}(t), \quad \forall t \in [a_{n,j}, a_{n,j+1})$$

where $\epsilon = \frac{a_{n,j+1} - a_{n,j}}{2(n+1)}$. If $X_n(a_{n,j}) \neq 0$, set

$$X_{n+1}(t) = (n+1)X_n(a_{n,j})\mathbf{1}_{[a_{n,j},a_{n,j}+\epsilon)}(t), \quad \forall t \in [a_{n,j},a_{n,j+1})$$

where $\epsilon = \frac{a_{n,j+1}-a_{n,j}}{n+1}$. This process has $X_1 = \mathbf{1}_{[0,1/2)} - \mathbf{1}_{[1/2,1)}$ and $X_2 = 2(\mathbf{1}_{[0,1/4)} - \mathbf{1}_{[1/2,3/4)})$. One can show by induction that X_n is an integer-valued martingale.

Let $A_n = \{a_{n,j} : \forall 1 \leq j \leq i_n, n \geq 1\}$ and $A = \bigcup_n A_n$. Clearly, $A_n \subset A_{n+1}$ and $|A_{n+1}| = A_n$ $2|A_n|-1$. This implies that A is a countable set. Observe that, for $t \in A^c$, if $X_m(x) = 0$, then $|X_n(t)| = 1$ for some n > m. If $X_m(t) \neq 0$, then $X_n(t) = 0$ for some n > m. This implies that X_n diverges on A^c . As $\mathbb{P}(X_n \neq 0) = 1/n$, X_n converges to 0 in probability.

Example 2.5 (Martingales that tend to infinity). Let X_1, X_2, \dots be independent random variables with

$$\mathbb{P}(X_n = n) = n^{-2}, \quad \mathbb{P}(X_n = -(n - n^{-1})^{-1}) = 1 - n^{-2}.$$

and set $S_n = X_1 + \cdots + X_n$. As $\mathbb{E}X_n = 0$, S_n forms a martingale. By the Borel-Cantelli lemma, $\mathbb{P}(X_n = n \text{ i.o.}) = 0$. This implies that, with probability 1,

$$X_n = -\frac{1}{n-1/n} \le -\frac{1}{n}$$
 for *n* large enough.

Hence, $S_n \to -\infty$ almost surely.

Exercise 2.5. Let $X_1, X_2, ...$ be independent random variable satisfying $\mathbb{E}X_n = 0$ and $\mathbb{E}X_n^2 < 0$ ∞ . For $n \ge 1$, set $S_n = \sum_{i=1}^n X_i$ and $s_n^2 = \sum_{i=1}^n \mathbb{E}X_i^2$. Show that

- (1) $S_n^2 s_n^2$ is a martingale;
- (2) If s_n converges, then S_n converges almost surely.

Exercise 2.6. Let X_1, X_2, \dots be i.i.d. non-negative random variables satisfying $\mathbb{E}X_1 = 1$ and $\mathbb{P}(X_1 = 1) < 1$. For $n \ge 1$, set $Y_n = \prod_{i=1}^n X_i$. Show that

- (1) Y_n is a martingale,
- (2) Y_n converges 0 a.s., (3) $\frac{1}{n} \log Y_n$ converges a.s. to $c \in [-\infty, 0)$.

2.4. Branching processes. Let $\{\xi_i^n : n \ge 0, i \ge 0\}$ be a family of i.i.d. nonnegative integer valued random variables. Set $Z_0 = 1$ and define, for $n \ge 0$,

$$Z_{n+1} := \sum_{i=1}^{Z_n} \xi_i^{n+1}$$
 if $Z_n > 0$, $Z_{n+1} := 0$ if $Z_n = 0$.

In the above setting, Z_n is called a *Galton-Watson* process. An idea behind this definition is that Z_n refers to the number of people at the *n*th generation and each member gives birth independently to an identically distributed number of children. After that, all individuals of the *n*th generation pass away and the number of new-born offsprings amounts to Z_{n+1} . To analyze this process, we set $p_k = \mathbb{P}(\xi_i^n = k)$ and call $(p_k)_{k=0}^{\infty}$ the offspring distribution.

Proposition 2.14. Let $\mathcal{F}_n = \mathcal{F}(\xi_i^m, i \ge 0, 0 \le m \le n)$ and $\mu = \mathbb{E}\xi_i^n$. Assume that $\mu \in (0, \infty)$. Then Z_n/μ^n is a martingale w.r.t. \mathcal{F}_n .

Proof. It is clear that Z_n is adapted to \mathcal{F}_n . To see $\mathbb{E}Z_n < \infty$, observe that $\mathbb{E}Z_0 = 1 < \infty$ and, for $n \ge 0$,

$$\mathbb{E}Z_{n+1} = \sum_{k=1}^{\infty} \mathbb{E}\left(\sum_{i=1}^{k} \xi_i^{n+1} \mathbf{1}_{\{Z_n=k\}}\right) = \sum_{i=1}^{\infty} k\mu \mathbb{P}(Z_n=k) = \mu \mathbb{E}Z_n < \infty,$$

where the first equality uses the monotone convergence theorem. By induction, we obtain $\mathbb{E}Z_n = \mu^n < \infty$, which implies

$$\mathbb{E}(Z_{n+1}|\mathcal{F}_n) = \sum_{k=1}^{\infty} \sum_{i=1}^{k} \mathbb{E}(\xi_i^{n+1} \mathbf{1}_{\{Z_n=k\}} | \mathcal{F}_n) = \sum_{k=1}^{\infty} k \mu \mathbf{1}_{\{Z_n=k\}} = \mu Z_n.$$

This proves that Z_n/μ^n is a martingale w.r.t. \mathcal{F}_n .

Concerning the extinction of spices, we define the stopping time $T = \inf\{n \ge 0 : Z_n = 0\}$. Note that, when $0 < \mu < \infty$, Z_n/μ^n is nonnegative with mean 1. By the martingale convergence theorem, Z_n/μ^n converges almost surely to some integrable random variable.

Theorem 2.15. If $\mu \in (0,1)$, then $\mathbb{P}(T < \infty) = 1$ and $Z_n/\mu^n \to 0$ almost surely.

Proof. By Proposition 2.14, $\mathbb{E}Z_n = \mu^n \mathbb{E}Z_0 = \mu^n$. This implies

$$\mathbb{P}(Z_n > 0) = \mathbb{P}(Z_n \ge 1) \le \mathbb{E}Z_n = \mu^n \to 0 \text{ as } n \to \infty,$$

which means that Z_n converges to 0 in probability. Let k_n be a subsequence such that Z_{k_n} converges to 0 almost surely. As Z_n is integer-valued and $Z_n = 0$ implies $Z_{n+1} = 0$, we may conclude that $\mathbb{P}(Z_n = 0 \text{ for some } n \ge 0) = 1 \text{ or } \mathbb{P}(Z_n/\mu^n = 0 \text{ for some } n \ge 0) = 1.$

Theorem 2.16. If $\mu = 1$ and $p_1 < 1$, then $\mathbb{P}(T < \infty) = 1$.

Proof. By Proposition 2.14, Z_n is a martingale and, by the martingale convergence theorem, Z_n converges almost surely to some integrable random variable Z_{∞} . Since Z_n is integer valued, we have $\mathbb{P}(Z_n = Z_{\infty} \text{ for } n \text{ large enough}) = 1$. To finish the proof, it remains to show that $\mathbb{P}(Z_{\infty} = 0) = 1$. Note that, for k > 0,

$$\mathbb{P}(Z_{n+1} = k | Z_n = k, Z_{n-1} = a_{n-1}, \dots, Z_1 = a_1) = \mathbb{P}(\xi_1^{n+1} + \dots + \xi_k^{n+1} = k) =: c_k < 1,$$

where the last inequality uses the assumption of $\mu = 1$ and $p_1 < 1$. This implies

$$\mathbb{P}(Z_n = k, \forall n \ge N) = \lim_{\ell \to \infty} \mathbb{P}(Z_{N+\ell} = \dots = Z_N = k) = \mathbb{P}(Z_N = k) \lim_{\ell \to \infty} c_k^{\ell} = 0, \quad \forall N > 0.$$

As a result, we obtain $\mathbb{P}(Z_{\infty} = k) = \mathbb{P}(Z_n = k \text{ for } n \text{ large enough}) = 0 \text{ for } k > 0.$

Remark 2.7. Note that, when $\mu = 1$, $p_1 < 1$ is equivalent to $p_0 > 0$.

Theorem 2.17. If $\mu \in (1, \infty)$, then $\mathbb{P}(T = \infty) > 0$.

Proof. Consider the following *generating function* of the offspring distribution.

$$\varphi(s) = p_0 + \sum_{k=1}^{\infty} p_k s^k, \quad \forall |s| \le 1.$$

Clearly, φ is analytic on (-1, 1) and

$$\varphi'(s) = p_1 + \sum_{k=2}^{\infty} k p_k s^{k-1}, \quad \varphi''(s) = 2p_2 + \sum_{k=3}^{\infty} k(k-1) p_k s^{k-2}, \quad \forall |s| < 1.$$

As $\mu > 1$, we must have $p_k > 0$ for some $k \ge 2$. This implies that φ is increasing and convex on (0, 1) and

$$\lim_{s < 1, s \to 1} \frac{\varphi(s) - \varphi(1)}{s - 1} = \lim_{s < 1, s \to 1} \sum_{k = 1}^{\infty} p_k (1 + s + \dots + s^{k-1}) = \mu > 1$$

Since $\varphi(1) = 1$ and $\varphi(0) = p_0 \in [0, 1)$, there is $\rho \in [0, 1)$ such that $\varphi(\rho) = \rho$. Moreover, one has $\varphi(x) > x$ for $x \in (0, \rho)$ and $\varphi(x) < x$ for $x \in (\rho, 1)$.

Next, we set $\theta_m = \mathbb{P}(Z_m = 0)$. Obviously, $\theta_0 = 0$. Note that each individual of the offspring generation can be regarded as an ancestor of a Galton-Watson process. This implies

$$\theta_m = p_0 + \sum_{k=1}^{\infty} p_k \theta_{m-1}^k = \varphi(\theta_{m-1}) \quad \forall m \ge 1.$$

If $\rho = 0$, then $\theta_m = 0$ for all m. If $\rho > 0$, then $0 \le \theta_m < \theta_{m+1} < \rho$. Let θ_∞ be the limit of φ_m . By the continuity of φ , one has $\varphi(\theta_\infty) = \theta_\infty$ and this implies $\theta_\infty = \rho$. Consequently, we achieve

$$\mathbb{P}(T < \infty) = \lim_{m \to \infty} \mathbb{P}(Z_m = 0) = \rho < 1.$$

Corollary 2.18. For $p_0 > 0$, the probability that the species is finally extinct equals the smallest fixed point of the generating function of the offspring distribution on [0, 1].

Proof. The proof for $\mu > 1$ has been given in the proof of Theorem 2.17. Let $\varphi(s) = p_0 + \sum_{k=1}^{\infty} p_k s^k$. We first assume $\mu \in [0, 1)$. In this case, it is clear that $\varphi'(1) < 1$ and this implies that φ has only one fixed point on [0, 1], which is 1.

Next, we consider the case $\mu = 1$ and $p_1 < 1$. Clearly, $p_0 > 0$ and $p_k > 0$ for some $k \ge 2$. This implies that φ is strictly convex on (0,1) and, hence, 1 is the unique fixed point of φ . When $p_1 = 1$, all points in [0,1] are fixed points of φ and 0 is the smallest one, while $\mathbb{P}(T < \infty) = 0$.

Remark 2.8. Galton and Watson who invented the process that bears their names were interested in the survival of family names. Suppose that each family has exactly m children but their sex is determined by a fair coin. In 1800s, only male children kept the family name. The male offsprings then lead to an offspring distribution

$$p_k = \binom{m}{k} 2^{-m} \quad \forall 0 \le k \le m.$$

By Theorems 2.15-2.17, a family name disappears when $m \leq 2$ and has a positive probability to survive forever when m > 2.

2.5. Uniform integrability. In this subsection, we use $\mathbb{E}(X; A)$ to denote $\int_A X d\mathbb{P}$. If $A = \{X \in B\}$ for some $B \in \mathcal{B}(\mathbb{R})$, we simple write $\mathbb{E}(X; X \in B)$ for $\mathbb{E}(X; \{X \in B\})$.

Definition 2.6. A family of random variables $\{X_i : i \in I\}$ is uniformly integrable if

$$\lim_{x \to \infty} \sup_{i \in I} \mathbb{E}(|X_i|; |X_i| > x) = 0.$$

Exercise 2.7. Show that $(X_n)_{n=0}^{\infty}$ is uniformly integrable if and only if $\mathbb{E}|X_n| < \infty$ for all n and $\limsup_n \mathbb{E}(|X_n|; |X_n| > x) \to 0$ as $x \to \infty$.

Exercise 2.8. Prove the following statements.

- (1) If $(X_i)_{i \in I}$ is uniformly integrable, then $\sup_{i \in I} \mathbb{E}|X_i| < \infty$.
- (2) If $|X_i| \leq X$ for all $i \in I$ and $\mathbb{E}X < \infty$, then $(X_i)_{i \in I}$ is uniformly integrable.

Proposition 2.19. If X is a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}|X| < \infty$, then the family $\{\mathbb{E}(X|\mathcal{G}) : \mathcal{G} \text{ is a sub-}\sigma\text{-field of } \mathcal{F}\}$ is uniformly integrable.

Proof. Let $\epsilon > 0$. Since X is integrable, one may select $\delta > 0$ such that $\mathbb{E}(|X|; A) < \epsilon$ for all $A \in \mathcal{F}$ satisfying $\mathbb{P}(A) < \delta$. Note that, for any $x > \mathbb{E}|X|/\delta$, one may use the Markov inequality and Jensen's inequality to get

$$\mathbb{P}(\mathbb{E}(|X||\mathcal{G}) > x) \le \frac{\mathbb{E}(\mathbb{E}(|X||\mathcal{G}))}{x} = \frac{\mathbb{E}|X|}{x} < \delta,$$

and

 $\mathbb{E}(|\mathbb{E}(X|\mathcal{G})|;|\mathbb{E}(X|\mathcal{G})| > x) \le \mathbb{E}(\mathbb{E}(|X||\mathcal{G});\mathbb{E}(|X||\mathcal{G}) > x) = \mathbb{E}(|X|;\mathbb{E}(|X||\mathcal{G}) > x) < \epsilon,$

for any sub- σ -field $\mathcal{G} \subset \mathcal{F}$. This implies $\sup_{\mathcal{G} \subset \mathcal{F}} \mathbb{E}(|\mathbb{E}(X|\mathcal{G})|; |\mathbb{E}(X|\mathcal{G})| > x) \leq \epsilon$ for $x > \mathbb{E}|X|/\delta$.

Exercise 2.9. Let $\varphi : [0, \infty) \to [0, \infty)$ be a function satisfying $\varphi(x)/x \to \infty$ as $x \to \infty$. (For instance, $\varphi(x) = x^p$ with $p \in (1, \infty)$ and $\varphi(x) = x \log^+ x := x (\log x)^+$.) Prove that if $\sup_i \mathbb{E}\varphi(|X_i|) < \infty$, then $(X_i)_{i \in I}$ is uniformly integrable.

Proposition 2.20. Let X_n, X be real-valued random variables. Assume that X_n converges to X in probability and $\mathbb{E}|X_n| < \infty$. Then, the following are equivalent.

- (1) $(X_n)_{n=0}^{\infty}$ is uniformly integrable.
- (2) X_n converges to X in L^1 .
- (3) $\mathbb{E}|X_n| \to \mathbb{E}|X|$ with $\mathbb{E}|X| < \infty$.

Proof. For (1) \Rightarrow (2), let $\varphi_M(x) = (x \land M) \lor (-M)$ for M > 0. Clearly, $|\varphi_M(x) - x| = (|x| - M)^+ \le |x| \mathbf{1}_{[M,\infty)}(|x|)$. By the triangle inequality, one has

$$|X_n - X| \le |X_n - \varphi_M(X_n)| + |\varphi_M(X_n) - \varphi_M(X)| + |\varphi_M(X) - X|.$$

To prove $\mathbb{E}|X_n - X| \to 0$, it is equivalent to show that, for any subsequence k_n , there exists a further subsequence k'_n such that $\mathbb{E}|X_{k'_n} - X| \to 0$. Let k_n be a subsequence of $\{1, 2, ...\}$. Since $X_n \to X$ in probability, we may choose a subsequence k'_n of k_n such that $X_{k'_n}$ converges to X a.s.. By the Lebesgue dominated convergence theorem and Fatou's lemma, this implies

$$\lim_{n \to \infty} \mathbb{E}|\varphi_M(X_{k'_n}) - \varphi_M(X)| = 0, \quad \forall M > 0, \quad \mathbb{E}|X| \le \liminf_{n \to \infty} \mathbb{E}|X_{k'_n}| < \infty,$$

where the second inequality uses the uniform integrability of $(X_n)_{n=1}^{\infty}$. Putting all above together yields

$$\limsup_{n \to \infty} \mathbb{E}|X_{k'_n} - X| \le \sup_{n \ge 1} \mathbb{E}(|X_{k'_n}|; |X_{k'_n}| > M) + \mathbb{E}(|X|; |X| > M).$$

Passing $M \to \infty$ gives $\mathbb{E}|X_{k'_n} - X| \to 0$.

 $(2) \Rightarrow (3)$ is obvious. For $(3) \Rightarrow (1)$, let ψ_M be a piecewise linear function on $[0, \infty)$ defined by

$$\psi_M(x) = \begin{cases} x & \text{for } x \in [0, M-1] \\ (M-1)(M-x) & \text{for } x \in [M-1, M] \\ 0 & \text{for } x \ge M \end{cases}$$

Obviously, $x\mathbf{1}_{(M,\infty)}(x) \leq x - \psi_M(x) \leq x\mathbf{1}_{(M-1,\infty)}(x)$ for $x \geq 0$. A similar argument as before implies $\mathbb{E}\psi_M(|X_n|) \to \mathbb{E}\psi_M(|X|)$. This leads to

$$\begin{split} \limsup_{n \to \infty} \mathbb{E}(|X_n|; |X_n| > M) &\leq \limsup_{n \to \infty} [\mathbb{E}|X_n| - \mathbb{E}\psi_M(|X_n|)] \\ &= \mathbb{E}|X| - \mathbb{E}\psi_M(|X|) \leq \mathbb{E}(|X|; |X| > M - 1). \end{split}$$

Since $\mathbb{E}|X| < \infty$, letting $M \to \infty$ gives (1).

Theorem 2.21. Let X_n be a submartingale. Then, the following are equivalent.

- (1) $(X_n)_{n=0}^{\infty}$ is uniformly integrable;
- (2) X_n converges a.s. and in L^1 ;
- (3) X_n converges in L^1 .

Proof. First, suppose (1) holds. By Exercise 2.8 and Theorem 2.12, X_n converges a.s. and, by Proposition 2.20, X_n converges in L^1 . This proves (2). (2) \Rightarrow (3) is obvious and (3) \Rightarrow (1) follows immediately from Proposition 2.20.

Proposition 2.22. If X_n is a martingale w.r.t. \mathcal{F}_n and X_n converges to X_∞ in L^1 , then $X_n = \mathbb{E}(X_\infty | \mathcal{F}_n)$ for $n \ge 0$.

Proof. By Theorem 2.2, $\mathbb{E}(X_n | \mathcal{F}_m) = X_m$ for all n > m. Since X_n converges to X_∞ in L^1 , $\mathbb{E}(X_n | \mathcal{F}_m) \to \mathbb{E}(X | \mathcal{F}_m)$ in L^1 as $n \to \infty$. This implies $X_m = \mathbb{E}(X_\infty | \mathcal{F}_m)$ almost surely. \Box

Corollary 2.23. For any martingale X_n w.r.t. \mathcal{F}_n , the following are equivalent.

- (1) $(X_n)_{n=0}^{\infty}$ is uniformly integrable;
- (2) X_n converges a.s. and in L^1 ;
- (3) X_n converges in L^1 ;
- (4) There exists X with $\mathbb{E}|X| < \infty$ such that $X_n = \mathbb{E}(X|\mathcal{F}_n)$ for all n.

Proof. The equivalence of (1), (2) and (3) is given by Theorem 2.21. $(3)\Rightarrow(4)$ is given by Proposition 2.22 and $(4)\Rightarrow(1)$ is implied by Proposition 2.19.

Theorem 2.24. Let (Ω, \mathcal{F}, P) be a probability space, X be a random variable on Ω and \mathcal{F}_n be a filtration in \mathcal{F} . Set $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$ and assume $\mathbb{E}|X| < \infty$. Then, $\mathbb{E}(X|\mathcal{F}_n)$ converges to $\mathbb{E}(X|\mathcal{F}_{\infty})$ almost surely and in L^1 .

Proof. Set $Y_n = \mathbb{E}(X|\mathcal{F}_n)$. It is clear that, for n > m,

$$\mathbb{E}(Y_n|\mathcal{F}_m) = \mathbb{E}(\mathbb{E}(X|\mathcal{F}_n)|\mathcal{F}_m) = \mathbb{E}(X|\mathcal{F}_m) = Y_m.$$

This implies that Y_n is a martingale w.r.t. \mathcal{F}_n . By Proposition 2.19, $(Y_n)_{n=0}^{\infty}$ is uniformly integrable and, by Theorem 2.21, Y_n converges almost surely and in L^1 to some random variable Y_{∞} . By Proposition 2.22, $\mathbb{E}(X|\mathcal{F}_n) = \mathbb{E}(Y_{\infty}|\mathcal{F}_n)$ a.s. for all n. Consider the following class.

$$\mathcal{D} = \{ A \in \mathcal{F}_{\infty} : \mathbb{E}(X; A) = \mathbb{E}(Y_{\infty}; A) \}.$$

Note that \mathcal{D} is a λ -system, $\bigcup_n \mathcal{F}_n$ is a π -system and $\bigcup_n \mathcal{F}_n \subset \mathcal{D}$. By the $\pi - \lambda$ lemma, $\mathcal{D} = \mathcal{F}_{\infty}$. As Y_{∞} is \mathcal{F}_{∞} -measurable, we obtain $Y_{\infty} = \mathbb{E}(X|\mathcal{F}_{\infty})$.

Corollary 2.25 (Lévy's zero-one law). Let \mathcal{F}_n be a filtration in \mathcal{F} and $A \in \mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$. Then, $\mathbb{E}(\mathbf{1}_A | \mathcal{F}_n)$ converges almost surely to $\mathbf{1}_A$.

Remark 2.9. Let $X_1, X_2, ...$ be independent random variables and $\mathcal{F}_n = \mathcal{F}(X_1, ..., X_n)$. Let A be a tail event, that is, $A \in \bigcap_n \mathcal{F}(X_n, X_{n+1}, ...)$. Then, $\mathbb{E}(\mathbf{1}_A | \mathcal{F}_n) = \mathbb{P}(A)$ almost surely. By Lévy's zero-one law, we have $\mathbb{P}(A) = \mathbf{1}_A$ almost surely. This implies $\mathbb{P}(A) \in \{0, 1\}$, which is exactly Kolmogorov's zero-one law.

Exercise 2.10. Let X be a random variable on the probability space $([0,1), \mathcal{B}([0,1)), \mathbb{P})$, where \mathbb{P} is the Lebesgue measure on [0,1). Assume that $\mathbb{E}|X| < \infty$ and set, for $n \ge 1$,

$$X_n(x) = 2^n \mathbb{E}(X; [k2^{-n}, (k+1)2^{-n})), \quad \forall x \in [k2^{-n}, (k+1)2^{-n}), \ 0 \le k < 2^n.$$

Prove that X_n converges to X almost surely and in L^1 . Using a variant of this exercise, one may conclude that, for any integrable function f on \mathbb{R} and $\epsilon > 0$, there is a step function gsuch that $\int_{\mathbb{R}} |f - g| dx < \epsilon$. *Hint:* Apply Theorem 2.24 on the following filtrations

$$\mathcal{F}_n = \mathcal{F}\left(\left\{ [k2^{-n}, (k+1)2^{-n}) : 0 \le k < 2^n \right\} \right), \quad \mathcal{F}_\infty = \mathcal{B}([0,1))$$

Exercise 2.11. Let $([0,1), \mathcal{B}([0,1)), \mathbb{P})$ be as in Exercise 2.10. Let X be a Lipschitz continuous function on [0,1) and set, for $n \ge 1$,

$$X_n = \sum_{k=0}^{2^n - 1} \frac{X((k+1)2^{-n}) - X(k2^{-n})}{2^{-n}} \mathbf{1}_{\{[k2^{-n}, (k+1)2^{-n})\}}.$$

Prove that X_n is a martingale, X_n converges to X_∞ a.s. and in L^1 and

$$X(b) - X(a) = \mathbb{E}(X_{\infty}; [a, b)) \quad \forall 0 \le a < b < 1.$$

This exercise says that Lipschitz continuous functions are absolutely continuous.

Exercise 2.12. Let $X_1, X_2, ...$ be a process taking values on $[0, \infty)$ and having 0 as an absorbing states, that is, $X_n = 0$ implies $X_m = 0$ for all m > n. Let $D = \{X_n = 0 \text{ for some } n > 0\}$ and assume that, for any x > 0, there is $\delta(x) > 0$ such that

(2.7)
$$\mathbb{P}(D|X_1,...,X_n) \stackrel{\text{a.s.}}{\geq} \delta(x) \quad \text{on } \{X_n \le x\}, \quad \forall n \ge 1.$$

Prove that $\mathbb{P}(D \cup \{\lim_n X_n = \infty\}) = 1$. *Hint:* Use Lévy's zero-one law or Exercise 2.13.

Theorem 2.26. Let \mathcal{F}_n be a filtration and $\mathcal{F}_{\infty} = \sigma(\bigcup \mathcal{F}_n)$. Assume that X_n converges a.s. to X_{∞} and $|X_n| \leq Y$ with $\mathbb{E}Y < \infty$. Then, $\mathbb{E}(X_n | \mathcal{F}_n)$ converges a.s. to $\mathbb{E}(X_{\infty} | \mathcal{F}_{\infty})$.

Proof. For $N \ge 1$, set $Z_N = \sup\{|X_n - X_m| : n, m \ge N\}$. Then, $Z_N \le 2Y$. As $|X_n - X_\infty| \le Z_N$ almost surely for $n \ge N$, one may use Theorem 2.24 to derive

$$\limsup_{n \to \infty} \mathbb{E}(|X_n - X_\infty| | \mathcal{F}_n) \le \limsup_{n \to \infty} \mathbb{E}(Z_N | \mathcal{F}_n) = \mathbb{E}(Z_N | \mathcal{F}_\infty) \quad \forall N > 0$$

By the dominated convergence theorem, $\mathbb{E}(Z_N | \mathcal{F}_{\infty}) \to 0$ a.s. and this implies

$$|\mathbb{E}(X_n|\mathcal{F}_n) - \mathbb{E}(X_{\infty}|\mathcal{F}_n)| \le \mathbb{E}(|X_n - X_{\infty}||\mathcal{F}_n) \xrightarrow{a.s.} 0 \quad \text{as } n \to \infty.$$

The desired limit is then given by the fact of $\mathbb{E}(X_{\infty}|\mathcal{F}_n) \to \mathbb{E}(X_{\infty}|\mathcal{F}_\infty)$ a.s..

Exercise 2.13. Let $X_1, X_2, ...$ be a process and $A, B \in \mathcal{B}(\mathbb{R})$. Suppose

$$\mathbb{P}(X_m \in B \text{ for some } m > n | X_1, ..., X_n) \ge \delta > 0 \quad \text{a.s. on } \{X_n \in A\}$$

Prove that $\{X_n \in A \text{ i.o.}\} \subset \{X_n \in B \text{ i.o.}\}$ a.s..

Exercise 2.14. Let \mathcal{F}_n be a filtration and $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$. Show that

- (1) If $\mathbb{E}|X| < \infty$ and $X_n \to X$ in L^1 , then $\mathbb{E}(X_n | \mathcal{F}_n) \to \mathbb{E}(X | \mathcal{F}_\infty)$ in L^1 ;
- (2) If $(X_n)_{n=1}^{\infty}$ is uniformly integrable and converges to X almost surely, then $\mathbb{E}(X_n|\mathcal{F}) \to \mathbb{E}(X|\mathcal{F})$ in L^1 for any σ -field \mathcal{F} .

The following example shows that Theorem 2.26 can fail when $|X_n| \leq Y$ with $\mathbb{E}Y < \infty$ is replaced by the uniform integrability of $(X_n)_{n=0}^{\infty}$.

Example 2.6. Consider independent random variables $X_1, X_2, ..., Y_1, Y_2, ...$ defined by

$$\mathbb{P}(X_n = 1) = 1/n, \ \mathbb{P}(X_n = 0) = 1 - 1/n,$$

and

 $\mathbb{P}(Y_n = n) = 1/n, \ \mathbb{P}(Y_n = 0) = 1 - 1/n.$

Set $Z_n = X_n Y_n$, $\mathcal{F}_n = \mathcal{F}(X_1, ..., X_n)$ and $\mathcal{F}_{\infty} = \mathcal{F}(X_1, X_2, ...)$. Then Z_n is uniformly integrable since

 $\mathbb{E}(|Z_n|; |Z_n| > x) \le \mathbb{E}(X_n Y_n; X_n = 1, Y_n = n) = 1/n \quad \forall n, x > 0.$

Note that $\mathbb{P}(Z_n > 0) = 1/n^2$. By the Borel-Cantelli lemma, we have $\mathbb{P}(Z_n > 0 \text{ i.o.}) = 0$ and this implies $Z_n \to 0$ almost surely. Note that $\mathbb{E}(Z_n | \mathcal{F}_n) = X_n \mathbb{E} Y_n = X_n$. As $\mathbb{P}(X_n = 1 \text{ i.o.}) = \mathbb{P}(X_n = 0 \text{ i.o.}) = 1$, $\mathbb{E}(Z_n | \mathcal{F}_n)$ diverges almost surely. In fact, X_n and, thus $\mathbb{E}(Z_n | \mathcal{F}_n)$, converges to 0 in L^1 .

2.6. Backward martingales.

Definition 2.7. Let $(\mathcal{F}_n)_{n\leq 0}$ be a non-decreasing sequence of σ -field, that is, $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for n < 0. A process indexed by non-positive integers $(X_n)_{n\leq 0}$ is a backward martingale (submartingale) w.r.t. $(\mathcal{F}_n)_{n\leq 0}$, if X_n is \mathcal{F}_n -measurable, $\mathbb{E}|X_n| < \infty$ and $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ $(\geq X_n)$ for n < 0.

Remark 2.10. Clearly, if X_n is a backward martingale w.r.t. \mathcal{F}_n , then $X_n = \mathbb{E}(X_{n+1}|\mathcal{F}_n) = \mathbb{E}(X_0|\mathcal{F}_n)$. By Proposition 2.19, $(X_n)_{n\leq 0}$ is uniformly integrable.

Theorem 2.27. Let X_n be a backward submartingale w.r.t. \mathcal{F}_n . Then, $\liminf_n X_n = \limsup_n X_n < \infty$ a.s. and, by setting $X_{-\infty} := \lim_n X_n$ and $\mathcal{F}_{-\infty} = \bigcap_{n \leq 0} \mathcal{F}_n$, the following are equivalent.

- (1) X_n is uniformly integrable.
- (2) $X_n \to X_{-\infty}$ a.s. and in L^1 .
- (3) $X_n \to X_{-\infty}$ in L^1 .
- (4) $\mathbb{E}|X_{-\infty}| < \infty$ and $\mathbb{E}(X_n | \mathcal{F}_{-\infty}) \ge X_{-\infty}$ for all $n \le 0$.
- (5) $\lim_{n \to \infty} \mathbb{E}X_n > -\infty.$

In particular, if X_n is a backward martingale w.r.t. \mathcal{F}_n , then $X_{-\infty} = \mathbb{E}(X_n | \mathcal{F}_{-\infty})$ for all n.

Proof. For $n \ge 0$, let $U_n(a, b)$ be the upcrossing number of (a, b) by $X_{-n}, ..., X_0$. Clearly, $U_n(a, b)$ is also the downcrossing number of (a, b) by $X_0, X_{-1}, ..., X_{-n}$ and thus non-decreasing. Set $U = \lim_n U_n$. By Lemma 2.11, $(b-a)\mathbb{E}U_n \le \mathbb{E}(X_0 - a)^+$. By the monotone convergence theorem, passing n to ∞ leads to $\mathbb{P}(U(a, b) < \infty) = 1$ for any a < b and, hence, $\liminf_n X_n = \limsup_n X_n$ almost surely. Set $X_{-\infty} = \lim_n X_n$. To show $X_{-\infty} < \infty$ a.s., it suffices to proved that $X_{-\infty}^+ < \infty$ a.s. or further $\mathbb{E}X_{-\infty}^+ < \infty$. As $X_{-\infty}^+ = \lim_n X_n^+$ a.s., one may apply Fatou's lemma to conclude

$$\mathbb{E}X_{-\infty}^+ \le \liminf_{n \to -\infty} \mathbb{E}X_n^+ \le \mathbb{E}X_0^+ < \infty,$$

where the second inequality uses the fact that X_n^+ is a backward submartingale.

For (1) \Rightarrow (2), assume that X_n is uniformly integrable. By Exercise 2.8, $\sup_n \mathbb{E}|X_n| < \infty$. Again, by Fatou's lemma, one has

$$\mathbb{E}|X_{-\infty}| \le \liminf_{n \to -\infty} \mathbb{E}|X_n| < \sup_{n \le 0} \mathbb{E}|X_n| < \infty.$$

This implies $X_n \to X_{-\infty}$ a.s. and then in probability. By Proposition 2.20, $X_n \to X_{-\infty}$ in L^1 . (2) \Rightarrow (3) is clear. For (3) \Rightarrow (4), note that

(2.8)
$$\mathbb{E}(X_{n+1}|\mathcal{F}_{-\infty}) = \mathbb{E}(\mathbb{E}(X_{n+1}|\mathcal{F}_n)|\mathcal{F}_{-\infty}) \ge \mathbb{E}(X_n|\mathcal{F}_{-\infty})$$

and

 $\mathbb{E}|\mathbb{E}(X_n|\mathcal{F}_{-\infty}) - X_{-\infty}| \le \mathbb{E}|X_n - X_{-\infty}| \to 0, \quad \text{as } n \to -\infty.$

This implies $\mathbb{E}(X_n|\mathcal{F}_{-\infty}) \to X_{-\infty}$ in L^1 and then in probability. By selecting a subsequence k_n such that $\mathbb{E}(X_{k_n}|\mathcal{F}_{-\infty}) \to X_{-\infty}$ a.s., one may use (2.8) to conclude $\mathbb{E}(X_n|\mathcal{F}_{-\infty}) \ge X_{-\infty}$ a.s..

 $(4) \Rightarrow (5)$ is clear. For $(5) \Rightarrow (1)$, set $L = -\inf_n \mathbb{E} X_n$. Note that, for x > 0,

$$\mathbb{P}(|X_n| > x) \le x^{-1} \mathbb{E}|X_n| = x^{-1} (2\mathbb{E}X_n^+ - \mathbb{E}X_n) \le x^{-1} (2\mathbb{E}X_0^+ + L), \quad \forall n \le 0.$$

Let $\epsilon > 0$. As $\mathbb{E}X_n \to -L$, we may select N < 0 such that $\mathbb{E}X_N - \mathbb{E}X_n < \epsilon/2$ for $n \leq N$. This implies that, for $n \leq N$,

$$\mathbb{E}(|X_n|; X_n < -x) = -\mathbb{E}(X_n; X_n < -x) = -\mathbb{E}X_n + \mathbb{E}(X_n; X_n \ge -x)$$

$$\leq -\mathbb{E}X_n + \mathbb{E}(X_N; X_n \ge -x) = \mathbb{E}X_N - \mathbb{E}X_n - \mathbb{E}(X_N; X_n < -x)$$

$$\leq \epsilon/2 + \mathbb{E}(|X_N|; |X_n| > x).$$

Also, one has

$$\mathbb{E}(|X_n|; X_n > x) = \mathbb{E}(X_n^+; X_n > x) \le \mathbb{E}(X_0^+; X_n > x) \le \mathbb{E}(X_0^+; |X_n| > x).$$

As $\sup_n \mathbb{P}(|X_n| > x) \to 0$, we may choose x such that

$$\sup_{n} \mathbb{E}(|X_N|; |X_n| > x) < \epsilon/4, \quad \sup_{n} \mathbb{E}(X_0^+; |X_n| > x) < \epsilon/4.$$

Consequently, the above discussion leads to $\sup_{n < N} \mathbb{E}(|X_n|; |X_n| > x) < \epsilon$, as desired.

When X_n is a backward martingale, Remark 2.10 implies that X_n is uniformly integrable. By the L^1 -convergence, we have

$$\mathbb{E}(X_{-\infty}; A) = \lim_{n \to -\infty} \mathbb{E}(X_n; A) = \mathbb{E}(X_0; A), \quad \forall A \in \mathcal{F}_{-\infty}.$$

As $X_{-\infty}$ is $\mathcal{F}_{-\infty}$ -measurable, this implies $X_{-\infty} = \mathbb{E}(X_0 | \mathcal{F}_{-\infty})$.

Exercise 2.15. Let $(\mathcal{F}_n)_{n\leq 0}$ be a non-decreasing sequence of σ -fields and $\mathcal{F}_{-\infty} = \bigcap_{n\leq 0} \mathcal{F}_n$. Prove that if X is a random variable satisfying $\mathbb{E}|X| < \infty$, then $\mathbb{E}(X|\mathcal{F}_n)$ converges a.s. and in L^1 to $\mathbb{E}(X|\mathcal{F}_{-\infty})$ as $n \to -\infty$.

Exercise 2.16. Let $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for n < 0 and set $\mathcal{F}_{-\infty} = \bigcap_{n \leq 0} \mathcal{F}_n$. Suppose that X_n converges a.s to X and $|X_n| \leq Y$ and $\mathbb{E}Y < \infty$. Prove that $\mathbb{E}(X_n | \mathcal{F}_n)$ converges a.s. to $\mathbb{E}(X | \mathcal{F}_{-\infty})$ as $n \to -\infty$.

Let (S, \mathcal{G}, μ) be a probability space and set

(2.9)
$$\Omega = S \times S \times \cdots, \quad \mathcal{F} = \mathcal{G} \otimes \mathcal{G} \otimes \cdots, \quad \mathbb{P} = \mu \times \mu \times \cdots.$$

For any permutation of \mathbb{N} and $\omega \in \Omega$, define $\pi(\omega) := (\omega_{\pi(n)})_{n=1}^{\infty}$. An event $A \in \mathcal{F}$ is called permutable if $\pi(A) := {\pi(\omega) : \omega \in A} = A$ for any finite permutation π . A sub- σ -field \mathcal{E} of \mathcal{F} is called exchangeable if \mathcal{E} is generated by permutable events. In fact, all events in \mathcal{E} are permutable. By the $\pi - \lambda$ lemma, it is easy to check $\mathbb{P}(\pi(A)) = \mathbb{P}(A)$ for $A \in \mathcal{F}$ and π is any finite permutation.

Theorem 2.28 (The Hewitt-Savage zero-one law). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the probability space defined in (2.9) and \mathcal{E} is an exchangeable σ -field. Then, $\mathbb{P}(A) \in \{0,1\}$ for all $A \in \mathcal{E}$.

Proof. Let $A \in \mathcal{E}$ and set $\mathcal{G}_{n+1} = \mathcal{G}_n \times \mathcal{G}$. As $\bigcup_{n=1}^{\infty} \{B \times \Omega : B \in \mathcal{G}_n\}$ is a field generating \mathcal{F} , one may select $A_n = B_n \times \Omega$ with $B_n \in \mathcal{G}_n$ such that $\mathbb{P}(A_n \Delta A) \to 0$. This implies $\mathbb{P}(A_n) \to \mathbb{P}(A)$. Let π be the following permutation

$$(1, n+1)(2, n+2)\cdots(n, 2n)$$

and let $A'_n = \pi(A) = S^n \times B_n \times S^\infty$. Clearly, one has $\mathbb{P}(A_n \Delta A) = \mathbb{P}(\pi(A_n \Delta A)) = \mathbb{P}(A'_n \Delta A)$. Note that $B \setminus C \subset (B \setminus D) \cup (D \setminus C)$ for any set D, which implies $B \Delta C \subset (B \Delta D) \cup (D \Delta C)$. Immediately, this yields

$$\mathbb{P}(A_n \Delta A'_n) \le \mathbb{P}(A_n \Delta A) + \mathbb{P}(A'_n \Delta A) = 2\mathbb{P}(A_n \Delta A) \to 0, \quad \text{as } n \to \infty.$$

Thus, $|\mathbb{P}(A_n) - \mathbb{P}(A_n \cap A'_n)| \leq \mathbb{P}(A_n \Delta A'_n) \to 0$ and then $\mathbb{P}(A_n \cap A'_n) \to \mathbb{P}(A)$. Since A_n and A'_n are independent, we have $\mathbb{P}(A_n \cap A'_n) = \mathbb{P}(A_n)\mathbb{P}(A'_n) \to \mathbb{P}(A)^2$. Consequently, $\mathbb{P}(A) \in \{0,1\}$.

Example 2.7 (The law of large numbers). Let $X_1, X_2, ...$ be i.i.d. random variables with $E|X_1| < \infty$. Set $S_n = X_1 + X_2 + \cdots + X_n$, $Y_{-n} = S_n/n$ and

$$\mathcal{F}_{-n} = \mathcal{F}(S_n, S_{n+1}, ...) = \mathcal{F}(S_n, X_{n+1}, X_{n+1}, ...).$$

Note that

$$\mathbb{E}(X_{n+1}|\mathcal{F}_{-n-1}) = \frac{S_{n+1}}{\binom{n+1}{24}} = Y_{-n-1} \quad \text{a.s..}$$

This implies

$$\mathbb{E}(Y_{-n}|\mathcal{F}_{-n-1}) = \frac{\mathbb{E}(S_{n+1}|\mathcal{F}_{-n-1}) - \mathbb{E}(X_{n+1}|\mathcal{F}_{-n-1})}{n} \stackrel{a.s.}{=} \frac{(n+1)Y_{-n-1} - Y_{-n-1}}{n} = Y_{-n-1},$$

and, hence, $(Y_n)_{n\leq 0}$ is a backward martingale. By Theorem 2.27, S_n/n converges a.s. to $\mathbb{E}(X_1|\mathcal{F}_{-\infty})$. The strong law of large numbers is then given by the Hewitt-Savage 0-1 law.

2.7. Doob's inequality and L^p -convergence. In this subsection, we consider the L^p -convergence of submartingales for $p \in (1, \infty)$. Recall that, in the proof of Doob's inequality, we have in fact derived the following fact. For any nonnegative submartingale $X_0, ..., X_n$, one has

(2.10)
$$\mathbb{P}(\bar{X}_n > \epsilon) \le \epsilon^{-1} \mathbb{E}(X_n; \bar{X}_n > \epsilon) \le \epsilon^{-1} \mathbb{E}X_n, \quad \forall \epsilon > 0,$$

where $\bar{X}_n = \max\{X_0, ..., X_n\}.$

Example 2.8. Let ξ_1, ξ_2, \ldots be independent random variables satisfying $\mathbb{E}\xi_n = 0$ and $\sigma_n^2 = \mathbb{E}\xi_n^2 < \infty$. Set $S_n = \xi_1 + \cdots + \xi_n$ and $X_n = S_n^2$. Then, X_n is a submartingale. Applying Doob's inequality with $\epsilon = x^2$, we obtain Kolmogorov's inequality, that is,

$$\mathbb{P}\left(\max_{1 \le m \le n} |S_m| > x\right) \le \frac{\operatorname{Var}(S_n)}{x^2}$$

Exercise 2.17. Let ξ_1, ξ_2, \dots be independent and satisfy $|\xi_n| \leq K$ for all n. Set $S_n = \xi_1 + \dots + \xi_n$. Prove that if $\mathbb{E}\xi_n = 0$, then

$$\mathbb{P}\left(\max_{1 \le m \le n} |S_m| \le x\right) \le \frac{(x+K)^2}{\operatorname{Var}(S_n)}$$

Hint: Use the fact that $S_n^2 - s_n^2$ is a martingale, where $s_n^2 = \sigma_1^2 + \cdots + \sigma_n^2$ and $\sigma_n^2 = \mathbb{E}\xi_n^2$.

Exercise 2.18. Let X_n be a martingale satisfying $X_0 \equiv 0$ and $\mathbb{E}X_n^2 < \infty$. Show that

$$\mathbb{P}\left(\max_{1\le m\le n} X_m \ge x\right) \le \frac{\mathbb{E}X_n^2}{\mathbb{E}X_n^2 + x^2}, \quad \forall x > 0.$$

Hint: Use the fact that $(X_n + c)^2$ is a submartingale and optimize the inequality over c.

Theorem 2.29. Let $(X_n)_{n=0}^{\infty}$ be a nonnegative submartingale satisfying $\sup_n \mathbb{E}X_n^p < \infty$ for some $p \in (1, \infty)$. Then, X_n converges a.s. and in L^p . In particular, if $(X_n)_{n=0}^{\infty}$ is a martingale satisfying $\sup_n \mathbb{E}|X_n|^p < \infty$ for some $p \in (1, \infty)$, then X_n converges in L^p .

To prove this theorem, we need the following proposition.

Proposition 2.30 (L^p maximum inequality). Let $p \in (1, \infty)$ and $(X_m)_{m=0}^n$ be a nonnegative submartingale. Set $\bar{X}_n = \max_{1 \le m \le n} X_m$. Then,

$$\mathbb{E}\bar{X}_n^p \le (p/(p-1))^p \mathbb{E}X_n^p.$$

Proof of Theorem 2.29. Note that $(\mathbb{E}X_n)^p \leq \mathbb{E}X_n^p$. By the martingale convergence theorem, X_n converges a.s. to some integrable random variable, say X_{∞} . Set $Y = \sup_n X_n$. By Proposition 2.30, one has

$$\mathbb{E}\left(\max_{1\leq m\leq n} X_m\right)^p \leq \left(\frac{p}{p-1}\right)^p \mathbb{E}X_n^p \leq \left(\frac{p}{p-1}\right)^p \sup_{n\geq 1} \mathbb{E}X_n^p.$$

Letting *n* tend to infinity implies $\mathbb{E}Y^p < \infty$. Observe that $|X_n - X_\infty| = \lim_m |X_n - X_m| \le 2|Y|$ with probability one. By the Lebesgue dominated convergence theorem, X_n converges to X_∞ in L^p .

Proof of Proposition 2.30. Note that, for K > 0 and x > 0,

$$\{\bar{X}_n \land K > x\} = \begin{cases} \{\bar{X}_n > x\} & \text{if } K > x\\ \emptyset & \text{if } K \le x \end{cases}$$

By Proposition 2.10, one has

$$\mathbb{P}(\bar{X}_n \wedge K > x) \le x^{-1} \mathbb{E}(X_n; \bar{X}_n \wedge K > x), \quad \forall K, x > 0.$$

Consider the following computations.

$$\mathbb{E}(\bar{X}_n \wedge K)^p = \int_0^\infty \mathbb{P}((\bar{X}_n \wedge K)^p > x) dx = \int_0^\infty p y^{p-1} \mathbb{P}(\bar{X}_n \wedge K > y) dy,$$

where the last equality applies the change of variables $x = y^p$. As a consequence, this implies

$$\mathbb{E}(\bar{X}_n \wedge K)^p \leq \int_0^\infty py^{p-2} \int_\Omega X_n \mathbf{1}_{\{\bar{X}_n \wedge K > y\}} d\mathbb{P} = \int_\Omega X_n \int_0^{\bar{X}_n \wedge K} py^{p-2} dy d\mathbb{P}$$
$$= \frac{p}{p-1} \mathbb{E}(X_n (\bar{X}_n \wedge K)^{p-1}) \leq \frac{p}{p-1} (\mathbb{E}(X_n)^p)^{1/p} (\mathbb{E}(\bar{X}_n \wedge K)^p)^{1/q}$$

where q is the exponent conjugate of p and the last inequality is Hölder's inequality. Since $\mathbb{E}(\bar{X}_n \wedge K)^p < \infty$, we obtain

$$\mathbb{E}(\bar{X}_n \wedge K)^p \le \left(\frac{p}{p-1}\right)^p \mathbb{E}(X_n)^p.$$

Letting $K \to \infty$ gives the desired inequality.

Exercise 2.19. Prove that if X_n is a submartingale, then

$$\mathbb{E}\bar{X}_n \le (1 - 1/e)^{-1} [1 + \mathbb{E}(X_n^+ \log^+(X_n^+))]$$

where $\bar{X}_n = \max_{1 \le m \le n} X_m^+$, $\log^+ t = \max\{\log t, 0\}$ and $0 \log 0 := 0$. *Hint:* First, show that

$$\mathbb{E}(\bar{X}_n \wedge K) \le 1 + \int_{\Omega} X_n^+ \log(\bar{X}_n \wedge K) d\mathbb{P}$$

and then apply the following inequality

$$a\log b \le a\log a + \frac{b}{e} \le a\log^+ a + \frac{b}{e}.$$

2.8. Other materials.

2.8.1. Bounded increments.

Theorem 2.31. Let $X_1, X_2, ...$ be a martingale satisfying $\mathbb{P}(|X_{n+1} - X_n| \le M) = 1$ for some constant M with $X_0 = 0$. Then, $\mathbb{P}(C \cup D) = 1$, where

$$C = \{X_n \text{ converges to a finite limt}\}, \quad D = \left\{\limsup_{n \to \infty} X_n = \infty, \liminf_{n \to \infty} X_n = -\infty\right\}.$$

Proof. For $k \in \mathbb{N}$, $N_k = \inf\{n : X_n \leq -k\}$, where $\inf \emptyset := \infty$. Clearly, N_k is a stopping time and, by Theorem 2.7, $(X_{n \wedge N_k})_{n=1}^{\infty}$ is a martingale. Observe that, on $\{N_k > n\}$, $X_{n \wedge N_k} = X_n >$ -k and, on $\{n \geq N_k\}$, $X_{n \wedge N_k} = X_{N_k} = X_{N_k-1} + X_{N_k} - X_{N_k-1} > -k - M$. By Corollary 2.13, $X_{n \wedge N_k}$ converges a.s. to some integrable random variable, which implies that X_n converges a.s. on $\{N_k = \infty\}$ for all $k \geq 1$. Set $E = \bigcup_{k=1}^{\infty} \{N_k = \infty\}$. Clearly, $E = \{\inf_n X_n > -\infty\}$ and then $\mathbb{P}(C \cup \{\inf_n X_n = -\infty\}) = 1$. Similarly, one can show $\mathbb{P}(C \cup \{\sup_n X_n = \infty\}) = 1$. Combining both conclusions gives the desired identity. \Box

Exercise 2.20. Let X_n be a submartingale with $\mathbb{P}(\{\sup_n X_n < \infty\}) = 1$ and assume $\mathbb{E}(\sup_n \xi_n^+) < \infty$, where $\xi_n = X_n - X_{n-1}$. Show that X_n converges a.s. to an almost surely real-valued random variable.

Exercise 2.21. Let \mathcal{F}_n be a filtration and X_n, Y_n be nonnegative random variables adapted to \mathcal{F}_n . Suppose $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \leq X_n + Y_n$ and $\mathbb{P}(\sum_n Y_n < \infty) = 1$. Prove that X_n converges a.s.. *Hint:* Consider $Z_n = X_n - (Y_1 + Y_2 + \cdots + Y_{n-1})$.

Corollary 2.32 (The second Borel-Cantelli lemma). Let \mathcal{F}_n be a filtration with $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $A_n \in \mathcal{F}_n$. Then,

$$\{A_n \text{ i.o.}\} \stackrel{a.s.}{=} \left\{ \sum_{n=1}^{\infty} \mathbb{P}(A_n | \mathcal{F}_{n-1}) = \infty \right\}.$$

Proof. Set $X_0 \equiv 0$ and

$$X_n = \sum_{m=1}^n \left(\mathbf{1}_{A_m} - \mathbb{P}(A_m | \mathcal{F}_{m-1}) \right).$$

Then, X_n is a martingale and $|X_n - X_{n-1}| \stackrel{a.s.}{\leq} 1$ for all n. Let C and D be events in Theorem 2.31. Then, $\mathbb{P}(C \cup D) = 1$. Note that, on C,

$$\sum_{n=1}^{\infty} \mathbf{1}_{A_n} = \infty \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} \mathbb{P}(A_n | \mathcal{F}_{n-1}) = \infty,$$

and, on D,

$$\sum_{n=1}^{\infty} \mathbf{1}_{A_n} = \infty, \quad \sum_{n=1}^{\infty} \mathbb{P}(A_n | \mathcal{F}_{n-1}) = \infty.$$

Exercise 2.22. Prove the following statements.

(1) Use the Borel-Cantelli lemma to show that, for $p_n \in [0, 1)$,

$$\prod_{n=1}^{\infty} (1-p_n) = 0 \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} p_n = \infty.$$

(2) If $\mathbb{P}(\bigcap_{m=1}^{n} A_m^c) > 0$ for all n and $\sum_{n=2}^{\infty} \mathbb{P}(A_n | \bigcap_{m=1}^{n-1} A_m^c) = \infty$, then $\mathbb{P}(A_n \text{ i.o.}) = 1$.

2.8.2. Optional stopping theorem.

Definition 2.8. Let \mathcal{F}_n be a filtration on a measurable space (Ω, \mathcal{F}) and N be a stopping time w.r.t. \mathcal{F}_n . Define \mathcal{F}_N to be a collection of events $A \in \mathcal{F}$ satisfying $A \cap \{N = n\} \in \mathcal{F}_n$ for all n.

Remark 2.11. It is easy to show that \mathcal{F}_N is a sub- σ -field of \mathcal{F} and N is \mathcal{F}_N -measurable. Furthermore, \mathcal{F}_N is also a collection of events $A \in \mathcal{F}$ satisfying $A \cap \{N \leq n\} \in \mathcal{F}_n$ for all $n \geq 0$.

Proposition 2.33. Let \mathcal{F}_n be a filtration and M, N be stopping times w.r.t. \mathcal{F}_n .

- (1) $M \lor N$ and $M \land N$ are stopping times.
- (2) If $M \leq N$, then $\mathcal{F}_M \subset \mathcal{F}_N$.
- (3) If $M \leq N$, then, $M\mathbf{1}_A + N\mathbf{1}_{A^c}$ is a stopping time w.r.t. \mathcal{F}_n for any $A \in \mathcal{F}_M$.
- (4) If X_n is adapted to \mathcal{F}_n , then $X_N \mathbf{1}_{\{N < \infty\}}$ is \mathcal{F}_N -measurable.

Proof. Obvious from the definition.

In the following, when $X_n(\omega)$ converges, we write $X_{\infty}(\omega)$ for its limit.

Theorem 2.34. Let X_n be a uniformly integrable submartingale w.r.t. \mathcal{F}_n and N be a stopping time for \mathcal{F}_n . Then, $X_{N \wedge n}$ is uniformly integrable and converges to X_N in L^1 and $\mathbb{E}X_0 \leq \mathbb{E}X_N \leq \mathbb{E}X_\infty < \infty$.

Proof. Since X_n is uniform integrable, X_n converges a.s., which implies that X_N is a.s. defined. By Theorem 2.7, $X_{N \wedge n}$ is a submartingale. As X_n^+ is also a submartingale, one has

$$\mathbb{E}X_{N\wedge n}^+ = \mathbb{E}(X_N^+; N < n) + \mathbb{E}(X_n^+; N \ge n) \le \mathbb{E}X_n^+ \le \sup_n \mathbb{E}X_n^+ < \infty$$

By the martingale convergence theorem, $X_{N \wedge n}$ converges to X_N a.s. and $\mathbb{E}|X_N| < \infty$. This leads to

(2.11)
$$\mathbb{E}(|X_{N \wedge n}|; |X_{N \wedge n}| > x) = \mathbb{E}(|X_N|; |X_N| > x, N \le n) + \mathbb{E}(|X_n|; |X_n| > x, N > n) \\ \le \mathbb{E}(|X_N|; |X_N| > x) + \sup_n \mathbb{E}(|X_n|; |X_n| > x)$$

Letting $x \to \infty$ proves that $X_{N \wedge n}$ is uniformly integrable.

For the inequalities, since X_n is a submartingale, one has $\mathbb{E}X_0 \leq \mathbb{E}X_{N \wedge n} \leq \mathbb{E}X_n$. As $X_{N \wedge n}$ and X_n converge to X_N and X_∞ in L^1 , we obtain

$$\mathbb{E}X_0 \le \lim_{n \to \infty} \mathbb{E}X_{N \wedge n} = \mathbb{E}X_N \le \lim_{n \to \infty} \mathbb{E}X_n = \mathbb{E}X_\infty.$$

Remark 2.12. It follows immediately from (2.11) that, for any process $(X_n)_{n=0}^{\infty}$, if N is a stopping time for X_n such that $\mathbb{E}(|X_N|; N < \infty) < \infty$ and $X_n \mathbf{1}_{\{N>n\}}$ is uniformly integrable, then $X_{N \wedge n}$ is uniformly integrable.

Theorem 2.35 (The optional stopping theorem). Let X_n be a submartingale with respect to \mathcal{F}_n and M, N be stopping times for \mathcal{F}_n . Suppose $M \leq N$ and X_n is uniformly integrable. Then, $X_M \leq \mathbb{E}(X_N | \mathcal{F}_M)$. In particular, $\mathbb{E}X_M \leq \mathbb{E}X_N$.

Proof of the optional stopping theorem. By Theorem 2.34, $X_{N \wedge n}$ is a uniformly integrable submartingale w.r.t. \mathcal{F}_n and $\mathbb{E}|X_N| < \infty$. Again, by applying Theorem 2.34 with $X_{N \wedge n}$ and M, we have $\mathbb{E}|X_M| < \infty$ and $\mathbb{E}X_M \leq \mathbb{E}X_N$. Let $A \in \mathcal{F}_M$ and set $L = M\mathbf{1}_A + N\mathbf{1}_{A^c}$. Clearly, $L \leq N$. By Proposition 2.33, L is a stopping time for \mathcal{F}_n . Replacing M with L in the above discussion then yields $\mathbb{E}X_L \leq \mathbb{E}X_N$ or equivalently $\mathbb{E}(X_M; A) \leq \mathbb{E}(X_N; A)$.

Theorem 2.36. Let X_n be a submartingale w.r.t. \mathcal{F}_n and N be a stopping time for \mathcal{F}_n . Suppose $\mathbb{E}N < \infty$ and there exists a constant c > 0 such that

(2.12)
$$\mathbb{E}(|X_{n+1} - X_n||\mathcal{F}_n) \le c \quad on \ \{N > n\}, \quad \forall n$$

Then, $X_{N \wedge n}$ is uniformly integrable and $\mathbb{E}X_N \geq \mathbb{E}X_0$.

Proof. First, let's write

$$X_{N \wedge n} = \sum_{k=0}^{n} \mathbf{1}_{\{N=k\}} \left(X_0 + \sum_{i=0}^{k-1} (X_{i+1} - X_i) \right) + \sum_{k>n} \mathbf{1}_{\{N=k\}} \left(X_0 + \sum_{i=0}^{n-1} (X_{i+1} - X_i) \right).$$

By the triangle inequality, this implies

$$|X_{N \wedge n}| \le |X_0| + X, \quad X := \sum_{i=0}^{\infty} |X_{i+1} - X_i| \mathbf{1}_{\{N > i\}}$$

Consequently, (2.12) implies $\mathbb{E}(|X_{i+1} - X_i|; N > i) \leq c\mathbb{P}(N > i)$, which leads to

$$\mathbb{E}X = \sum_{i=0}^{\infty} \mathbb{E}(|X_{i+1} - X_i|; N > i) \le c \sum_{i=0}^{\infty} \mathbb{P}(N > i) = c\mathbb{E}N < \infty.$$
²⁸

By Exercise 2.8(2), $(X_{N \wedge n})_{n=0}^{\infty}$ is uniformly integrable.

Theorem 2.37. If X_n is a nonnegative supermartingale w.r.t. \mathcal{F}_n and N is a stopping time for \mathcal{F}_n , then $\mathbb{E}X_0 \geq \mathbb{E}X_N$.

Proof. By Theorem 2.7, $X_{N \wedge n}$ is a nonnegative supermartingale w.r.t. \mathcal{F}_n and thus $\mathbb{E}X_{N \wedge n} \leq \mathbb{E}X_0$. By Corollary 2.13, X_n and $X_{N \wedge n}$ converge a.s. and this implies X_N is almost surely defined and $\mathbb{E}|X_N| < \infty$. Applying the monotone convergence theorem and Fatou's lemma, we obtain

$$\mathbb{E}(X_N; N < \infty) = \lim_{n \to \infty} \mathbb{E}(X_N; N \le n), \quad \mathbb{E}(X_N; N = \infty) \le \liminf_{n \to \infty} \mathbb{E}(X_n; N > n).$$

Consequently, this leads to $\mathbb{E}X_N \leq \liminf_n \mathbb{E}X_{N \wedge n} \leq \mathbb{E}X_0$.

Exercise 2.23. Let X_n be a nonnegative supermartingale. Show that $\mathbb{P}(\sup_n X_n > \epsilon) \leq \mathbb{E}X_0/\epsilon$.

In the following, $(X_n)_{n=1}^{\infty}$ refers to a sequence of i.i.d. random variables, $S_n = X_1 + \cdots + X_n$ and $\mathcal{F}_n = \mathcal{F}(X_1, X_2, ..., X_n)$.

Theorem 2.38 (Wald's identity). Let N be a stopping time for \mathcal{F}_n and $\varphi(\lambda) = \mathbb{E}e^{\lambda X_1}$. Assume that $\mathbb{E}N < \infty$, $1 \le \varphi(\lambda_0) < \infty$ for some real $\lambda_0 \ne 0$ and there is c > 0 such that $|S_n| < c$ on $\{N > n\}$ for all n. Then, $\mathbb{E}(e^{\lambda_0 S_N} / \varphi(\lambda_0)^N) = 1$.

Proof. Set $Y_n = e^{\lambda_0 S_n} / \varphi(\lambda_0)^n$. Clearly, Y_n is a martingale w.r.t. to \mathcal{F}_n . Note that

$$\mathbb{E}(|Y_{n+1} - Y_n||\mathcal{F}_n) = \frac{e^{\lambda_0 S_n}}{\varphi(\lambda_0)^n} \mathbb{E}\left|\frac{e^{\lambda_0 X_{n+1}}}{\varphi(\lambda_0)} - 1\right| \le 2e^{c|\lambda_0|} \quad \text{on } \{N > n\}.$$

By Theorem 2.36, $\mathbb{E}Y_N = \mathbb{E}Y_0 = 1$.

Example 2.9. Consider the random walk on \mathbb{Z} with $\mathbb{P}(X_1 = 1) = p$ and $\mathbb{P}(X_1 = -1) = 1 - p$. For $i \in \mathbb{Z}$, set $T_i = \min\{n \ge 0 | S_n = i\}$. Fix a < 0 < b and let $N = T_a \wedge T_b$. Clearly, T_a , T_b and N are stopping times for \mathcal{F}_n . Claim 1: $\mathbb{P}(N < \infty) = 1$.

Proof. Consider the process $S_{N \wedge n}$. Note that $S_{N \wedge n}$ is a uniformly bounded martingale if p = 1/2 (resp. submartingale if p > 1/2 and supermartingale if p < 1/2). The martingale convergence theorem implies that $S_{N \wedge n}$ converges a.s. and in L^1 . Since $S_{N \wedge n}$ is integer-valued, $S_{N \wedge n}$ converges a.s. if and only if $S_{N \wedge n} \in \{a, b\}$ for n large enough. This implies $\mathbb{P}(N < \infty) = 1$.

Claim 2: If p = 1/2, then $\mathbb{P}(S_N = a) = b/(b - a)$.

Proof. By Claim 1, $S_{N \wedge n}$ converges a.s. and in L^1 to S_N . As $S_{N \wedge n}$ is a martingale, we have $0 = \mathbb{E}S_0 = \mathbb{E}S_N = b\mathbb{P}(T_b < T_a) + a\mathbb{P}(T_a < T_b)$. The desired probability is given by $\mathbb{P}(T_a > T_b) = 1 - \mathbb{P}(T_a < T_b) = 1 - \mathbb{P}(S_N = a)$.

For Claims 3 and 4, we assume $p \in (1/2, 1)$ and set $\varphi(x) = ((1-p)/p)^x$. Claim 3: $\varphi(S_{N \wedge n})$ is a martingale.

Proof. It is easy to check that $\varphi(S_n)$ is a martingale. By Theorem 2.7, $\varphi(S_{N \wedge n})$ is a martingale.

Claim 4: $\mathbb{P}(T_a < T_b) = \frac{\varphi(b)-1}{\varphi(b)-\varphi(a)}$.

Proof. Since $\varphi(S_{N \wedge n})$ is a martingale taking values on a finite set, $\varphi(S_{N \wedge n})$ converges a.s. and in L^1 to $\varphi(S_N)$. Thus, we have

$$\mathbb{I} = \mathbb{E}\varphi(S_0) = \mathbb{E}\varphi(S_N) = \varphi(b)\mathbb{P}(T_b < T_a) + \varphi(a)\mathbb{P}(T_b > T_a).$$

A similar computation as in Claim 2 yields the desired probability.

Claim 5: If p = 1/2, then $\mathbb{P}(T_a < \infty) = \mathbb{P}(T_b < \infty) = 1$. If $p \in (1/2, 1)$, then $\mathbb{P}(T_b < \infty) = 1$ and $\mathbb{P}(T_a < \infty) = (p/(1-p))^a$.

Proof. Note that $T_b \to \infty$ pointwise as $b \to \infty$. This implies $\{T_a < \infty\} = \bigcup_{b=1}^{\infty} \{T_a < T_b\}$. By Claim 2, when p = 1/2,

$$\mathbb{P}(T_a < \infty) = \lim_{b \to \infty} \mathbb{P}(T_a < T_b) = 1,$$

while the symmetry of the random walk implies $\mathbb{P}(T_b < \infty) = 1$. When $p \in (1/2, 1)$, Claim 4 implies

$$\mathbb{P}(T_a < \infty) = \lim_{b \to \infty} \mathbb{P}(T_a < T_b) = 1/\varphi(a), \quad \mathbb{P}(T_b < \infty) = \lim_{a \to -\infty} \mathbb{P}(T_b < T_a) = 1.$$

2.8.3. Orthogonality of martingale increments.

Proposition 2.39. Let X_n be a martingale w.r.t. \mathcal{F}_n satisfying $\mathbb{E}X_n^2 < \infty$. Then, $\mathbb{E}((X_n - \sum_{i=1}^n \mathbb{E}X_n^2))$ $X_m(Y) = 0$ for $m \le n$, where Y is any \mathcal{F}_m -measurable random variable satisfying $\mathbb{E}Y^2 < \infty$. In particular, $\mathbb{E}(X_n X_m) = \mathbb{E}X_m^2$ for $m \le n$.

Proof. Since X_n and Y are in L^2 , $\mathbb{E}|(X_n - X_m)Y| < \infty$. This implies

$$\mathbb{E}((X_n - X_m)Y) = \mathbb{E}[\mathbb{E}((X_n - X_m)Y|\mathcal{F}_m)] = \mathbb{E}[Y\mathbb{E}(X_n - X_m|\mathcal{F}_m)] = 0.$$

Corollary 2.40. If X_n is a martingale w.r.t. \mathcal{F}_n satisfying $\mathbb{E}X_n^2 < \infty$, then for $m \leq n$,

$$\mathbb{E}((X_n - X_m)^2 | \mathcal{F}_m) = \mathbb{E}(X_n^2 | \mathcal{F}_m) - X_m^2.$$

The above corollary can be regarded as a formula on the conditional variance of X_n given \mathcal{F}_m .

Exercise 2.24. Let X_n and Y_n be L^2 martingales w.r.t. \mathcal{F}_n . Show that

$$\mathbb{E}(X_n Y_n) - \mathbb{E}(X_0 Y_0) = \sum_{m=1}^n \mathbb{E}[(X_m - X_{m-1})(Y_m - Y_{m-1})].$$

Exercise 2.25. Let X_n be a martingale and $\xi_n = X_n - X_{n-1}$. Show that:

- (1) If $\mathbb{E}X_0^2 < \infty$ and $\sum_{n=1}^{\infty} \mathbb{E}\xi_n^2 < \infty$, then X_n converges a.s. and in L^2 . (2) If $b_n \uparrow \infty$ and $\sum_{n=1}^{\infty} \mathbb{E}\xi_n^2/b_n^2 < \infty$, then $X_n/b_n \to 0$ a.s..

Example 2.10. Recall the branching process introduced before. Let $\{\xi_i^n : i, n \ge 0\}$ be a family of i.i.d. non-negative integer-valued random variables and $Z_{n+1} = \sum_{i=1}^{Z_n} \xi_i^{n+1}$. Let $\mu = \mathbb{E}\xi_i^n$ and $X_n = Z_n/\mu^n$. It was proved that X_n is a martingale and $\mathbb{E}X_n = 1$ for all $n \ge 1$. Assume in the following that $\operatorname{Var}(\xi_i^n) = \sigma^2 < \infty$. By Corollary 2.40, one has

$$\mathbb{E}X_n^2 = \mathbb{E}X_{n-1}^2 + \mathbb{E}(X_n - X_{n-1})^2.$$

Note that

$$\mathbb{E}[(X_n - X_{n-1})^2; Z_{n-1} = i] = \mu^{-2n} \mathbb{E}\left[\left(\sum_{j=1}^i \xi_j^n - i\mu\right)^2; Z_{n-1} = i\right]$$
$$= \mu^{-2n} \mathbb{E}\left[\left(\sum_{j=1}^i (\xi_j^n - \mu)\right)^2\right] \mathbb{P}(Z_{n-1} = i) = \mu^{-2n} \sigma^2 i \mathbb{P}(Z_{n-1} = i).$$

Summing up *i* gives $\mathbb{E}(X_n - X_{n-1})^2 = \mu^{-n-1}\sigma^2$. By induction, this implies $\mathbb{E}X_n^2 = 1 + \sigma^2 \sum_{i=1}^n \mu^{-k-1}$. Assume that $\mu > 1$. Clearly, the above computation leads to $\sup_n \mathbb{E}X_n^2 < \infty$. By Theorem 2.29, X_n converges in L^2 to some random variable X. Applying the fact of $\mathbb{E}X_n = 1$, we obtain $\mathbb{E}X = 1$, which yields $\mathbb{P}(Z_n > 0$ for all $n) \geq \mathbb{P}(X > 0) > 0$.

2.9. Some other exercises.

Exercise 2.26. If X_n and Y_n are submartingales w.r.t. \mathcal{F}_n , then $X_n \vee Y_n$ is a submartingale w.r.t. \mathcal{F}_n .

Exercise 2.27. Prove the following statements.

- (1) If $y_n > -1$ satisfies $\sum_n |y_n| < \infty$, then $\prod_n (1+y_n) < \infty$.
- (2) Let X_n, Y_n be positive random variables adapted to \mathcal{F}_n . Assume that $\mathbb{E}X_n < \infty$, $\mathbb{E}(X_{n+1}|\mathcal{F}_n) \leq X_n(1+Y_n)$ and $\sum_n Y_n$ converges a.s. Then, X_n converges a.s..

Exercise 2.28 (The switching principle). Assume that X_n and Y_n be supermartingales w.r.t. \mathcal{F}_n and N is a stopping time for \mathcal{F}_n such that $X_N \geq Y_N$ on $\{N < \infty\}$. Set

$$Z_n = X_n \mathbf{1}_{\{N > n\}} + Y_n \mathbf{1}_{\{N \le n\}}, \quad W_n = X_n \mathbf{1}_{\{N \ge n\}} + Y_n \mathbf{1}_{\{N < n\}}.$$

Then, Z_n and W_n are supermartingales w.r.t. \mathcal{F}_n .

Exercise 2.29 (Dubins' inequality). Let X_n be a nonnegative supermartingale. Fix 0 < a < b and set $N_0 = -1$ and, for $k \ge 1$,

$$N_{2k-1} = \inf\{j > N_{2k-2} : X_j \le a\}, \quad N_{2k} = \inf\{j > N_{2k-1} : X_j \ge b\},$$

Let $U = \sup\{k : N_{2k} < \infty\}$. Prove that

1

$$\mathbb{P}(U \ge k) \le \left(\frac{a}{b}\right)^k \mathbb{E}\left(\frac{X_0}{a} \land 1\right).$$

Hint: Let $Y_n = 1$ for $0 \le n < N_1$ and for $j \ge 1$,

$$Y_n = \begin{cases} \left(\frac{b}{a}\right)^{j-1} \frac{X_n}{a} & \text{for } N_{2j-1} \le n < N_{2j} \\ \left(\frac{b}{a}\right)^j & \text{for } N_{2j} \le n < N_{2j+1} \end{cases}$$

Prove by induction (on j) that $Y_{n \wedge N_j}$ is a supermartingale and apply the fact of $\mathbb{E}Y_{n \wedge N_{2k}} \leq \mathbb{E}Y_0$ with $n \to \infty$.

Exercise 2.30. Let $Z_1, Z_2, ...$ be i.i.d. random variables with $\mathbb{E}|Z_1| < \infty$. Let θ be another random variable which has finite mean and is independent of Z_n . For $n \ge 1$, set $Y_n = \theta + Z_n$. Prove that $\mathbb{E}(\theta|Y_1, Y_2, ..., Y_n)$ converges to θ a.s. as $n \to \infty$. In statistics, if Z_1 is of standard normal distribution, then the distribution of θ is called the *prior distribution* and $\mathbb{P}(\theta \in \cdot | Y_1, ..., Y_n)$ is called the *posterior distribution*.

Exercise 2.31. Let Z_n be the Branching process with offspring distribution p_k . Prove that if $p_0 > 0$, then $\mathbb{P}(\lim_n Z_n \in \{0, \infty\}) = 1$. *Hint: Use Exercise 2.12.*

Exercise 2.32. Let \mathcal{F}_n be a filtration and X_n be random variables adapted to \mathcal{F}_n and taking values on [0, 1]. Let $\alpha > 0, \beta > 0$ be such that $\alpha + \beta = 1$ and assume that

(2.13)
$$\mathbb{P}(X_{n+1} = \alpha + \beta X_n | \mathcal{F}_n) = X_n, \quad \mathbb{P}(X_{n+1} = \beta X_n | \mathcal{F}_n) = 1 - X_n.$$

Then, X_n converges a.s. with $\mathbb{P}(\lim_n X_n = 1) = \mathbb{E}X_0$ and $\mathbb{P}(\lim_n X_n = 0) = 1 - \mathbb{E}X_0$.