2. MARTINGALES

Consider a game of flipping a coin infinitely and independently. Suppose that the head
appears with probability p, while the tail comes up with probability 1 — p. Each time a bet,
say d dollars, is set before the coin is flipped. As a result, the gambler wins the bet on heads
but loses it otherwise. For the gambler, it is crucial to know the probability of ruin when the
gambler starts with s dollars?

Let Zy,Z,... be a sequence of i.i.d. random variables with P(Z; = 1) = p and P(Z; =
—1) = 1—p and b, be the bet set for the nth flip. Assume that b, is a function of Z1, ..., Z,,_1.
Let S, be the total asset after the nth flip. Clearly, one has

(2.1) So=d, S,=5,_1+ ann(Zh ey Zn—l), Vn > 1,

where 0 < bp41 < Sp,. By setting 7 := inf{n > 1 : S, = 0} with inf() := oo, the ruin
probability is given by P(7 < co). In some computations, we obtain

=Sy as. forp=1/2
E(Sn+1]51,...,50) 8 < Sy a.s. forp<1/2, when S, > 0.
> S, as. forp>1/2

The gambler may conclude from the above observation that the sequence of games 71, Zo, ...
is fair if p = 1/2, unfavorable if p < 1/2 and favorable if p > 1/2.

2.1. Definitions and properties.

Definition 2.1. A sequence of o-fields, (F,)52, is a filtration if

n=0»
]:()C.FlC.FQC---.

A process (X,,)02 is adapted to a filtration (F,,)52, if X, is Fj,-measurable for all n > 0. We
briefly say that X, is adapted to F,.

Definition 2.2. Let (2, F,P) be a probability space and (F,,)>2, be a filtration with F,, C F.
A stochastic process, (X)), defined on (€2, F) is a martingale (resp. submartingale and
supermartingale) w.r.t. (F,)o>,, or briefly X, is a martingale (resp. submartingale and
supermartingale) w.r.t. JF, if

(1) (Xn)22, is adapted to (F)%;

(2) E|X,| < oo for all n > 0;

(3) E(Xp+1|Fn) = Xy as. (resp. > X, as. and < X, a.s.) for all n > 0.

In the case that F,, = F(Xo, ..., X;,) for n > 0, we briefly call (X,,)?2, or X,, a martingale

(resp. submartingale and supermartingale) when (2) and (3) hold.

Remark 2.1. If (X,,)2° is a submartingale w.r.t. (F,)22,, then (—X;,)5, is a supermartingale
w.r.t. (Fp)o2,. Besides, (X,,)0, is a martingale w.r.t. (F,)o2, if and only if (X,,)5, is both
a submartingale and a supermartingale w.r.t. (F,)5,

Ezample 2.1. Let (Q, F,P) be a probability space and let X,, be a sequence of i.i.d. random
variables on € satisfying P(X; = 1) =p and P(X; = —1) =1 —p withp € (0,1). Fixd e R
and set
So=d, Sp,=d+X1+Xo+---+X,, VYn>1I,
and
Fo=10,9}, F,=F(X1,...,Xn), Vn>1.
Then, S,, is a martingale (resp. submartingale and supermartingale) w.r.t. F, if p = 1/2
(resp. p>1/2 and p < 1/2).
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Example 2.2. Let X be a random variable with E|X| < co and (F;,)5%, be a filtration. Then,
Y, = E(X|F,) is a martingale w.r.t. F,.

Proposition 2.1. Suppose X, is a martingale (resp. submartingale and supermartingale)
with respect to F,,. Then,
(1) .F(Xo,Xl, ,Xn) C Fy forn > 0.
(2) For any filtration G,, satisfying
.F(Xo, ,Xn) C gn C fn,

Xy, is a martingale (resp. submartingale and supermartingale) with respect to G,. In
particular, X,, is a martingale (resp. submartingale and supermartingale).

Proof. Immediately from Proposition 1.4(4). O

Remark 2.2. Why we call them supermartingales? Such a denomination can be related to the
superharmonic function f on R?, which is defined by

1
f(@zm . )f(y)dy Ve eR, r>0,

where B(z,r) is the open ball in R? with radius 7 and center z, and |B(0,r)| is the Lebesgue
measure of B(0,7).

Exercise 2.1. Let X1, Xo, ... be i.i.d. random elements with values on R? and uniform dis-
tributed on B(0,1). Set Xg = z and S,, = Xo + -+ + X,, for n > 0. Prove that f(S,) is a
supermartingale w.r.t. F(Xo, ..., X,,) for any superharmonic function f on R

Exercise 2.2. Let X, be a submartingale w.r.t. F,. Prove that

(1) EX,, <EX,4; for all n > 0.
(2) sup,, E|X,| < oo if and only if sup,, EX, < oo, where t* =tV 0.

Derive similar statements for supermatringales?

Theorem 2.2. Let X,, be a random variable and Fy, be a filtration. Then, X, is a martingale
(resp. submartingale and supermartingale) w.r.t. Fy, if and only if

E(Xn|Fm) 2 X Yo >m.  (resp. > X, a.s. and < X, a.s.)

Proof. We prove the case for martingales, while the other cases can be shown in a similar way.
The sufficiency for martingales is clear by choosing m = n — 1. For the necessity, assume
that X, is a martingale w.r.t. F, and let n = m + k. Clearly, the theorem holds for & = 1.
Inductively, if E(X, x| Fm) = X, then
E(XerkH‘}—m) = E(E(Xm+k+1’fm+k)’fm) = Xm.
O

Theorem 2.3. Assume that X, is a martingale w.r.t. F, and ¢ is a conver function on R
satisfying Elp(X,,)| < oo for alln > 0. Then, p(X,,) is a submartingale w.r.t. JF,,.

Proof. Since ¢ is convex, one has

o

.S.

E(p(Xn)IC) = @(E(Xn|C))
for any o-field C C F. This leads to

o

S a.s.

E(p(Xnt1)|Fn) = @(E(Xny1|Fn)) = o(Xn).
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Exercise 2.3. Let X,, be a submartingale w.r.t. F,. Assume that X,, takes values on an
interval I for all n and ¢ is a non-decreasing convex function on I satisfying E|p(X,)| < oc.
Show that ¢(X,,) is a submartingale w.r.t. F,,. Give a similar statement for supermartingales?

Corollary 2.4. Assume that X,, is a martingale w.r.t. F,. For p € [1,00), if E|X,|P < oo,
then | X,|P is a submartingale.

Corollary 2.5. For s,t € R, let sVt and s Nt be the marimum and minimum of s,t. Fiz
a € R.

(1) If X,, is a submartingale w.r.t. F,, then X,, V a is a submartingale w.r.t. F,.

(2) If X, is a supermartingale w.r.t. Fy, then X,, A a is a supermartingale w.r.t. F,.

Definition 2.3. A sequence of random variables H,, is predictable w.r.t. a filtration F, if H,
is F,,—1-measurable for n > 1.

Theorem 2.6. Let X,, be a martingale (resp. supermartingale and submartingale) w.r.t. F,,
H,, be predictable w.r.t. F, and set

n
So=0, Sy=) Hi(Xi—X;1), Vn>L1
i=1
Assume that H, is nonnegative and bounded with probability one. Then, S, is a martingale
(resp. supermartingale and submartingale) w.r.t. J,.

Proof. Suppose that X, is a submartingale w.r.t. F,. By the triangle inequality, one has
E|Sy| < co. This implies

a.s a.s.

E(Spt1|Fn) = Sn + E(Hpy1(Xns1 — X0)|Fn) = Sn + Hy 1 E(Xns1 — Xo|Fn) > Sy
Other cases can be proved in a similar way and omitted. U
Remark 2.3. In the above theorem, H,, > 0 is not required for the case of martingales.

Remark 2.4. Referring to (2.1), Theorem 2.6 says that if the game is “unfavorable”, i.e. the
gambling system is a supermartingale, then the asset function is always a supermartingale
whatever predictable strategy is applied.

Definition 2.4. A stopping time 7 for a filtration F,, is defined to be a random variable
taking values on {0, 1,2, ...} U{oo} satisfying {r = n} € F, for all n.

Remark 2.5. Equivalently, 7 is a stopping time for F, if {r <n} € F, for all n > 0.

Theorem 2.7. If X,, is a martingale (resp. supermartingale and submartingale) w.r.t. Fy,
and T is a stopping time for F,, then X, is a martingale (resp. supermartingale and
submartingale) w.r.t. F.

Proof. For n > 1, set Hy, = 1{;5,} and S, = Yoy Hi(X; — Xi-1). It is clear that H, is
predictable w.r.t. F,. By Theorem 2.6, if X,, is a martingale w.r.t. F,, then so is S,. The
desired property is then given by the identity S, = X;an — Xo- U

2.2. Optional sampling theorem. In this subsection, we introduce the preservation of mar-
tingales through optional samplings.

Definition 2.5. For any process Xg, X1, Xo, ..., we call a sequence 79, 71, T2, ... sampling vari-
ables of (X,,)22, if 7, is a random variable taking values on non-negative integers and satisfying
(0
(2) {m =j} € F(Xo,...,X;) for all j, k < oo.
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Theorem 2.8 (Optional sampling theorem). Let (X,,)0%, be a process, (75,)52, be sampling
variables of (Xy)22, and Y, = X, . Assume that X, is a martingale (resp. submartingale
and supermartingale), E|Y,| < co and

(2.2) lim inf/ | Xk|dP =0 Vn>1.
{m>k}

k—o0
Then, Y,, is a martingale (resp. submartingale and supermartingale).

Proof. We prove the case of martingale by showing
/ Y41dP = / Y,dP, VAe F(Yy,..,Y,).
A A

Let A € F(Yp,...,Y,) and set D; = AN {r, = j}. To finish the proof, it suffices to show

/ Yn+1d]P’—/ Y, dP Vj>0.
D; D,

J J

By writing A = {(Yp, ..., Y,,) € B} for some B € B(R"™!), one has
D; ={(Yo,...,Yn) € B, 7, = j}

= U {(Xj()))X]n) S B7 70 :j07"')7—n—1 = jn—lan :jn}
0<jo<<jgn=J

This implies D; € F(Xo, ..., X;) for all j > 0. Set ij Y, 41dP = I, (k) + I2(k) for k > j, where

k
nk)y=>" / X;dP + / X, dP
i—j Y Din{Tni1=i} Djn{rny1>k}

L(k) = / Yy i1dP — / X.dP.
Din{rn41>k} Din{rn41>k}

Note that {7,+1 >k —1} = {741 < k—1}° € F(Xo, ..., Xp—1). By Theorem 2.2, this implies

/ Xde-i-/ X dP = / Xp_1dP, VEk > j,
Djﬂ{Tn+1=k} Djﬂ{Tn+1>k} Djﬂ{Tn+1>k71}

or, equivalently, I (k) = I (k — 1) for k > j. Since D; C {7, > j}, we have

Il(k:)zll(j):/D de]P’:/D Y, dP.
J J

and

Combining all above gives
/ Yo+1dP — / Y,dP = Iy(k) Yk > j.
D; D;

By (2.2), one may choose a subsequence (m;);2, such that E(| X, |17, >m,3) — 0. In
addition with E|Y,, 41| < oo, this implies I5(m;) — 0. O

Corollary 2.9. Let (X)), be a submartingale, (7,)5>, be sampling variables of (Xp)02
and Y, = X,, . Assume that sup, EX;" < oo and

(2.3) liminf/ | Xk|dP =0 Vn>D0.
k=00 Jir, >k}
Then Y, is a submartingale. Moreover, one has
(2.4) EXo < EY, <supEX,, E|Y,|<2supEX; —EXj.
n>0 n>0
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Proof. By Theorem 2.8, if the third inequality in (2.4) holds, then Y, is a submartingale. Note
that, by Theorem 2.7, (X, am)oo— is a submartingale and, hence,

EX ym <EX} . —EXo, Vn,m>0.
Next, fix n > 0. By (2.3), we may select a subsequence (my)72; of N with mg = 0 such that

lim | X, |dP = 0.

k—oo {Tn>my}

Since X, is a submartingale, one has

n

o0 mg
EY,F =" / X;7dP < limsup » /{ L X} dP =limsupEX,;, =supEX,| < oo.

Note that
mg
2.5 EY " = li X+dpP Xt dP | = lim EXT
2 " kggo jgo /{Tn=j} ! i /{Tn>mk} e kggo i
and, similarly,
(2.6) EY, = lim EX_ ... <limsupEX', K =~ —EX,=EY,” — EX,.
k—o0 k—o0

Putting all above together yields

E|Y,| < 2EY,;} — EX, < 2s1§8EXg — EXo.
nz

This proves the third inequality of (2.4).
By Theorem 2.8, (Y,,)52, is a submartingale and, by (2.5) and (2.6), one has

EY, = lim EX;, am, > EXr, a0 > EXo.
k—00

Since (X,)22, is a submartingale and 7, is a stopping time for (X,,)7,, we have

mg
EXrnmy = / X;dP + / X, dP
7=0 =3} {

Tn>my}

mg

< Z / Xy, dP + / X, dP = EX,, <supEX,.
§=0 {mn=7} {Tn>my} n>0

Passing k to the infinity gives the second inequality of (2.4). O

The following proposition should be considered as a generalization of Kolmogorov’s inequal-
ity and Chebyshev’s inequality.

Proposition 2.10 (Doob’s inequality). Let X,, be a submartingale. For € > 0, one has

).

X;F , EX, —EX,
, P min X; <—¢) < —F——.
€ 0<j<k €

E
P ( max X; > 6) <
0<5<k

Proof. For the first inequality, let 7, 71, ... be sampling variables defined by
T =1inf{j <k:X; > €}

and 79 = k if the infimum is taken over an empty set. For n > 1, set 7, = k. Then, Y, := X,
satisfies

k
E[Y,| <) E|Xj| <o Vn >0, / | X¢|dP =0 V> k.
=0 {mn >}
14



By the optional sampling theorem, Y;, is a submartingale and

YodP Y,dP +
P<o%a§ka>€>=P<%>e>sf”°>f} VP Jiang NP EX]
>

€ B € €
For the second inequality, we set 7) = 0 and 7}, = k for n > 2. For n = 1, set
1 =inf{j <k:X; < —¢}

and 7] = k if the infimum is taken over an empty set. Let Z,, = X,s. As before, we have
E|Z,| <oco Vn>1, / | X¢|dP =0 V> k.
{mh>0}
By Theorem 2.8, Z,, is a submartingale and

EXy <EZ = / Z1dP +/ Z1dP
{Z1<—€}

{Z1>—€}

§/ Xkd]P’—dP’<min Xj<—e>§IEX,j—e]P’<min Xj<—e>.
{Z1>—¢} 0=j<k 0<j<k

Exercise 2.4. Prove that if X, X1, ... is a martingale satisfying EX?2 < oo, then

2

EX
]P’(max \Xj]>6>§ 2k Ve > 0.
0<j<k €

2.3. Martingale convergence theorem. We use Theorem 2.6 to derive the convergence
theorem of martingales.

Lemma 2.11 (Upcrossing lemma). Let X, be a submartingale and a,b be real numbers sat-
isfying a < b. Set Ng = —1 and, for k > 1, define

Nop_1 = mf{] > Nop_o : Xj < a}, Noj, = lnf{j > Nop_q: Xj > b},

where inf () := oco. Forn > 1, set U, = sup{k > 0 : Ny, < n}. Then, (b — a)EU, <
E(X,—a)t —E(Xg—a)".

Proof. First, it is easy to see that (Nj)]o-‘;o are stopping times for F(Xo,..., X,). Let Y, =
X, Va. Since X, is a submartingale, Y;, is a submartingale. For m > 0, set

{1 if Nop_1 < m < Ny, for some k
H,, =
0 o.w.
Observe that

{Hm =1} = {Nop—1 <m < Nog} = {Nog—1 <m}N{Nop <m}° € F(Xo,..., Xpn-1).

This implies that H, is predictable w.r.t. F(Xy,...,X,). For n >0, set Sop = S}, = 0 and

Sn =Y Hi(Yi=Yir1), S,=> (1—H)Yi—Yi).

i=1 =1

By Theorem 2.6, S,,, S/, are submartingales. Note that S,, > (b—a)U, and Y;, — Yy = S,, +S),.
This implies ES], > ES{, = 0 and

(b— a)EU, < ES, <EY, — EY; = E(X, —a)" — E(X, — a)*.
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Theorem 2.12 (Martingale convergence theorem). Let X, be a submartingale satisfying
sup,, EX, < oco. Then, X,, converges a.s. to some random variable X with E|X| < oc.

Proof. Let U, be the random variable defined in Lemma 2.11 and U = sup{k > 0 : Ny <
oo}. Note that U, is non-decreasing, non-negative and converges to U. By the monotone
convergence theorem and the upcrossing lemma, we have

1
EU = lim EU,, < —— <|a| +sup]EX;“> < oo, Ya<b.
n—oo b —Qa nzo

This implies U < oo a.s. for any a < b. As a result, the following event

U {w € Q:liminf X, (w) <a<b< limsuan(w)}
n—0o n—00

a,beQ, a<b

has probability 0 and then liminf, X, = limsup,, X,, a.s.. Set X = lim, X,,. By Fatou’s

lemma, we have

E|X| = Eliminf | X,,| <liminf E|X,,| < sup E|X,| < co.
n—00 n—0o0 n>0

Remark 2.6. For any process (Xt);c[s,7] with S < 0o and T € (S, o0}, set
Uap = sup{k : Noy(a,b) < oo},
where Ny(a,b) = S and
Nop—1(a,b) = inf{Noy_2(a,b) <t <T:X; <a}
and
Nog(a,b) = inf{Nox_1(a,b) <t <T:X; > b}
If Uyp < oo a.s. for all rational numbers a < b, then limsup, .7 X; = liminf; ,7 X; a.s., but

the converse is generally not true. However, in the case of {0, 1, 2...}, lim sup,, X,, = lim inf,, X,
a.s. if and only if U, ; < oo a.s. all rational numbers a < b.

Corollary 2.13. If X,, is a submartingale uniformly bounded from above, then X, converges
a.s. to some random variable X with E|X| < co and EX > EXj.

Proof. The almost sure convergence of X,, comes immediately from Theorem 2.12. To see the
last inequality, let M > 0 be a constant such that sup,, X,, < M a.s.. Clearly, X < M and,
by Fatou’s lemma, one has

0<EWM-X)< lirginfE(M —Xp) <M —-EX) < 0.
This implies EX > EX. O

Ezample 2.3. (Martingales that converge a.s. but not in L') Let X1, Xs, ... be i.i.d. random
variables with P(X; = 1) =P(X; = —1) = 1/2. Let d € Z" and set

n
Sp=d+> X;, Yn>1.

i=1
Clearly, S,, is a martingale. Consider the stopping time N = min{n > 0 : S, = 0} and set
Y, = Snvan- By Theorem 2.7, Y, is a martingale. Since Y, is nonnegative, Corollary 2.13
implies that Y,, converges almost surely to some random variable Y satisfying E|Y| < oc.
Note that |S,,+1 — Sp| = 1 for all n > 1. This implies {Y,, converges} C {N < oo} and, hence,

P(N<oo)=1, Y= lim Syan =Sv=0 a.s.
n—oo
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But, EY;,, = EYy = d > 0 and this means that Y;, does not converge in L'.

Ezample 2.4 (Martingales that converge in probability but not a.s.). Let Q = [0,1), F be the
Borel o-field over © and P be the Lebesgue measure on (£, F). Let Xo = 0 and X3, X2, X3, ...
be defined iteratively as follows. For n > 0, let a,,1 = 0, an;, = 1 and let a2, ..., an4,—1 be
discontinuous points of X,,. If X, (ay, ;) =0, set

XnJrl(t) = l[anyj,an,j-l-e)(t) - l[amj—&-e,an,j—l—?e) (t)v vt € [an,ja an,jJrl)a

where € = % If X, (an,;) #0, set

Xn+1(t) = (n+ l)Xn(amj)l[an,j,an,jJre) (t)v vt e [an,jv an,j+1),

An,j+1—0n,j

where € = . This process has X1 = 1[071/2) — 1[1/271) and XQ = 2(1[071/4) — 1[1/273/4)).
One can show by induction that X, is an integer-valued martingale.

Let A, = {an; : V1 < j <ip,n > 1} and A = |J,, Ap. Clearly, A, C Apq1 and [Apqq] =
2|A,,| — 1. This implies that A is a countable set. Observe that, for ¢t € A¢, if X,,(z) = 0, then
| X0 ()| =1 for some n > m. If X,,(t) # 0, then X,,(¢) = 0 for some n > m. This implies that
X, diverges on A°. As P(X,, #0) = 1/n, X,, converges to 0 in probability.

Ezample 2.5 (Martingales that tend to infinity). Let Xi, Xo, ... be independent random vari-
ables with
P(X,=n)=n"2 PX,=-(n-n"H)"1)=1-n"2
and set S, = X1 +---+ X,. As EX,, = 0, S,, forms a martingale. By the Borel-Cantelli
lemma, P(X,, = n i.0.) = 0. This implies that, with probability 1,
__ < 1 for n large enough.
n—1/n n

Hence, S,, =& —oo almost surely.

X =

Exercise 2.5. Let X1, X5, ... be independent random variable satisfying EX,, = 0 and EX?2 <
oo0. Forn > 1, set S, => 1| X; and s2 = > I | EX?. Show that

(1) S2 — 52 is a martingale;

(2) If sy, converges, then S, converges almost surely.

Exercise 2.6. Let X1, Xo, ... be i.i.d. non-negative random variables satisfying EX; = 1 and
P(X1=1) <1. Forn > 1, set Y, = [[\"; X;. Show that

(1) Y, is a martingale,

(2) Y, converges 0 a.s.,

(3) LlogV, converges a.s. to ¢ € [—00,0).

2.4. Branching processes. Let {{!' : n > 0,7 > 0} be a family of i.i.d. nonnegative integer
valued random variables. Set Zy = 1 and define, for n > 0,

Zn

Znir:=Y & i 2, >0, Zy:=0 if Z,=0.

i=1
In the above setting, Z, is called a Galton- Watson process. An idea behind this definition is
that Z,, refers to the number of people at the nth generation and each member gives birth
independently to an identically distributed number of children. After that, all individuals of
the nth generation pass away and the number of new-born offsprings amounts to Z, ;. To

analyze this process, we set pp = P(§' = k) and call (py)3, the offspring distribution.
Proposition 2.14. Let F,, = F(£",i > 0,0 < m < n) and p = EE'. Assume that 1 € (0,00).
Then Z,/p" is a martingale w.r.t. F,.
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Proof. 1t is clear that Z,, is adapted to F,,. To see EZ,, < oo, observe that EZy = 1 < oo and,
for n > 0,

00 k 0o
EZni1=>» E (Z §y+11{znk}> = kpP(Z, = k) = pEZ, < oo,
k=1 =1 =1

where the first equality uses the monotone convergence theorem. By induction, we obtain
EZ, = p'* < oo, which implies

o~ k 00
n—l—l’f ZZE f +11{Zn=k}‘fn) = Zkul{zn:k} = uZp.
k=1 1:=1 _

This proves that Z,/u™ is a martingale w.r.t. F,. O
Concerning the extinction of spices, we define the stopping time 7' = inf{n > 0 : Z, =

0}. Note that, when 0 < p < oo, Z,/u" is nonnegative with mean 1. By the martingale
convergence theorem, Z, /u™ converges almost surely to some integrable random variable.

Theorem 2.15. If € (0,1), then P(T' < 0c0) =1 and Z,/u" — 0 almost surely.
Proof. By Proposition 2.14, EZ,, = y"EZy = p™. This implies
P(Z,>0)=P(Z,>1)<EZ,=p"—0 asn— oo,

which means that Z,, converges to 0 in probability. Let k, be a subsequence such that Zj,
converges to 0 almost surely. As Z,, is integer-valued and Z,, = 0 implies Z,,+1 = 0, we may
conclude that P(Z,, = 0 for some n > 0) =1 or P(Z,,/u" = 0 for some n > 0) = 1. O

Theorem 2.16. If p =1 and p; < 1, then P(T < c0) = 1.

Proof. By Proposition 2.14, Z,, is a martingale and, by the martingale convergence theorem,
Zy, converges almost surely to some integrable random variable Z.,. Since Z, is integer valued,
we have P(Z,, = Z for n large enough) = 1. To finish the proof, it remains to show that
P(Z~ = 0) = 1. Note that, for £ > 0,

P(Zn1 = k|Zn =k, Zn1 = an-1, ., Z1 = a1) = P(E]T 4+ + T = k) = ¢, < 1,
where the last inequality uses the assumption of u =1 and p; < 1. This implies
P(Z, = k,Yn> N) = eli{&P(ZNH =...=Zny=k)=P(Zn = k)gli}rrolocﬁ =0, VN >O0.
As a result, we obtain P(Z. = k) = P(Z,, = k for n large enough) = 0 for £ > 0. O

Remark 2.7. Note that, when =1, p; < 1 is equivalent to pg > 0.
Theorem 2.17. If u € (1,00), then P(T = c0) > 0.

Proof. Consider the following generating function of the offspring distribution.
oo
=po+ Zpksk, V|s| < 1.
Clearly, ¢ is analytic on (—1,1) and

o0 o0
=p1 + Zkzpksk_l, " (s) = 2po + Zkz(k — Dprs™2, Vs < 1.
= k=3
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As > 1, we must have p; > 0 for some k > 2. This implies that ¢ is increasing and convex
on (0,1) and
op(s)—e@) = k—1y _
A T T s e

Since ¢(1) = 1 and ¢(0) = pp € [0,1), there is p € [0,1) such that ¢(p) = p. Moreover, one
has p(z) >z for x € (0, p) and p(z) < = for x € (p,1).

Next, we set 6,, = P(Z,,, = 0). Obviously, 6y = 0. Note that each individual of the offspring
generation can be regarded as an ancestor of a Galton-Watson process. This implies

o0
O = po + Zpk‘gﬁl—l = @(em—l) Vm > 1.
k=1
If p =0, then 6,, = 0 for all m. If p > 0, then 0 < 6,, < 0,41 < p. Let O be the limit of
©m. By the continuity of ¢, one has ¢(f) = 0 and this implies 0, = p. Consequently, we
achieve
P(T <o0) = lim P(Z,, =0)=p< 1.

m—r0o0

O

Corollary 2.18. For pg > 0, the probability that the species is finally extinct equals the
smallest fixed point of the generating function of the offspring distribution on [0, 1].

Proof. The proof for p > 1 has been given in the proof of Theorem 2.17. Let ¢(s) = pg +
S 2, pes®. We first assume p € [0,1). In this case, it is clear that /(1) < 1 and this implies
that ¢ has only one fixed point on [0, 1], which is 1.

Next, we consider the case p =1 and p; < 1. Clearly, pg > 0 and px > 0 for some k > 2.
This implies that ¢ is strictly convex on (0,1) and, hence, 1 is the unique fixed point of
. When p; = 1, all points in [0,1] are fixed points of ¢ and 0 is the smallest one, while
P(T < o0) = 0. 0

Remark 2.8. Galton and Watson who invented the process that bears their names were inter-
ested in the survival of family names. Suppose that each family has exactly m children but
their sex is determined by a fair coin. In 1800s, only male children kept the family name. The
male offsprings then lead to an offspring distribution

Dr = <7Z>2—m VO <k <m.

By Theorems 2.15-2.17, a family name disappears when m < 2 and has a positive probability
to survive forever when m > 2.

2.5. Uniform integrability. In this subsection, we use E(X; A) to denote [, XdP. If A =
{X € B} for some B € B(R), we simple write E(X; X € B) for E(X;{X € B}).

Definition 2.6. A family of random variables {X; : i € I} is uniformly integrable if
lim sup E(|X;];|X;| > ) =0.
T—r00 icl

Exercise 2.7. Show that (X,,)2% is uniformly integrable if and only if E|X,| < co for all n
and limsup,, E(|X,|; | X»| > z) = 0 as ¢ — oo.

Exercise 2.8. Prove the following statements.
(1) If (X;)ies is uniformly integrable, then sup;c; E|X;| < co.

(2) If | X;| < X for all i € I and EX < oo, then (X;);es is uniformly integrable.
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Proposition 2.19. If X is a random variable on (2, F,P) with E|X| < oo, then the family
{E(X|G) : G is a sub-o-field of F} is uniformly integrable.

Proof. Let € > 0. Since X is integrable, one may select § > 0 such that E(|X|; A) < e for
all A € F satisfying P(A) < §. Note that, for any x > E|X|/J, one may use the Markov
inequality and Jensen’s inequality to get
E(E(|X E|X
_ B(E(X]I6) _ EIX| _

PE(X]G) > z) < . ; ,

and
E([E(X|9)[; |IE(X|G)| > z) < E(E(|X[|G); E(IX]|G) > z) = E(|X[; E(|X]|G) > z) <,
<

for any sub-o-field G C F. This implies supgrE(|E(X|G)|; |E(X|G)| > z) < € for z >
E|X]/0. O

Exercise 2.9. Let ¢ : [0,00) — [0,00) be a function satisfying ¢(z)/x — oo as x — oc.
(For instance, p(x) = P with p € (1,00) and p(x) = zlog’ z := z(logz)*.) Prove that if
sup; Ep(]X;]) < oo, then (X;);er is uniformly integrable.

Proposition 2.20. Let X,, X be real-valued random variables. Assume that X,, converges to
X in probability and E|X,| < co. Then, the following are equivalent.

(1) (Xn)22q is uniformly integrable.

(2) X,, converges to X in L.

(3) E|X,| — E|X| with E|X| < cc.

Proof. For (1)=(2), let op(z) = (x A M)V (=M) for M > 0. Clearly, |pym(x) — 2| =
(Jz| = M) < [2|1{p1,00)(J2]). By the triangle inequality, one has

[ X — X < [Xn — o (Xn)| + [oar(Xn) — o1 (X)] + [oar(X) — X,

To prove E|X,, — X| — 0, it is equivalent to show that, for any subsequence k,, there exists
a further subsequence k;, such that E[X}, — X| — 0. Let k, be a subsequence of {1,2,...}.
Since X;, — X in probability, we may choose a subsequence k;, of k,, such that X}, converges
to X a.s.. By the Lebesgue dominated convergence theorem and Fatou’s lemma, this implies

le E’SDM(XIC;L) — (,OM(X)‘ =0, VM >0, E’X’ < linginfE]Xk;L] < 00,

S
n=1"

where the second inequality uses the uniform integrability of (X,,) Putting all above

together yields
limsup B[ Xy, — X| < sup E(| Xy [; [ Xy, | > M) + E(|X]; | X| > M).
n—00 n>1
Passing M — oo gives E| X}, — X| — 0.
(2)=-(3) is obvious. For (3)=-(1), let ¥5; be a piecewise linear function on [0, cc) defined
by

x for x € [0, M — 1]
Yy(z) =< (M —1)(M —z) forxe[M—1,M]
0 for x > M

Obviously, 21 (p7,00)(7) < @ — P (7) < 2L (p_1 00)(x) for 2 > 0. A similar argument as before
implies E¢as (| Xy|) = E¢ar(|X|). This leads to

limsup E(|X,,|; | Xn| > M) < limsup[E| X, | — E¢p (| Xn])]
n—oo n—oo
=E|X|-Eynu(|X]) <E(X[;|X| > M —1).

Since E|X| < oo, letting M — oo gives (1). O
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Theorem 2.21. Let X,, be a submartingale. Then, the following are equivalent.
(1) (Xn)22 is uniformly integrable;
(2) X, converges a.s. and in L';
(3) X, converges in L'.

Proof. First, suppose (1) holds. By Exercise 2.8 and Theorem 2.12, X,, converges a.s. and,
by Proposition 2.20, X,, converges in L!. This proves (2). (2)=-(3) is obvious and (3)=-(1)
follows immediately from Proposition 2.20. O

Proposition 2.22. If X,, is a martingale w.r.t. F, and X, converges to Xoo in L', then
Xn =E(Xw|Fpn) for n > 0.

Proof. By Theorem 2.2, E(X,|Fn) = X, for all n > m. Since X,, converges to X in L,
E(X,|Fn) — E(X|Fy) in L' as n — co. This implies X, = E(Xw|Fn) almost surely. O
Corollary 2.23. For any martingale X,, w.r.t. F,, the following are equivalent.

(1) (Xn)22 is uniformly integrable;
(2) X, converges a.s. and in L';
(3) X, converges in L';
(4) There exists X with E|X| < oo such that X,, = E(X|F,) for all n.
Proof. The equivalence of (1), (2) and (3) is given by Theorem 2.21. (3)=-(4) is given by
Proposition 2.22 and (4)=-(1) is implied by Proposition 2.19. O
Theorem 2.24. Let (Q,F, P) be a probability space, X be a random variable on Q and F,
be a filtration in F. Set Foo = o(lU,, Fn) and assume E|X| < co. Then, E(X|F,) converges
to E(X|Fx) almost surely and in L'.

Proof. Set Y,, = E(X|F,). It is clear that, for n > m,
E(Yn|Fm) = E(E(X|Fn)|Fn) = E(X|Fm) = Yin.

This implies that Y, is a martingale w.r.t. F,. By Proposition 2.19, (Y,,)22, is uniformly
integrable and, by Theorem 2.21, Y,, converges almost surely and in L' to some random
variable Y,.. By Proposition 2.22, E(X|F,) = E(Yx|F,) a.s. for all n. Consider the following
class.

D={AcFu E(X;A) =E(Y; A)}.
Note that D is a A-system, J,, Fn is a m-system and |J,, F, C D. By the 7 — X lemma,
D = F. As Yy is Foo-measurable, we obtain Yo, = E(X|F). O

Corollary 2.25 (Lévy’s zero-one law). Let F, be a filtration in F and A € Foo = o(U,, Fn)-
Then, E(14|F,) converges almost surely to 14.

Remark 2.9. Let X1, Xs,... be independent random variables and F,, = F(X1,..., X,,). Let A
be a tail event, that is, A € N, F(Xy, Xpt1,...). Then, E(14|F,) = P(A) almost surely. By
Lévy’s zero-one law, we have P(A) = 14 almost surely. This implies P(A) € {0,1}, which is
exactly Kolmogorov’s zero-one law.

Exercise 2.10. Let X be a random variable on the probability space (]0,1),B([0,1)),P),
where P is the Lebesgue measure on [0,1). Assume that E|X| < co and set, for n > 1,
Xp(z) =2"E(X; k27", (k+1)27")), Veelk2™ ", (k+1)27"),0<k<2".
Prove that X,, converges to X almost surely and in L'. Using a variant of this exercise, one
may conclude that, for any integrable function f on R and e > 0, there is a step function g
such that fR |f — g|dx < e. Hint: Apply Theorem 2.24 on the following filtrations
Fo=F{[k27", (k+1)27"):0<k <2"}), Fo=B([0,1)).
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Exercise 2.11. Let ([0,1),B(]0,1)),P) be as in Exercise 2.10. Let X be a Lipschitz continuous
function on [0,1) and set, for n > 1,

2n—1
X((k+1)27") — X(k27")
Xn= 3 5 n L{lk2=r (k+1)2-m)}-
k=0

Prove that X,, is a martingale, X,, converges to X, a.s. and in L' and
X() — X(a) =E(Xx;[a,b)) YVO<a<b<l1.
This exercise says that Lipschitz continuous functions are absolutely continuous.
Exercise 2.12. Let X3, X», ... be a process taking values on [0, c0) and having 0 as an absorb-

ing states, that is, X;,, = 0 implies X,, = 0 for all m > n. Let D = {X,, = 0 for some n > 0}
and assume that, for any « > 0, there is §(x) > 0 such that

(2.7) P(D|X1,... Xn) = 6(z) on{X, <z}, Vn>L1.
Prove that P(D U {lim,, X,, = co}) = 1. Hint: Use Lévy’s zero-one law or Exercise 2.13.
Theorem 2.26. Let F,, be a filtration and Foo = o(|JFpn). Assume that X,, converges a.s.
to Xoo and | X,| <Y with EY < co. Then, E(X,|F,) converges a.s. to E(X|Foo)-
Proof. For N > 1, set Zn = sup{|X, — X;n| : n,m > N}. Then, Zny <2Y. As |X,, — Xoo| <
Zn almost surely for n > N, one may use Theorem 2.24 to derive

limsup E(|X,, — Xoo||Fn) < limsupE(Zyn|F,) = E(Zn|Fx) VN >0,

n—oQ

n—0o0

By the dominated convergence theorem, E(Zy|Fs) — 0 a.s. and this implies
IE(X0|Fn) — B(Xeol F)| S E(1 Xy — Xool|Fn) 230 asn — oo
The desired limit is then given by the fact of E(Xo|Fn) = E(Xoo|Fxo) a.s.. O
Exercise 2.13. Let X7, Xo,... be a process and A, B € B(R). Suppose
P(X,, € B for some m > n|Xy,...,X,) >0 >0 as. on{X, € A}.
Prove that {X,, € Aio.} C {X, € Bio.} as..

Exercise 2.14. Let F,, be a filtration and Fc = o(|J,, F»). Show that
(1) f E|X| < c0 and X,, — X in L', then E(X,|F,) = E(X|Fx) in L;
(2) If (X,,)52 is uniformly integrable and converges to X almost surely, then E(X,,|F) —
E(X|F) in L' for any o-field F.
The following example shows that Theorem 2.26 can fail when |X,,| <Y with EY < oo is
replaced by the uniform integrability of (X,)52,.
Ezxample 2.6. Consider independent random variables X1, Xo, ..., Y7, Y5, ... defined by
P(X,=1)=1/n, P(X, =0)=1—1/n,
and
P(Y,=n)=1/n, P(Y,,=0)=1—-1/n.
Set Z, = X,,)Y,,, Fn, = F(X1, ..., X)) and Foo = F(X1, X2, ...). Then Z,, is uniformly integrable
since
E(|Znl;|Zn| > ) <EXpYn; X =1,Y,=n)=1/n Vn,z > 0.
Note that P(Z, > 0) = 1/n%. By the Borel-Cantelli lemma, we have P(Z, > 01io0.) = 0
and this implies Z,, — 0 almost surely. Note that E(Z,|F,) = X,EY,, = X,,. As P(X,, =
1i0.) =P(X, =01io0.) =1, E(Z,|F,) diverges almost surely. In fact, X,, and, thus E(Z,|F,),
converges to 0 in L.
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2.6. Backward martingales.

Definition 2.7. Let (F,)n<o be a non-decreasing sequence of o-field, that is, F,, C Fpt1
for n < 0. A process indexed by non-positive integers (X,)n<o is a backward martingale
(submartingale) w.r.t. (Fp)n<o, if X, is Fp-measurable, E|X,,| < oo and E(X,+1|F,) = Xp
(> X,) for n < 0.

Remark 2.10. Clearly, if X, is a backward martingale w.r.t. F,, then X, = E(X,,+1|Fn) =
E(Xo|Fn). By Proposition 2.19, (X,)n<o is uniformly integrable.

Theorem 2.27. Let X,, be a backward submartingale w.r.t. F,. Then, liminf, X, =
limsup,, X, < 0o a.s. and, by setting X_o := lim, X,, and F_c = (),,<¢Fn, the follow-
ing are equivalent. B

(1) Xy, is uniformly integrable.

(2) X,y = X_o a.s. and in L.

(3) Xp = X_oo in L.

(4) E|lX_oo| < 00 and E(Xp,|F_oo) > X_oo for all n <O0.

(5) lim, EX,, > —o0.
In particular, if X, is a backward martingale w.r.t. F,, then X_ = E(X,|F_s) for all n.

Proof. For n > 0, let Uy(a,b) be the upcrossing number of (a,b) by X_,,..., Xo. Clearly,
Upn(a,b) is also the downcrossing number of (a, b) by Xo, X_1, ..., X_,, and thus non-decreasing.
Set U = lim,, U,. By Lemma 2.11, (b — a)EU,, < E(X(, — a)*. By the monotone convergence
theorem, passing n to oo leads to P(U(a,b) < co) =1 for any a < b and, hence, liminf,, X,, =
lim sup,, X, almost surely. Set X_,, = lim,, X,,. To show X_,, < o0 a.s., it suffices to proved
that X1 < oo a.s. or further EXT_ < 0co. As Xt = lim,, X;} a.s., one may apply Fatou’s
lemma to conclude
EXT  <liminf EX,] < EXJ < oo,

n——00
where the second inequality uses the fact that X' is a backward submartingale.
For (1)=(2), assume that X, is uniformly integrable. By Exercise 2.8, sup, E|X,| < occ.
Again, by Fatou’s lemma, one has

E|X_«| <liminfE|X,| < supE|X,| < cc.
n——oo HSO
This implies X,, -+ X_o a.s. and then in probability. By Proposition 2.20, X,, — X_ in
LY. (2)=(3) is clear. For (3)=(4), note that
(2'8) E(Xn+1|f—00) = E(E(Xn—l-lu:n)‘f—w) 2 E(Xn|]:—00)

and
EE(Xp|Fooo) = Xl <E|X, — X_| =0, asn— —oc.
This implies E(X,|F_o) — X_« in L' and then in probability. By selecting a subsequence
ky, such that E(Xj, |F_x) — X_oo a.s, one may use (2.8) to conclude E(X,|F_o) > X o
a.s..
(4)=(5) is clear. For (5)=(1), set L = —inf, EX,,. Note that, for z > 0,

P(|X,| > 2) < 2 'E|X,| = 2 ' 2EX, —EX,) <z '2EX; + L), ¥n<O0.

Let € > 0. As EX,, - —L, we may select N < 0 such that EXy — EX,, < ¢/2 for n < N.
This implies that, for n < N,

E(| X,|; X < —2) = —E(X,; X, < —2) = —EX,, + E(X,;; X;, > —1)
< “EX, +E(Xy; Xp > —2) = EXy — EX, — E(Xy; X < —2)
<€/2 +E(|Xnl|; | Xn| > ).
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Also, one has
E(|X,); Xn > 2) = E(X,5; X, > 2) <E(X; X, > 2) <E(X ;| X0 > 2).
As sup,, P(|X,,| > z) — 0, we may choose x such that
sup E(| XN ;| Xn| > 2) < €/4, supE(X{;|X,| > z) < e/4
n n

Consequently, the above discussion leads to sup,, <y E(|Xx[; | Xn| > 7) < €, as desired.
When X, is a backward martingale, Remark 2.10 implies that X, is uniformly integrable.
By the L'-convergence, we have
E(X_o;A) = lim E(X,;A) =E(Xp;A), VAeF_ .
n——oo

As X_ is F_oo-measurable, this implies X_ o = E(Xo|F_). O

Exercise 2.15. Let (F,)n<o be a non-decreasing sequence of o-fields and F_o = ﬂnSO F.

Prove that if X is a random variable satisfying E|X| < oo, then E(X|F,) converges a.s. and
in L' to E(X|F_o) as n — —oo.

Exercise 2.16. Let F,, C Fpy1 for n < 0 and set F_o = mngo]:n' Suppose that X,
converges a.s to X and |X,| <Y and EY < oco. Prove that E(X,|F,) converges a.s. to
E(X|F_-x) as n — —o0.
Let (S,G, u) be a probability space and set

(2.9) Q=SxSx-+, F=GRGR-+, P=pxpux---.

For any permutation of N and w € €, define 7(w) := (wrn))nz;. An event A € F is called
permutable if 7(A) := {7(w) : w € A} = A for any finite permutation 7. A sub-o-field £ of
F is called exchangeable if £ is generated by permutable events. In fact, all events in £ are

permutable. By the 7 — A lemma, it is easy to check P(m(A)) = P(A) for A € F and 7 is any
finite permutation.

Theorem 2.28 (The Hewitt-Savage zero-one law). Let (2, F,P) be the probability space de-
fined in (2.9) and & is an exchangeable o-field. Then, P(A) € {0,1} for all A € E.

Proof. Let A € € and set Gp1 = G xG. As|U,— [ {BxQ: B € G,} is a field generating F, one
may select A,, = B,, x Q with B,, € G,, such that P(A,AA) — 0. This implies P(A4,,) — P(A).
Let 7 be the following permutation

(17n+ 1)(27n+ 2) T (n7 2”)
and let A, = 7(A) = S™ x B,, x S*. Clearly, one has P(A,AA) = P(m(A,AA)) = P(A]AA).
Note that B\ C C (B\ D)U (D \ C) for any set D, which implies BAC C (BAD)U (DAC).
Immediately, this yields
P(A,AAL) < P(A,AA) + P(A,AA) = 2P(A,AA) — 0, asn — co.

Thus, |P(4,) — P(4, N A])| < P(A,AA]) — 0 and then P(A, N A)) — P(A). Since A, and
Al are independent, we have P(A4, N A)) = P(4,)P(4],) — P(A)%2. Consequently, P(A) €
{0,1}. O

Ezample 2.7 (The law of large numbers). Let Xj, Xo,... be i.i.d. random variables with
E|Xi| <oo.Set S, =X1+Xo+---+X,, Y, = S,/n and

Note that g
1
E(Xp41|Fon-1) = nn—:l =Y_,_1 as.
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This implies
E(Sn+1|]:7nfl) - E(XnJrl‘};nfl) a.s. (7’L + 1)Y7n71 -Y

n n

E(Y_|F_p1) = "= Yo,

and, hence, (Y,)n<o is a backward martingale. By Theorem 2.27, S, /n converges a.s. to
E(X1|F-o). The strong law of large numbers is then given by the Hewitt-Savage 0-1 law.

2.7. Doob’s inequality and LP-convergence. In this subsection, we consider the LP-
convergence of submartingales for p € (1,00). Recall that, in the proof of Doob’s inequality,
we have in fact derived the following fact. For any nonnegative submartingale X, ..., X,,, one
has

(2.10) P(X, >¢) <e 'B(Xn; X, >¢€) <e 'EX,, Ve>0,

where X,, = max{Xo, ..., X,,}.

Example 2.8. Let &1,&s, ... be independent random variables satisfying E, = 0 and o2 =
E&2 < oo, Set S, = & +---+ &, and X,, = S2. Then, X,, is a submartingale. Applying
Doob’s inequality with € = 22, we obtain Kolmogorov’s inequality, that is,

) < Yesu)

IP’( max |Sy,| > = 5
1<m<n X

Exercise 2.17. Let &1, &, ... be independent and satisfy |£,| < K for all n. Set S, = & +
-+ +&,. Prove that if E§, = 0, then

(z + K)?
< < -
P (12173§n‘5m| - x> — Var(S,)

Hint: Use the fact that S2 — s2 is a martingale, where s2 = 07 +--- + 02 and 02 = E¢2.

Exercise 2.18. Let X,, be a martingale satisfying Xo = 0 and EX2 < co. Show that
- EX?2 ’
~ EX2 + a2

Hint: Use the fact that (X, + ¢)? is a submartingale and optimize the inequality over c.

IP’(maX Xnm>x Yz > 0.
1<m<n

Theorem 2.29. Let (X)), be a nonnegative submartingale satisfying sup,, EXh < oo for
somep € (1,00). Then, X,, converges a.s. and in LP. In particular, if (X,)22 is a martingale
satisfying sup,, E| X, |P < oo for some p € (1,00), then X,, converges in LP.

To prove this theorem, we need the following proposition.

Proposition 2.30 (L? maximum inequality). Let p € (1,00) and (Xn)5,—o be a nonnegative
submartingale. Set X,, = maxi<m<n Xm. Then,

EX} < (p/(p— 1))'EX.

Proof of Theorem 2.29. Note that (EX,,)? < EX}. By the martingale convergence theorem,
X, converges a.s. to some integrable random variable, say Xo. Set Y = sup, X,. By
Proposition 2.30, one has

p » \* » \*
E|l max X,, | <|(—— | EXE <[ —— | supEX?.
1<m<n p— 1 p— 1 n>1

Letting n tend to infinity implies EY? < co. Observe that | X, — Xoo| = limy, | X, — X | < 2|Y]

with probability one. By the Lebesgue dominated convergence theorem, X,, converges to X

in LP. O
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Proof of Proposition 2.30. Note that, for K > 0 and = > 0,

(X, >z} ifK>zx

{Xn/\K>a:}:{® K<

By Proposition 2.10, one has
P(X,ANK >2) <2 'E(X; X, AK >2), VK,z>0.

Consider the following computations.
o o
E(X, AK)?P = / P((X, AK)P > x)dx = / pyP'P(X, A K > y)dy,
0 0

where the last equality applies the change of variables x = yP. As a consequence, this implies

0o X AK
E(X, ANK)P < /0 pyP? /Q Xnlig, arsydP = /ﬂ Xn /O py?~*dydP

= TE (X AR < P (B VPR A K
where ¢ is the exponent conjugate of p and the last inequality is Holder’s inequality. Since
E(X, A K)P < oo, we obtain

P
E(X, AK)P < (pl> E(X,)P.
p J—
Letting K — oo gives the desired inequality. O

Exercise 2.19. Prove that if X, is a submartingale, then
EX, < (1 - 1/e) 71 + E(X;f log* (X;})]

where X,, = maxj<;<n, X;h, log™ t = max{logt, 0} and 0log0 := 0.
Hint: First, show that

E(X, A K) <1+ /ﬂ X log(X,, A K)dP
and then apply the following inequality
alogb < aloga+ g <alogta+ g.
2.8. Other materials.

2.8.1. Bounded increments.

Theorem 2.31. Let X, Xo,... be a martingale satisfying P(|Xp+1 — Xpn| < M) =1 for some
constant M with Xo = 0. Then, P(C' U D) = 1, where

C = {X,, converges to a finite limt}, D = {lim sup X,, = oo, liminf X, = —oo} .
n—o0 n—00
Proof. For k € N, N, = inf{n : X,, < —k}, where inf () := oo. Clearly, N} is a stopping time
and, by Theorem 2.7, (X,an, )52, is a martingale. Observe that, on {Ny > n}, X,an, = X, >
—k and, on {n > Ni}, Xpan, = Xn, = Xn,—1+ XN, — Xn,—1 > —k— M. By Corollary 2.13,
XnaN, converges a.s. to some integrable random variable, which implies that X, converges
a.s. on {Ny = oo} for all k > 1. Set E = |J,~{Ny = oo}. Clearly, E = {inf,, X,, > —o0}
and then P (C U {inf, X,, = —oo}) = 1. Similarly, one can show P (C' U {sup,, X,, = c0}) = 1.
Combining both conclusions gives the desired identity. O
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Exercise 2.20. Let X, be a submartingale with P({sup, X,, < oo}) = 1 and assume
E(sup,, &) < oo, where &, = X,, — X,,_1. Show that X,, converges a.s. to an almost surely
real-valued random variable.

Exercise 2.21. Let F, be a filtration and X,,,Y,, be nonnegative random variables adapted
to Fp. Suppose E(X,41]|Fn) < X, +Y, and P(3_, Y < 00) = 1. Prove that X,, converges
a.s.. Hint: Consider Z,, = X,, — (Y1 + Yo+ --- + Y, _1).

Corollary 2.32 (The second Borel-Cantelli lemma). Let F,, be a filtration with Fo = {0,Q}

and A, € Fy. Then,
[ee]
{A, 10} {ZIP’(An|}‘n1) = oo} .
n=1

Proof. Set Xy =0 and

3

XTL = <1Am - ]P)(Am’fm_l)) :

m=1
a.s.

Then, X, is a martingale and |X,, — X,,_1| < 1 for all n. Let C' and D be events in Theorem
2.31. Then, P(C' U D) = 1. Note that, on C,

ilAn =00 << iP(An’fn_1>:OO,
n=1 n=1

and, on D,
oo

Z 14, =00, ZP(An’fnfl) = 00.
n=1 n=1

Exercise 2.22. Prove the following statements.
(1) Use the Borel-Cantelli lemma to show that, for p, € [0,1),

H(l—pn)zo & an:oo.
n=1 n=1

(2) If P(N7,_; AS,) > 0 for all n and Y00, P(A,| N} A%) = oo, then P(4,, i.0.) = 1.
2.8.2. Optional stopping theorem.

Definition 2.8. Let F,, be a filtration on a measurable space (£2, F) and N be a stopping
time w.r.t. JF,. Define Fx to be a collection of events A € F satisfying AN{N =n} € F,
for all n.

Remark 2.11. It is easy to show that Fx is a sub-o-field of F and N is Fy-measurable.
Furthermore, Fy is also a collection of events A € F satisfying AN {N < n} € F, for all
n > 0.

Proposition 2.33. Let F, be a filtration and M, N be stopping times w.r.t. Fy.

(1) MV N and M NN are stopping times.

(2) If M < N, then Fyr C Fn.

(3) If M < N, then, M1+ N1ac is a stopping time w.r.t. F,, for any A € Fyr.
(4) If Xy is adapted to Fy,, then XN1{ycoo) 98 Fn-measurable.

Proof. Obvious from the definition. O

In the following, when X, (w) converges, we write X (w) for its limit.
27



Theorem 2.34. Let X,, be a uniformly integrable submartingale w.r.t. F, and N be a stopping
time for Fn. Then, Xnnn is uniformly integrable and converges to Xy in L' and EXy <
EXy <EXoo < 0.

Proof. Since X, is uniform integrable, X,, converges a.s., which implies that X is a.s. defined.
By Theorem 2.7, Xy, is a submartingale. As X, is also a submartingale, one has

EXJJ'\}/\n =E(X ;N <n)+EX,; ;N >n) <EX, <supEX, < cc.
n
By the martingale convergence theorem, Xya, converges to Xy a.s. and E|X x| < oco. This
leads to

E(|Xnanl | Xnan] > 2) = E(XN|; [ Xn| > 2, N < n) + E(Xa|; | Xn| > 2, N > n)

(2.11) <E(|Xn|; | Xn| > @) + sup E(| X, |5 | Xn| > 2)

Letting x — oo proves that Xy, is uniformly integrable.
For the inequalities, since X, is a submartingale, one has EXy < EXyan < EX,. As Xyan
and X,, converge to Xy and X in L!, we obtain

EXO < ILm EXN/\n = EXN < lim EXn = EXOO.

n—o0

(]
Remark 2.12. It follows immediately from (2.11) that, for any process (X,)o2,, if N is a

n=0>

stopping time for X, such that E(|Xy[; NV < 00) < oo and X, 1{y~,) is uniformly integrable,
then Xyap is uniformly integrable.

Theorem 2.35 (The optional stopping theorem). Let X,, be a submartingale with respect to
Fn and M, N be stopping times for F,. Suppose M < N and X, is uniformly integrable.
Then, Xy < E(Xn|Frr). In particular, EXy < EXy.

Proof of the optional stopping theorem. By Theorem 2.34, X vy is a uniformly integrable sub-
martingale w.r.t. F, and E|Xy| < co. Again, by applying Theorem 2.34 with Xya, and M,
we have E|X /| < oo and EXyy < EXy. Let A € Fpy and set L = M14 + N1ge. Clearly,
L < N. By Proposition 2.33, L is a stopping time for F,,. Replacing M with L in the above
discussion then yields EX; < EXy or equivalently E(Xp; A) < E(Xn; A). O

Theorem 2.36. Let X,, be a submartingale w.r.t. F, and N be a stopping time for F,.
Suppose EN < oo and there exists a constant ¢ > 0 such that

(2.12) E(| Xnt1 — Xul||Fn) <c on {N >n}, Vn.

Then, XNan s uniformly integrable and EXy > EXj.

Proof. First, let’s write

n k—1 n—1
Xnan =Y LNk (Xo +> (X1 — Xi)> +> Lv= <X0 +> (Xip1 — Xi)) :
i=0

k=0 i=0 k>n
By the triangle inequality, this implies

oo
|XN/\n|§ |X0|+X, X:Z|Xl+1_XZ|1{N>'L}
i=0
Consequently, (2.12) implies E(|X;+1 — X;i|; N > i) < cP(N > 4), which leads to

oo oo
EX =Y E(Xij1— Xi;N >i)<c¢) PN >i)=cEN < .
=0 =0
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By Exercise 2.8(2), (Xnan)5l is uniformly integrable. O

Theorem 2.37. If X,, is a nonnegative supermartingale w.r.t. F, and N is a stopping time
for Fn, then EXg > EXy.

Proof. By Theorem 2.7, Xy, is a nonnegative supermartingale w.r.t. F,, and thus EXya, <
EXy. By Corollary 2.13, X,, and Xya, converge a.s. and this implies Xy is almost surely
defined and E|Xy| < co. Applying the monotone convergence theorem and Fatou’s lemma,
we obtain

E(Xn; N <o0) = lim E(Xy; N <n), E(Xy;N=o00)<liminfE(X,;N >n).

n—o0 n—o0

Consequently, this leads to EXy < liminf, EXya, < EXj.

Exercise 2.23. Let X,, be a nonnegative supermartingale. Show that P(sup, X,, > ¢€) <
EX()/E.

In the following, (X,,)02  refers to a sequence of i.i.d. random variables, S, = X1+ -+ X,
and F, = F(X1, X9, ..., Xp).

Theorem 2.38 (Wald’s identity). Let N be a stopping time for F, and o(\) = Ee*1.
Assume that EN < oo, 1 < ¢(Ag) < oo for some real \g # 0 and there is ¢ > 0 such that
1S, < ¢ on {N >n} for all n. Then, E(e*N /p(X)N) = 1.

Proof. Set Y, = 57 /ip(\g)™. Clearly, Y, is a martingale w.r.t. to F,,. Note that

eMoSn eroXni1
e(Mo)™ | ¢(Ao)
By Theorem 2.36, EYy = EYy = 1. O

E(’Yn-&-l - YnH}_n) =

— 1' < 2eMl on {N > n}.

Ezample 2.9. Consider the random walk on Z with P(X; = 1) =p and P(X; = —-1) =1 —p.
For i € Z, set T; = min{n > 0|S,, = i}. Fix a <0 < b and let N =T, AT}. Clearly, Ty, T},
and N are stopping times for F,,.

Claim 1: P(N < o0) = 1.

Proof. Consider the process Syan. Note that Sy, is a uniformly bounded martingale if
p = 1/2 (resp. submartingale if p > 1/2 and supermartingale if p < 1/2). The martingale
convergence theorem implies that Sya, converges a.s. and in L'. Since Sy, is integer-
valued, Sy, converges a.s. if and only if Sya, € {a,b} for n large enough. This implies
P(N < o0) = 1. O

Claim 2: If p = 1/2, then P(Sy = a) = b/(b— a).

Proof. By Claim 1, Syan converges a.s. and in L! to Sy. As Syan is a martingale, we
have 0 = ESy = ESy = bP(T, < T,) + aP(T, < Tp). The desired probability is given by
P(Ta>Tb):1—P<Ta<Tb):1—P(SN=a). U

For Claims 3 and 4, we assume p € (1/2,1) and set ¢(x) = ((1 —p)/p)*.
Claim 3: ¢(Syan) is a martingale.

Proof. Tt is easy to check that (.S, ) is a martingale. By Theorem 2.7, ¢p(Snnay) is a martingale.
U

Claim 4: B(T, < Tj) = 501
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Proof. Since ¢(Snan) is a martingale taking values on a finite set, ¢(Syan) converges a.s. and
in L' to ¢(Sy). Thus, we have

1 =Ep(50) = Ep(Sn) = @(0)P(Ty < Ta) + (a)P(Ty > Ta).
A similar computation as in Claim 2 yields the desired probability. U

Claim 5: If p = 1/2, then P(T;, < o0) = P(T} < o0) = 1. If p € (1/2,1), then P(T} < 00) =1
and P(T, < o0) = (p/(1 — p))*.

Proof. Note that T;, — oo pointwise as b — co. This implies {1, < oo} = Upo1{Ta < Tp}. By
Claim 2, when p =1/2,
P(T, < o0) = lim P(T, < Tp) =1,
b—o0
while the symmetry of the random walk implies P(T}, < oo) = 1. When p € (1/2,1), Claim 4
implies

P(T, < o0) = blim P(T, <Ty) =1/p(a), PTp<oo)= lim P(T, <T,) =1
— 00

a——00

2.8.3. Orthogonality of martingale increments.

Proposition 2.39. Let X,, be a martingale w.r.t. F, satisfying EX2 < co. Then, E((X,, —
Xn)Y) =0 for m <n, where Y is any Fy,-measurable random variable satisfying EY? < oco.
In particular, BE(X,X,,) = EX2 for m < n.

Proof. Since X,, and Y are in L%, E|(X,, — X;,,)Y| < co. This implies
E(X, — Xn)Y) =EE(X,, — Xn)Y|Fn)] = EYE(X,, — X;n|Fm)] = 0.

Corollary 2.40. If X,, is a martingale w.r.t. F,, satisfying EX? < oo, then for m < n,
E(Xy — Xn)?|Fm) = E(X2|Fp) — X2,

The above corollary can be regarded as a formula on the conditional variance of X,, given
Fm-

Exercise 2.24. Let X,, and Y,, be L? martingales w.r.t. F,. Show that
n
E(XnY,) — E(XoY0) = > E[(Xm — Xm—1)(Ym — Y1),
m=1

Exercise 2.25. Let X, be a martingale and &, = X,, — X,,_1. Show that:

(1) HEXZ < oo and > o2 | EE2 < oo, then X, converges a.s. and in L%
(2) If by, 1 oo and > o2 | E€2/b2 < oo, then X,, /b, — 0 ass..

Ezample 2.10. Recall the branching process introduced before. Let {£* : i,n > 0} be a family
of i.i.d. non-negative integer-valued random variables and Z,; = ZZZ:’H §in+1. Let p = E&!

and X,, = Z,/u". It was proved that X,, is a martingale and EX,, = 1 for all n > 1. Assume
in the following that Var(¢') = 02 < oo. By Corollary 2.40, one has

EX2 =EX2_; + E(X, — Xp—1)*
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Note that
2

i
E(Xn = Xn1)%Zna =i =p B || D & —ip| ;Zu1=i
7=1

2

i
=u B | (D (G =) | | P(Zn1=i) = p 0% iP(Zn1 = i).
j=1
Summing up i gives E(X,, — X,_1)?> = p~ " '¢2. By induction, this implies EX2 = 1 +
o? Yo p~*=1. Assume that p > 1. Clearly, the above computation leads to sup, EX?2 < oc.

By Theorem 2.29, X,, converges in L? to some random variable X. Applying the fact of
EX, = 1, we obtain EX = 1, which yields P(Z,, > 0 for all n) > P(X > 0) > 0.

2.9. Some other exercises.

Exercise 2.26. If X, and Y,, are submartingales w.r.t. F,, then X, VY, is a submartingale
w.r.t. Fp.

Exercise 2.27. Prove the following statements.

(1) If y, > —1 satisfies D, |yn| < 00, then [] (1 + yn) < oo.
(2) Let X,,Y, be positive random variables adapted to F,,. Assume that EX,, < oo,
E(Xpt1|Fn) < Xn(14Y,) and ), Y, converges a.s. Then, X,, converges a.s..

Exercise 2.28 (The switching principle). Assume that X,, and Y;, be supermartingales w.r.t.
Fn and N is a stopping time for F,, such that X > Yy on {N < oo}. Set

Ly = an{N>n} +Yn1{N§n}a W, = an{NZn} +Yn1{N<n}~
Then, Z,, and W, are supermartingales w.r.t. F,.

Exercise 2.29 (Dubins’ inequality). Let X,, be a nonnegative supermartingale. Fix 0 < a < b
and set Ng = —1 and, for k > 1,

Nop_1 = inf{j > Nop_o: Xj < CL}, Noj, = inf{j > Nop_q: Xj > b}
Let U = sup{k : Noj < co}. Prove that

P(U > k) < (Z)kE(XO/\1>.

a
Hint: Let Y, =1 for 0 <n < Ny and for j > 1,

b\I—1 x,
Y, = {() ur for NQj_l <n< NQj

a

(é)j for Noj <n < Noji1

a

Prove by induction (on j) that Y;,sn, is a supermartingale and apply the fact of EY,,an,, < EYy
with n — oo.

Exercise 2.30. Let Z;,Z5,... be i.i.d. random variables with E|Z;| < co. Let 6 be another
random variable which has finite mean and is independent of Z,. For n > 1, set Y,, =
0 + Z,. Prove that E(0|Y1,Y2,...,Y,,) converges to 6 a.s. as n — oco. In statistics, if Z; is of
standard normal distribution, then the distribution of 6 is called the prior distribution and
P(§ € -|Y1,...,Y,) is called the posterior distribution.

Exercise 2.31. Let Z,, be the Branching process with offspring distribution p;. Prove that
if po > 0, then P(lim,, Z, € {0,00}) = 1. Hint: Use Ezercise 2.12.
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Exercise 2.32. Let F,, be a filtration and X,, be random variables adapted to F,, and taking
values on [0, 1]. Let a > 0,5 > 0 be such that a« + § = 1 and assume that

(2.13) P(Xni1 = a+ BXn|Fn) = Xpny, P(Xpi1 = BXn|Fn) =1 — Xon.
Then, X,, converges a.s. with P(lim,, X,, = 1) = EX{ and P(lim, X,, =0) =1 — EX,.
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