LECTURE NOTES IN CALCULUS II

GUAN-YU CHEN

11. Infinite sequences and series

11.1. Sequences.

Definition 11.1. A sequence is a list of numbers written in a definite order:

$$a_1, a_2, a_3, \dots, a_n, \dots$$

Briefly, we also write the sequence $\{a_1, a_2, a_3, ...\}$ as $\{a_n\}$ or $\{a_n\}_{n=1}^{\infty}$.

Example 11.1. For the formulas
$$a_n = n^2 - n$$
 and $b_n = \sqrt[n]{n}$, the corresponding sequences are

 $\{a_n\} = \{0, 2, 6, ..., n(n-1), ...\}, \{b_n\} = \{1, \sqrt{2}, \sqrt[3]{3}, ..., \sqrt[n]{n}, ...\}.$

In the above examples, $n^2 - n$ and $\sqrt[n]{n}$ are called the general formulas of sequences. A sequence of which the first 5 terms are

$$\frac{-2}{1\cdot 2}, \frac{4}{2\cdot 3}, \frac{-8}{3\cdot 4}, \frac{16}{4\cdot 5}, \frac{-32}{5\cdot 6},$$

has the general formula $a_n = (-2)^n / [n(n+1)].$

Example 11.2. The Fibonacci sequence is a sequence $\{a_n\}$ satisfying

$$a_1 = 1$$
, $a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$ $\forall n \ge 3$.

Definition 11.2. A sequence $\{a_n\}$ has the limit L if, for any $\epsilon > 0$, there is a corresponding integer N such that $|a_n - L| < \epsilon$ for $n \ge N$. In this case, we write $\lim_{n\to\infty} a_n = L$ and say that $\{a_n\}$ converges or $\{a_n\}$ is convergent. Otherwise, we say that $\{a_n\}$ diverges or $\{a_n\}$ is divergent.

Remark 11.1. When a_n gets arbitrarily large as n increases, we write $\lim_{n\to\infty} a_n = \infty$ and refer it to the definition that, for any M > 0, there is an integer N such that $a_n > M$ for $n \ge N$.

Theorem 11.1. Let f be a function satisfying $f(n) = a_n$. Then, for $L \in \mathbb{R} \cup \{\pm \infty\}$,

$$\lim_{x \to \infty} f(x) = L \quad \Rightarrow \quad \lim_{n \to \infty} a_n = L$$

Remark 11.2. The converse of this theorem can fail! (e.g. $f(x) = \sin(x\pi)$)

Example 11.3. To find $\lim_{n\to\infty} \ln n/n$, we set $f(x) = \ln x/x$. By L'Hôpital's rule, one has $\lim_{x\to\infty} f(x) = 0$, which implies $\ln n/n \to 0$.

Limit laws Assume that $\{a_n\}$ and $\{b_n\}$ converge with limits a and b. Then, for $\alpha, \beta \in \mathbb{R}$,

$$\lim_{n \to \infty} (\alpha a_n \pm \beta b_n) = \alpha a \pm \beta b, \quad \lim_{n \to \infty} a_n b_n = \alpha \beta \quad \lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\alpha}{\beta}, \quad \text{if } \beta \neq 0.$$

Lemma 11.2. If $\{a_n\}$ is convergent, then $\lim_{n\to\infty}(a_{n+1}-a_n)=0$.

The Squeeze Theorem Assume that there is N > 0 such that $a_n \leq b_n \leq c_n$ for $n \geq N$. If $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\lim_{n\to\infty} b_n = L$.

Theorem 11.3. $\lim_{n\to\infty} |a_n| = 0$ if and only if $\lim_{n\to\infty} a_n = 0$.

Proof. Clear from the identity $|a_n - 0| = ||a_n| - 0|$.

Example 11.4. Let b_n be the Fibonacci sequence and $a_n = (-1)^{b_n}/n$. Since $|a_n| = 1/n$ converges to 0, $\lim_{n\to\infty} (-1)^{b_n}/n = 0$.

 \Box

Theorem 11.4. If $\lim_{n\to\infty} a_n = L$ and f is continuous at L, then $\lim_{n\to\infty} f(a_n) = f(L)$.

Example 11.5. Since $\lim_{n\to\infty} \ln n/n = 0$ and e^x is continuous at 0, the limit of $n^{1/n} = \exp\{\ln n/n\}$ is $e^0 = 1$.

Definition 11.3. A sequence $\{a_n\}$ is increasing if $a_n < a_{n+1}$ for $n \ge 1$ and decreasing if $a_n > a_{n+1}$ for $n \ge 1$. In either case, $\{a_n\}$ is called monotonic.

Example 11.6. The sequence $a_n = \frac{n}{n^2+1}$ is decreasing because, for $n \ge 1$,

$$a_n - a_{n+1} = \frac{n}{n^2 + 1} - \frac{n+1}{(n+1)^2 + 1} = \frac{n^2 + n - 1}{(n^2 + 1)[(n+1)^2 + 1]} > 0.$$

Definition 11.4. A sequence $\{a_n\}$ is bounded above (below) if there is $M \in \mathbb{R}$ such that

$$a_n \leq M \quad \forall n \geq 1. \quad (a_n \geq M \text{ for all } n \geq 1)$$

If $\{a_n\}$ is bounded above and below, then $\{a_n\}$ is called bounded.

Theorem 11.5 (Monotonic Sequence Theorem). Bounded and monotonic sequences converge.

Remark 11.3. Bounded and monotonic sequences are either increasing and bounded above or decreasing and bounded below.

Example 11.7. Consider the sequence $\{a_n\}$, where

 $a_1 = 2, \quad a_{n+1} = 2 + \sqrt{a_n} \quad \forall n \ge 1.$

Note that if $a_n > 0$, then $a_{n+1} = 2 + \sqrt{a_n} > 0$. As $a_1 = 2 > 0$, one has $a_n > 0$ for all $n \ge 1$. Besides, if $a_n > a_{n-1}$, then

$$a_{n+1} - a_n = 2 + \sqrt{a_n} - (2 + \sqrt{a_{n-1}}) = \sqrt{a_n} - \sqrt{a_{n-1}} > 0$$

If $a_n < 4$, then

$$a_{n+1} = 2 + \sqrt{a_n} < 2 + \sqrt{4} = 4.$$

Since $a_2 = 2 + \sqrt{2} > 2 = a_1$ and $a_n < 4$, the mathematical induction implies that $\{a_n\}$ is increasing and bounded above. By the Monotonic Sequence Theorem, a_n converges. Assume that the limit is L. Since $\sqrt{\cdot}$ is a continuous function, one has

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} (2 + \sqrt{a_n}) = 2 + \sqrt{L}.$$

This implies L = 4.