
LECTURE NOTES IN CALCULUS II

GUAN-YU CHEN

11. Infinite sequences and series

11.1. Sequences.

Definition 11.1. A sequence is a list of numbers written in a definite order:

a1, a2, a3, ..., an, ...

Briefly, we also write the sequence {a1, a2, a3, ...} as {an} or {an}∞n=1.

Example 11.1. For the formulas an = n2 − n and bn = n
√
n, the corresponding sequences are

{an} = {0, 2, 6, ..., n(n− 1), ...}, {bn} = {1,
√
2,

3
√
3, ..., n

√
n, ...}.

In the above examples, n2 − n and n
√
n are called the general formulas of sequences. A

sequence of which the first 5 terms are

−2

1 · 2
,

4

2 · 3
,
−8

3 · 4
,

16

4 · 5
,
−32

5 · 6
,

has the general formula an = (−2)n/[n(n+ 1)].

Example 11.2. The Fibonacci sequence is a sequence {an} satisfying

a1 = 1, a2 = 1, an = an−1 + an−2 ∀n ≥ 3.

Definition 11.2. A sequence {an} has the limit L if, for any ϵ > 0, there is a corresponding
integer N such that |an − L| < ϵ for n ≥ N . In this case, we write limn→∞ an = L and say
that {an} converges or {an} is convergent. Otherwise, we say that {an} diverges or {an} is
divergent.

Remark 11.1. When an gets arbitrarily large as n increases, we write limn→∞ an = ∞ and
refer it to the definition that, for any M > 0, there is an integer N such that an > M for
n ≥ N .

Theorem 11.1. Let f be a function satisfying f(n) = an. Then, for L ∈ R ∪ {±∞},
lim
x→∞

f(x) = L ⇒ lim
n→∞

an = L.

Remark 11.2. The converse of this theorem can fail! (e.g. f(x) = sin(xπ))

Example 11.3. To find limn→∞ lnn/n, we set f(x) = lnx/x. By L’Hôpital’s rule, one has
limx→∞ f(x) = 0, which implies lnn/n → 0.

Limit laws Assume that {an} and {bn} converge with limits a and b. Then, for α, β ∈ R,

lim
n→∞

(αan ± βbn) = αa± βb, lim
n→∞

anbn = αβ lim
n→∞

an
bn

=
α

β
, if β ̸= 0.

Lemma 11.2. If {an} is convergent, then limn→∞(an+1 − an) = 0.

The Squeeze Theorem Assume that there is N > 0 such that an ≤ bn ≤ cn for n ≥ N . If

limn→∞ an = limn→∞ cn = L, then limn→∞ bn = L.
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Theorem 11.3. limn→∞ |an| = 0 if and only if limn→∞ an = 0.

Proof. Clear from the identity |an − 0| = ||an| − 0|. �
Example 11.4. Let bn be the Fibonacci sequence and an = (−1)bn/n. Since |an| = 1/n
converges to 0, limn→∞(−1)bn/n = 0.

Theorem 11.4. If limn→∞ an = L and f is continuous at L, then limn→∞ f(an) = f(L).

Example 11.5. Since limn→∞ lnn/n = 0 and ex is continuous at 0, the limit of n1/n =
exp{lnn/n} is e0 = 1.

Definition 11.3. A sequence {an} is increasing if an < an+1 for n ≥ 1 and decreasing if
an > an+1 for n ≥ 1. In either case, {an} is called monotonic.

Example 11.6. The sequence an = n
n2+1

is decreasing because, for n ≥ 1,

an − an+1 =
n

n2 + 1
− n+ 1

(n+ 1)2 + 1
=

n2 + n− 1

(n2 + 1)[(n+ 1)2 + 1]
> 0.

Definition 11.4. A sequence {an} is bounded above (below) if there is M ∈ R such that

an≤M ∀n ≥ 1. (an≥M for all n ≥ 1)

If {an} is bounded above and below, then {an} is called bounded.

Theorem 11.5 (Monotonic Sequence Theorem). Bounded and monotonic sequences converge.

Remark 11.3. Bounded and monotonic sequences are either increasing and bounded above or
decreasing and bounded below.

Example 11.7. Consider the sequence {an}, where
a1 = 2, an+1 = 2 +

√
an ∀n ≥ 1.

Note that if an > 0, then an+1 = 2 +
√
an > 0. As a1 = 2 > 0, one has an > 0 for all n ≥ 1.

Besides, if an > an−1, then

an+1 − an = 2 +
√
an − (2 +

√
an−1) =

√
an −√

an−1 > 0.

If an < 4, then
an+1 = 2 +

√
an < 2 +

√
4 = 4.

Since a2 = 2 +
√
2 > 2 = a1 and an < 4, the mathematical induction implies that {an} is

increasing and bounded above. By the Monotonic Sequence Theorem, an converges. Assume
that the limit is L. Since

√
· is a continuous function, one has

L = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

(2 +
√
an) = 2 +

√
L.

This implies L = 4.
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