11.9. Taylor and Maclaurin series.

Theorem 11.21. If a function has the following power series representation

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n, \quad \forall |x-a| < R, \quad R > 0,$$

then f is infinitely differentiable (i.e. $f^{(m)}$ exists for all $m \ge 0$) and $c_m = f^{(m)}(a)/m!$

Proof. The proof follows immediately from the fact that $f^{(m)}(x) = \sum_{n=m}^{\infty} c_n n(n-1) \cdots (n-m+1)(x-a)^{n-m}$ for |x-a| < R and $m \ge 0$.

Remark 11.21. If f has a power series representation at a, then $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$.

Definition 11.10. Let f be a function which is infinitely differentiable at a. The Taylor series of f at a is the following series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \cdots$$

A Taylor series of a function at 0 is also called a Maclaurin series.

Example 11.28. Let $f(x) = e^x$ and $a \in \mathbb{R}$. Observe that $f^{(n)}(a) = e^a$. This implies that the Taylor series of e^x at a and the Maclaurin series of e^x are

$$\sum_{n=0}^{\infty} \frac{e^a}{n!} (x-a)^n, \quad \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

By the ratio test, both series have radii of convergence ∞ .

Definition 11.11. For $n \ge 0$, the *n*th degree Taylor polynomial of f at a is defined to be

$$T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a) + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n$$

and the remainder of the Taylor series is $R_n(x) = f(x) - T_n(x)$.

Remark 11.22. Note that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n \quad \Leftrightarrow \quad \lim_{n \to \infty} T_n(x) = f(x) \quad \Leftrightarrow \quad \lim_{n \to \infty} R_n(x) = 0$$

Theorem 11.22 (Taylor's inequality). If $|f^{(n+1)}(x)| \leq M$ for $|x-a| \leq d$, then

$$|R_n(x)| \le \frac{M}{(n+1)!}|x-a|^{n+1}, \quad \forall |x-a| \le d.$$

Proof. Let T_n be the *n*th degree Taylor polynomial of f at a and $R_n(x) = f(x) - T_n(x)$. By the fundamental theorem of calculus, one has

(11.4)
$$R_n(x) = \int_a^x [f'(t) - T'_n(t)]dt$$

We prove this theorem by induction. When n = 0, $T_0(x) = f(a)$ and (11.4) implies

$$|R_0(x)| \le \left| \int_a^x |f'(t)| dt \right| \le M|x-a|, \quad \forall |x-a| \le d$$
14

Assume that Taylor's inequality holds for any function with $n \leq m$. For n = m + 1, suppose $|f^{(m+2)}(x)| \leq M$ for $|x - a| \leq d$. Set g = f' and let S_n be the *n*th degree Taylor polynomial of g at a. Clearly, $|g^{(m+1)}(x)| \leq M$ for all |x - a| < d and

$$S_n(x) = \sum_{i=0}^n \frac{g^{(i)}(a)}{i!} (x-a)^i = \sum_{i=1}^{n+1} \frac{f^{(i)}(a)}{(i-1)!} (x-a)^{i-1} = T'_{n+1}(x).$$

By induction, we obtain

$$|f'(x) - T'_{m+1}(x)| = |g(x) - S_m(x)| \le \frac{M}{(m+1)!} |x - a|^{m+1}, \quad \forall |x - a| \le d.$$

As a consequence of (11.4), this implies

$$|R_{m+1}(x)| \le \left| \int_a^x |f'(t) - T'_{m+1}(t)| dt \right| \le \left| \int_a^x \frac{M}{(m+1)!} |t - a|^{m+1} dt \right| \le \frac{M}{(m+2)!} |x - a|^{m+2}.$$

Example 11.29. Let $f(x) = e^x$, $a \in \mathbb{R}$ and d > 0. Note that $|f^{(n+1)}(x)| \le e^{a+d}$ for $|x-a| \le d$. This implies

$$|R_n(x)| \le \frac{e^{a+d}}{(n+1)!} |x-a|^{n+1} \le \frac{e^{a+d}d^{n+1}}{(n+1)!}, \quad \forall |x-a| \le d$$

By the ratio test, $\sum_{n=1}^{\infty} d^{n+1}/(n+1)!$ is convergent and, hence, $d^{n+1}/(n+1)! \to 0$. As a consequence, $|R_n(x)| \to 0$ for all $|x-a| \leq d$, which is equivalent to $e^x = \sum_{n=0}^{\infty} \frac{e^a}{n!} (x-a)^n$ for $|x-a| \leq d$. Since d is arbitrary, we obtain $e^x = \sum_{n=0}^{\infty} \frac{e^a}{n!} (x-a)^n$ for $x \in \mathbb{R}$. Particularly, one has

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Example 11.30. Let $f(x) = \sin x$. Note that

$$f^{(4m)}(x) = \sin x, \quad f^{(4m+1)}(x) = \cos x, \quad f^{(4m+2)}(x) = -\sin x, \quad f^{(4m+3)}(x) = -\cos x.$$

Clearly, the Maclaurin series of $\sin x$ is

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

By Taylor's inequality, as $|f^{(n)}(x)| \leq 1$ for all x, one has $|R_n(x)| \leq \frac{|x|^{n+1}}{(n+1)!}$. As a consequence of the Squeeze theorem, this implies $R_n(x) \to 0$ for all $x \in \mathbb{R}$. Hence, we obtain

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots, \quad \forall x \in \mathbb{R},$$

and, for $x \in \mathbb{R}$,

$$\cos x = \frac{d\sin x}{dx} = \sum_{n=0}^{\infty} \frac{d}{dx} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

Example 11.31. Let $f(x) = (1+x)^k$, where k is any real number. Note that $f^{(n)}(x) = k(k-1)(k-2) \times \cdots \times (k-n+1)(1+x)^{k-n}$ and the Maclaurin series of f is $g(x) = \sum_{n=0}^{\infty} {k \choose n} x^n$, where

$$\binom{k}{0} := 1, \quad \binom{k}{n} = \frac{k(k-1) \times \dots \times (k-n+1)}{n!}, \quad \forall n \ge 1.$$

g is named a binomial series. To see the radius of convergence of g, note that

$$\left|\frac{\binom{k}{n+1}x^{n+1}}{\binom{k}{n}x^n}\right| = \frac{|k-n|}{n+1}|x| \to |x| \quad \text{as } n \to \infty.$$

By the ratio test, g has radius of convergence 1. To see that f = g on (-1, 1), we set $h(x) = (1+x)^{-k}g(x)$. Consider the following computation with |x| < 1.

$$g'(x) = \sum_{n=1}^{\infty} n\binom{k}{n} x^{n-1} = k \sum_{n=1}^{\infty} \binom{k-1}{n-1} x^{n-1} = k \sum_{n=0}^{\infty} \binom{k-1}{n} x^n.$$

Immediately, this implies

$$(1+x)g'(x) = k\sum_{n=0}^{\infty} \binom{k-1}{n} x^n + k\sum_{n=1}^{\infty} \binom{k-1}{n-1} x^n = k\sum_{n=0}^{\infty} \binom{k}{n} x^n = kg(x)$$

where the last inequality uses the fact

$$\binom{k}{n} = \frac{k(k-1)\cdots(k-n+1)}{n!}$$
$$= \frac{(k-1)(k-2)\cdots(k-n+1)}{(n-1)!} \left(1 + \frac{k-n}{n}\right) = \binom{k-1}{n-1} + \binom{k-1}{n}.$$

As a result, the above computation leads to $h'(x) = (-k)(1+x)^{-k-1}g(x) + (1+x)^{-k}g'(x) = 0$ for |x| < 1. As h(0) = g(0) = 1, we obtain $g(x) = (1+x)^k$ for |x| < 1.

Example 11.32. To evaluate $\int e^{-x^2} dx$, we recall the formula $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ for $x \in \mathbb{R}$. This implies

$$\int e^{-x^2} dx = \int \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{n!} dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int x^{2n} dx = C + \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)n!} x^{2n+1}.$$

Example 11.33. Let $f(x) = \frac{e^x - 1 - x}{x^2}$ for $x \neq 0$ and $g(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n+2)!} = \frac{1}{2!} + \frac{x}{3!} + \frac{x^2}{4!} + \cdots$. Note that f(x) = g(x) for $x \neq 0$ and g has radius of convergence ∞ . Since g is differentiable everywhere, it is continuous on \mathbb{R} . This implies

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = g(0) = \frac{1}{2}.$$

Example 11.34. Consider the function $f(x) = e^{-1/x^2}$ for $x \neq 0$ and f(0) = 0. Clearly, f is infinitely differentiable on $\mathbb{R} \setminus \{0\}$. By induction, one can show that $f^{(n)}(x) = f(x)P_n(x^{-1})$ for $x \neq 0$, where P_n is a polynomial of degree at most 3n. Inductively, one may use this observation to derive $f^{(n)}(0) = 0$ for all $n \geq 1$ and, hence, the Maclaurin series of f equals 0. It's worthwhile to remark that f(x) equals 0 only at 0.