11.9. Taylor and Maclaurin series.

Theorem 11.21. If a function has the following power series representation

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}, \quad \forall|x-a|<R, \quad R>0
$$

then f is infinitely differentiable (i.e. $f^{(m)}$ exists for all $m \geq 0$) and $c_{m}=f^{(m)}(a) / m$!
Proof. The proof follows immediately from the fact that $f^{(m)}(x)=\sum_{n=m}^{\infty} c_{n} n(n-1) \cdots(n-$ $m+1)(x-a)^{n-m}$ for $|x-a|<R$ and $m \geq 0$.

Remark 11.21. If f has a power series representation at a, then $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$.
Definition 11.10. Let f be a function which is infinitely differentiable at a. The Taylor series of f at a is the following series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

A Taylor series of a function at 0 is also called a Maclaurin series.
Example 11.28. Let $f(x)=e^{x}$ and $a \in \mathbb{R}$. Observe that $f^{(n)}(a)=e^{a}$. This implies that the Taylor series of e^{x} at a and the Maclaurin series of e^{x} are

$$
\sum_{n=0}^{\infty} \frac{e^{a}}{n!}(x-a)^{n}, \quad \sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

By the ratio test, both series have radii of convergence ∞.
Definition 11.11. For $n \geq 0$, the nth degree Taylor polynomial of f at a is defined to be

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

and the remainder of the Taylor series is $R_{n}(x)=f(x)-T_{n}(x)$.
Remark 11.22. Note that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \Leftrightarrow \lim _{n \rightarrow \infty} T_{n}(x)=f(x) \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} R_{n}(x)=0
$$

Theorem 11.22 (Taylor's inequality). If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$, then

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1}, \quad \forall|x-a| \leq d
$$

Proof. Let T_{n} be the nth degree Taylor polynomial of f at a and $R_{n}(x)=f(x)-T_{n}(x)$. By the fundamental theorem of calculus, one has

$$
\begin{equation*}
R_{n}(x)=\int_{a}^{x}\left[f^{\prime}(t)-T_{n}^{\prime}(t)\right] d t \tag{11.4}
\end{equation*}
$$

We prove this theorem by induction. When $n=0, T_{0}(x)=f(a)$ and (11.4) implies

$$
\left|R_{0}(x)\right| \leq\left|\int_{a}^{x}\right| f^{\prime}(t)|d t| \leq M|x-a|, \quad \forall|x-a| \leq d
$$

Assume that Taylor's inequality holds for any function with $n \leq m$. For $n=m+1$, suppose $\left|f^{(m+2)}(x)\right| \leq M$ for $|x-a| \leq d$. Set $g=f^{\prime}$ and let S_{n} be the nth degree Taylor polynomial of g at a. Clearly, $\left|g^{(m+1)}(x)\right| \leq M$ for all $|x-a|<d$ and

$$
S_{n}(x)=\sum_{i=0}^{n} \frac{g^{(i)}(a)}{i!}(x-a)^{i}=\sum_{i=1}^{n+1} \frac{f^{(i)}(a)}{(i-1)!}(x-a)^{i-1}=T_{n+1}^{\prime}(x)
$$

By induction, we obtain

$$
\left|f^{\prime}(x)-T_{m+1}^{\prime}(x)\right|=\left|g(x)-S_{m}(x)\right| \leq \frac{M}{(m+1)!}|x-a|^{m+1}, \quad \forall|x-a| \leq d
$$

As a consequence of (11.4), this implies

$$
\left|R_{m+1}(x)\right| \leq\left|\int_{a}^{x}\right| f^{\prime}(t)-T_{m+1}^{\prime}(t)|d t| \leq\left|\int_{a}^{x} \frac{M}{(m+1)!}\right| t-\left.a\right|^{m+1} d t\left|\leq \frac{M}{(m+2)!}\right| x-\left.a\right|^{m+2}
$$

Example 11.29. Let $f(x)=e^{x}, a \in \mathbb{R}$ and $d>0$. Note that $\left|f^{(n+1)}(x)\right| \leq e^{a+d}$ for $|x-a| \leq d$. This implies

$$
\left|R_{n}(x)\right| \leq \frac{e^{a+d}}{(n+1)!}|x-a|^{n+1} \leq \frac{e^{a+d} d^{n+1}}{(n+1)!}, \quad \forall|x-a| \leq d
$$

By the ratio test, $\sum_{n=1}^{\infty} d^{n+1} /(n+1)$! is convergent and, hence, $d^{n+1} /(n+1)$! $\rightarrow 0$. As a consequence, $\left|R_{n}(x)\right| \rightarrow 0$ for all $|x-a| \leq d$, which is equivalent to $e^{x}=\sum_{n=0}^{\infty} \frac{e^{a}}{n!}(x-a)^{n}$ for $|x-a| \leq d$. Since d is arbitrary, we obtain $e^{x}=\sum_{n=0}^{\infty} \frac{e^{a}}{n!}(x-a)^{n}$ for $x \in \mathbb{R}$. Particularly, one has

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Example 11.30. Let $f(x)=\sin x$. Note that

$$
f^{(4 m)}(x)=\sin x, \quad f^{(4 m+1)}(x)=\cos x, \quad f^{(4 m+2)}(x)=-\sin x, \quad f^{(4 m+3)}(x)=-\cos x
$$

Clearly, the Maclaurin series of $\sin x$ is

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

By Taylor's inequality, as $\left|f^{(n)}(x)\right| \leq 1$ for all x, one has $\left|R_{n}(x)\right| \leq \frac{|x|^{n+1}}{(n+1)!}$. As a consequence of the Squeeze theorem, this implies $R_{n}(x) \rightarrow 0$ for all $x \in \mathbb{R}$. Hence, we obtain

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots, \quad \forall x \in \mathbb{R}
$$

and, for $x \in \mathbb{R}$,

$$
\cos x=\frac{d \sin x}{d x}=\sum_{n=0}^{\infty} \frac{d}{d x}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

Example 11.31. Let $f(x)=(1+x)^{k}$, where k is any real number. Note that $f^{(n)}(x)=$ $k(k-1)(k-2) \times \cdots \times(k-n+1)(1+x)^{k-n}$ and the Maclaurin series of f is $g(x)=\sum_{n=0}^{\infty}\binom{k}{n} x^{n}$, where

$$
\binom{k}{0}:=1, \quad\binom{k}{n}=\frac{k(k-1) \times \cdots \times(k-n+1)}{n!}, \quad \forall n \geq 1
$$

g is named a binomial series. To see the radius of convergence of g, note that

$$
\left|\frac{\binom{k}{n+1} x^{n+1}}{\binom{k}{n} x^{n}}\right|=\frac{|k-n|}{n+1}|x| \rightarrow|x| \quad \text { as } n \rightarrow \infty .
$$

By the ratio test, g has radius of convergence 1 . To see that $f=g$ on $(-1,1)$, we set $h(x)=(1+x)^{-k} g(x)$. Consider the following computation with $|x|<1$.

$$
g^{\prime}(x)=\sum_{n=1}^{\infty} n\binom{k}{n} x^{n-1}=k \sum_{n=1}^{\infty}\binom{k-1}{n-1} x^{n-1}=k \sum_{n=0}^{\infty}\binom{k-1}{n} x^{n} .
$$

Immediately, this implies

$$
(1+x) g^{\prime}(x)=k \sum_{n=0}^{\infty}\binom{k-1}{n} x^{n}+k \sum_{n=1}^{\infty}\binom{k-1}{n-1} x^{n}=k \sum_{n=0}^{\infty}\binom{k}{n} x^{n}=k g(x)
$$

where the last inequality uses the fact

$$
\begin{aligned}
\binom{k}{n} & =\frac{k(k-1) \cdots(k-n+1)}{n!} \\
& =\frac{(k-1)(k-2) \cdots(k-n+1)}{(n-1)!}\left(1+\frac{k-n}{n}\right)=\binom{k-1}{n-1}+\binom{k-1}{n}
\end{aligned}
$$

As a result, the above computation leads to $h^{\prime}(x)=(-k)(1+x)^{-k-1} g(x)+(1+x)^{-k} g^{\prime}(x)=0$ for $|x|<1$. As $h(0)=g(0)=1$, we obtain $g(x)=(1+x)^{k}$ for $|x|<1$.
Example 11.32. To evaluate $\int e^{-x^{2}} d x$, we recall the formula $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ for $x \in \mathbb{R}$. This implies

$$
\int e^{-x^{2}} d x=\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int x^{2 n} d x=C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) n!} x^{2 n+1}
$$

Example 11.33. Let $f(x)=\frac{e^{x}-1-x}{x^{2}}$ for $x \neq 0$ and $g(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{(n+2)!}=\frac{1}{2!}+\frac{x}{3!}+\frac{x^{2}}{4!}+\cdots$. Note that $f(x)=g(x)$ for $x \neq 0$ and g has radius of convergence ∞. Since g is differentiable everywhere, it is continuous on \mathbb{R}. This implies

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=g(0)=\frac{1}{2} .
$$

Example 11.34. Consider the function $f(x)=e^{-1 / x^{2}}$ for $x \neq 0$ and $f(0)=0$. Clearly, f is infinitely differentiable on $\mathbb{R} \backslash\{0\}$. By induction, one can show that $f^{(n)}(x)=f(x) P_{n}\left(x^{-1}\right)$ for $x \neq 0$, where P_{n} is a polynomial of degree at most $3 n$. Inductively, one may use this observation to derive $f^{(n)}(0)=0$ for all $n \geq 1$ and, hence, the Maclaurin series of f equals 0 . It's worthwhile to remark that $f(x)$ equals 0 only at 0 .

