
11.9. Taylor and Maclaurin series.

Theorem 11.21. If a function has the following power series representation

f(x) =
∞∑
n=0

cn(x− a)n, ∀|x− a| < R, R > 0,

then f is infinitely differentiable (i.e. f (m) exists for all m ≥ 0) and cm = f (m)(a)/m!

Proof. The proof follows immediately from the fact that f (m)(x) =
∑∞

n=m cnn(n− 1) · · · (n−
m+ 1)(x− a)n−m for |x− a| < R and m ≥ 0. �

Remark 11.21. If f has a power series representation at a, then f(x) =
∑∞

n=0
f (n)(a)

n! (x− a)n.

Definition 11.10. Let f be a function which is infinitely differentiable at a. The Taylor series
of f at a is the following series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · · .

A Taylor series of a function at 0 is also called a Maclaurin series.

Example 11.28. Let f(x) = ex and a ∈ R. Observe that f (n)(a) = ea. This implies that the
Taylor series of ex at a and the Maclaurin series of ex are

∞∑
n=0

ea

n!
(x− a)n,

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · · .

By the ratio test, both series have radii of convergence ∞.

Definition 11.11. For n ≥ 0, the nth degree Taylor polynomial of f at a is defined to be

Tn(x) =
n∑

i=0

f (i)(a)

i!
(x− a)i = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a) + · · ·+ f (n)(a)

n!
(x− a)n

and the remainder of the Taylor series is Rn(x) = f(x)− Tn(x).

Remark 11.22. Note that

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n ⇔ lim

n→∞
Tn(x) = f(x) ⇔ lim

n→∞
Rn(x) = 0.

Theorem 11.22 (Taylor’s inequality). If |f (n+1)(x)| ≤ M for |x− a| ≤ d, then

|Rn(x)| ≤
M

(n+ 1)!
|x− a|n+1, ∀|x− a| ≤ d.

Proof. Let Tn be the nth degree Taylor polynomial of f at a and Rn(x) = f(x) − Tn(x). By
the fundamental theorem of calculus, one has

(11.4) Rn(x) =

∫ x

a
[f ′(t)− T ′

n(t)]dt

We prove this theorem by induction. When n = 0, T0(x) = f(a) and (11.4) implies

|R0(x)| ≤
∣∣∣∣∫ x

a
|f ′(t)|dt

∣∣∣∣ ≤ M |x− a|, ∀|x− a| ≤ d.
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Assume that Taylor’s inequality holds for any function with n ≤ m. For n = m+ 1, suppose
|f (m+2)(x)| ≤ M for |x− a| ≤ d. Set g = f ′ and let Sn be the nth degree Taylor polynomial

of g at a. Clearly, |g(m+1)(x)| ≤ M for all |x− a| < d and

Sn(x) =

n∑
i=0

g(i)(a)

i!
(x− a)i =

n+1∑
i=1

f (i)(a)

(i− 1)!
(x− a)i−1 = T ′

n+1(x).

By induction, we obtain

|f ′(x)− T ′
m+1(x)| = |g(x)− Sm(x)| ≤ M

(m+ 1)!
|x− a|m+1, ∀|x− a| ≤ d.

As a consequence of (11.4), this implies

|Rm+1(x)| ≤
∣∣∣∣∫ x

a
|f ′(t)− T ′

m+1(t)|dt
∣∣∣∣ ≤ ∣∣∣∣∫ x

a

M

(m+ 1)!
|t− a|m+1dt

∣∣∣∣ ≤ M

(m+ 2)!
|x− a|m+2.

�
Example 11.29. Let f(x) = ex, a ∈ R and d > 0. Note that |f (n+1)(x)| ≤ ea+d for |x− a| ≤ d.
This implies

|Rn(x)| ≤
ea+d

(n+ 1)!
|x− a|n+1 ≤ ea+ddn+1

(n+ 1)!
, ∀|x− a| ≤ d.

By the ratio test,
∑∞

n=1 d
n+1/(n + 1)! is convergent and, hence, dn+1/(n + 1)! → 0. As a

consequence, |Rn(x)| → 0 for all |x− a| ≤ d, which is equivalent to ex =
∑∞

n=0
ea

n! (x− a)n for

|x− a| ≤ d. Since d is arbitrary, we obtain ex =
∑∞

n=0
ea

n! (x− a)n for x ∈ R. Particularly, one
has

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+ · · · .

Example 11.30. Let f(x) = sinx. Note that

f (4m)(x) = sinx, f (4m+1)(x) = cosx, f (4m+2)(x) = − sinx, f (4m+3)(x) = − cosx.

Clearly, the Maclaurin series of sinx is
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · .

By Taylor’s inequality, as |f (n)(x)| ≤ 1 for all x, one has |Rn(x)| ≤ |x|n+1

(n+1)! . As a consequence

of the Squeeze theorem, this implies Rn(x) → 0 for all x ∈ R. Hence, we obtain

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · , ∀x ∈ R,

and, for x ∈ R,

cosx =
d sinx

dx
=

∞∑
n=0

d

dx
(−1)n

x2n+1

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · .

Example 11.31. Let f(x) = (1 + x)k, where k is any real number. Note that f (n)(x) =

k(k−1)(k−2)×· · ·×(k−n+1)(1+x)k−n and the Maclaurin series of f is g(x) =
∑∞

n=0

(
k
n

)
xn,

where (
k

0

)
:= 1,

(
k

n

)
=

k(k − 1)× · · · × (k − n+ 1)

n!
, ∀n ≥ 1.
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g is named a binomial series. To see the radius of convergence of g, note that∣∣∣∣∣
(

k
n+1

)
xn+1(

k
n

)
xn

∣∣∣∣∣ = |k − n|
n+ 1

|x| → |x| as n → ∞.

By the ratio test, g has radius of convergence 1. To see that f = g on (−1, 1), we set
h(x) = (1 + x)−kg(x). Consider the following computation with |x| < 1.

g′(x) =
∞∑
n=1

n

(
k

n

)
xn−1 = k

∞∑
n=1

(
k − 1

n− 1

)
xn−1 = k

∞∑
n=0

(
k − 1

n

)
xn.

Immediately, this implies

(1 + x)g′(x) = k
∞∑
n=0

(
k − 1

n

)
xn + k

∞∑
n=1

(
k − 1

n− 1

)
xn = k

∞∑
n=0

(
k

n

)
xn = kg(x)

where the last inequality uses the fact(
k

n

)
=

k(k − 1) · · · (k − n+ 1)

n!

=
(k − 1)(k − 2) · · · (k − n+ 1)

(n− 1)!

(
1 +

k − n

n

)
=

(
k − 1

n− 1

)
+

(
k − 1

n

)
.

As a result, the above computation leads to h′(x) = (−k)(1+x)−k−1g(x)+(1+x)−kg′(x) = 0
for |x| < 1. As h(0) = g(0) = 1, we obtain g(x) = (1 + x)k for |x| < 1.

Example 11.32. To evaluate
∫
e−x2

dx, we recall the formula ex =
∑∞

n=0
xn

n! for x ∈ R. This
implies∫

e−x2
dx =

∫ ∞∑
n=0

(−1)n
x2n

n!
dx =

∞∑
n=0

(−1)n

n!

∫
x2ndx = C +

∞∑
n=0

(−1)n

(2n+ 1)n!
x2n+1.

Example 11.33. Let f(x) = ex−1−x
x2 for x ̸= 0 and g(x) =

∑∞
n=0

xn

(n+2)! =
1
2! +

x
3! +

x2

4! + · · · .
Note that f(x) = g(x) for x ̸= 0 and g has radius of convergence ∞. Since g is differentiable
everywhere, it is continuous on R. This implies

lim
x→0

ex − 1− x

x2
= g(0) =

1

2
.

Example 11.34. Consider the function f(x) = e−1/x2
for x ̸= 0 and f(0) = 0. Clearly, f is

infinitely differentiable on R \ {0}. By induction, one can show that f (n)(x) = f(x)Pn(x
−1)

for x ̸= 0, where Pn is a polynomial of degree at most 3n. Inductively, one may use this
observation to derive f (n)(0) = 0 for all n ≥ 1 and, hence, the Maclaurin series of f equals 0.
It’s worthwhile to remark that f(x) equals 0 only at 0.
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