11.2. Series.

Definition 11.5. A series is a sum of an infinite sequence $\left\{a_{n}\right\}$ and is written by $\sum_{n=1}^{\infty} a_{n}$ or $a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots$.
Remark 11.4. Note that the symbol $\sum_{n=1}^{\infty} a_{n}$ makes no sense unless a precise definition is set. Consider the following two series.

$$
1+(-1)+1+(-1) \cdots, \quad 2^{-1}+2^{-2}+2^{-3}+\cdots
$$

Intuitively, the first series fluctuates between 0 and 1 , while the second series sums up to 1 .
Definition 11.6. Given a series $\sum_{n=1}^{\infty} a_{n}$, let $s_{n}=a_{1}+\cdots+a_{n}$ be the nth partial sum. Then, the series $\sum_{n=1}^{\infty} a_{n}$ is convergent if the sequence $\left\{s_{n}\right\}$ is convergent. In this case, we define

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i},
$$

and call the limit of $\left\{s_{n}\right\}$ the sum of the series. Otherwise, the series is divergent if $\left\{s_{n}\right\}$ is divergent.

Example 11.8. Consider the following three series.
(a) $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$,
(b) $\sum_{n=0}^{\infty} a r^{n} \quad$ with $a \neq 0$,
(c) $\sum_{n=1}^{\infty} 1 / n$.

Remark: (b) is called the geometric series and (c) is called the harmonic series.
Let s_{n} be the nth partial sum. For (a), note that

$$
\frac{n}{(n+1)!}=\frac{n+1}{(n+1)!}-\frac{1}{(n+1)!}=\frac{1}{n!}-\frac{1}{(n+1)!} \quad \forall n \geq 1
$$

This implies $s_{n}=1-1 /(n+1)!$. By the squeeze theorem and the inequalities $0<1 / n!<1 / n$, we may conclude that $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}=1$. For (b), observe that

$$
s_{n}=\sum_{i=0}^{n-1} a r^{i}=a+a r+a r^{2}+\cdots+a r^{n-1}= \begin{cases}\frac{a\left(1-r^{n}\right)}{1-r} & \text { if } r \neq 1 \\ n a & \text { if } r=1\end{cases}
$$

When $r=1$ or $r=-1$, it is clear that the series is divergent. For $|r|<1$, the series is convergent with limit $a /(1-r)$. For $|r|>1$, the series diverges. Next, we consider (c). For $k \geq 1$, we write

$$
s_{2^{k}}=1+\frac{1}{2}+\sum_{\ell=1}^{k-1} \sum_{i=2^{\ell}+1}^{2^{\ell+1}} \frac{1}{i} .
$$

Note that $1 / i \geq 1 / 2^{-\ell-1}$ for $i \leq 2^{\ell+1}$. This yields

$$
\sum_{i=2^{\ell}+1}^{2^{\ell+1}} \frac{1}{i} \geq\left(2^{\ell+1}-2^{\ell}\right) 2^{-\ell-1}=\frac{1}{2} \quad \Rightarrow \quad s_{2^{k}} \geq 1+\frac{1}{2}+\sum_{\ell=1}^{k-1} \frac{1}{2}=1+\frac{k}{2}
$$

Since S_{n} is increasing and not bounded above, we may conclude that $s_{n} \rightarrow \infty$.
Theorem 11.6. If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$. Conversely, if the sequence $\left\{a_{n}\right\}$ diverges or converges with nonzero limit, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
Proof. Let s_{n} be the nth partial sum and set $L=\lim _{n \rightarrow \infty} s_{n}$. By the limit law, one has

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(s_{n}-s_{n-1}\right)=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=L-L=0 .
$$

Remark 11.5. The converse of Theorem 11.6 can be wrong! E.g. the harmonic series.
Limit laws for series If $\sum_{n=1}^{\infty} a_{n}=a$ and $\sum_{n=1}^{\infty} b_{n}=b$, then $\sum_{n=1}^{\infty}\left(\alpha a_{n}+\beta b_{n}\right)$ is convergent for $\alpha, \beta \in \mathbb{R}$ and $\sum_{n=1}^{\infty}\left(\alpha a_{n}+\beta b_{n}\right)=\alpha a+\beta b$.
Example 11.9. To evaluate the series $\sum_{n}\left[3 /(n(n+1))+2^{-n}\right]$, one may compute in advance

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=1-\frac{1}{n+1} \rightarrow 1, \quad \sum_{i=1}^{n} 2^{-i}=\frac{(1 / 2)\left(1-2^{-n}\right)}{1-1 / 2} \rightarrow 1 .
$$

By the limit law, $\sum_{n}\left[3 /(n(n+1))+2^{-n}\right]=3 \cdot 1+1=4$.
Lemma 11.7. Suppose $\sum_{n=1}^{\infty} a_{n}$ is convergent. Then, $\sum_{n=m}^{\infty} a_{n}$ is convergent for any m. Further, if $t_{m}=\sum_{n=m}^{\infty} a_{n}$, then $t_{m} \rightarrow 0$.
Proof. First, fix $m \in \mathbb{N}$. Set $s_{n}=\sum_{i=1}^{n} a_{i}$ and $s_{n}^{(m)}=\sum_{i=m}^{n+m-1} a_{i}$. Clearly, $s_{n}^{(m)}=s_{n+m-1}-$ s_{m-1}. By the limit law, as $\left\{s_{n}\right\}$ converges, $\left\{s_{n}^{(m)}\right\}$ converges. To see the limit of t_{m}, let $s=\sum_{n=1}^{\infty} a_{n}$. Again, the limit law yields $t_{m}=s-s_{m-1}$, which implies $t_{m} \rightarrow s-s=0$.
Example 11.10. Which equations are false in the following computation?

$$
\begin{aligned}
0 & =0+0+0+\cdots \\
& =(1-1)+(1-1)+(1-1)+\cdots \\
& =1-1+1-1+1-1+\cdots \\
& =1+(-1+1)+(-1+1)+(-1+1)+\cdots \\
& =1+0+0+\cdots=1
\end{aligned}
$$

