
11.2. Series.

Definition 11.5. A series is a sum of an infinite sequence {an} and is written by
∑∞

n=1 an or
a1 + a2 + a3 + · · ·+ an + · · · .

Remark 11.4. Note that the symbol
∑∞

n=1 an makes no sense unless a precise definition is set.
Consider the following two series.

1 + (−1) + 1 + (−1) · · · , 2−1 + 2−2 + 2−3 + · · ·
Intuitively, the first series fluctuates between 0 and 1, while the second series sums up to 1.

Definition 11.6. Given a series
∑∞

n=1 an, let sn = a1+ · · ·+an be the nth partial sum. Then,
the series

∑∞
n=1 an is convergent if the sequence {sn} is convergent. In this case, we define

∞∑
n=1

an = lim
n→∞

sn = lim
n→∞

n∑
i=1

ai,

and call the limit of {sn} the sum of the series. Otherwise, the series is divergent if {sn} is
divergent.

Example 11.8. Consider the following three series.

(a)

∞∑
n=1

n

(n+ 1)!
, (b)

∞∑
n=0

arn with a ̸= 0, (c)

∞∑
n=1

1/n.

Remark: (b) is called the geometric series and (c) is called the harmonic series.
Let sn be the nth partial sum. For (a), note that

n

(n+ 1)!
=

n+ 1

(n+ 1)!
− 1

(n+ 1)!
=

1

n!
− 1

(n+ 1)!
∀n ≥ 1.

This implies sn = 1−1/(n+1)!. By the squeeze theorem and the inequalities 0 < 1/n! < 1/n,
we may conclude that

∑∞
n=1

n
(n+1)! = 1. For (b), observe that

sn =
n−1∑
i=0

ari = a+ ar + ar2 + · · ·+ arn−1 =

{
a(1−rn)

1−r if r ̸= 1

na if r = 1

When r = 1 or r = −1, it is clear that the series is divergent. For |r| < 1, the series is
convergent with limit a/(1 − r). For |r| > 1, the series diverges. Next, we consider (c). For
k ≥ 1, we write

s2k = 1 +
1

2
+

k−1∑
ℓ=1

2ℓ+1∑
i=2ℓ+1

1

i
.

Note that 1/i ≥ 1/2−ℓ−1 for i ≤ 2ℓ+1. This yields

2ℓ+1∑
i=2ℓ+1

1

i
≥ (2ℓ+1 − 2ℓ)2−ℓ−1 =

1

2
⇒ s2k ≥ 1 +

1

2
+

k−1∑
ℓ=1

1

2
= 1 +

k

2
.

Since Sn is increasing and not bounded above, we may conclude that sn → ∞.

Theorem 11.6. If
∑∞

n=1 an is convergent, then limn→∞ an = 0. Conversely, if the sequence
{an} diverges or converges with nonzero limit, then the series

∑∞
n=1 an is divergent.

Proof. Let sn be the nth partial sum and set L = limn→∞ sn. By the limit law, one has

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = L− L = 0.

�
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Remark 11.5. The converse of Theorem 11.6 can be wrong! E.g. the harmonic series.

Limit laws for series If
∑∞

n=1 an = a and
∑∞

n=1 bn = b, then
∑∞

n=1(αan + βbn) is conver-
gent for α, β ∈ R and

∑∞
n=1(αan + βbn) = αa+ βb.

Example 11.9. To evaluate the series
∑

n[3/(n(n+ 1)) + 2−n], one may compute in advance
n∑

i=1

1

i(i+ 1)
= 1− 1

n+ 1
→ 1,

n∑
i=1

2−i =
(1/2)(1− 2−n)

1− 1/2
→ 1.

By the limit law,
∑

n[3/(n(n+ 1)) + 2−n] = 3 · 1 + 1 = 4.

Lemma 11.7. Suppose
∑∞

n=1 an is convergent. Then,
∑∞

n=m an is convergent for any m.
Further, if tm =

∑∞
n=m an, then tm → 0.

Proof. First, fix m ∈ N. Set sn =
∑n

i=1 ai and s
(m)
n =

∑n+m−1
i=m ai. Clearly, s

(m)
n = sn+m−1 −

sm−1. By the limit law, as {sn} converges, {s(m)
n } converges. To see the limit of tm, let

s =
∑∞

n=1 an. Again, the limit law yields tm = s− sm−1, which implies tm → s− s = 0. �
Example 11.10. Which equations are false in the following computation?

0 = 0 + 0 + 0 + · · ·
= (1− 1) + (1− 1) + (1− 1) + · · ·
= 1− 1 + 1− 1 + 1− 1 + · · ·
= 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + · · ·
= 1 + 0 + 0 + · · · = 1
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