11.3. The integral test and estimates of sums. In this section, we consider the convergency of sums of positive and decreasing sequences.

Theorem 11.8 (The integral test). Suppose $a_{n}=f(n)$, where f is a continuous, positive and decreasing function on $[1, \infty)$. Then, the convergency of $\sum_{n=1}^{\infty} a_{n}$ and $\int_{1}^{\infty} f(x) d x$ are consistent. That is:
(1) If $\int_{1}^{\infty} f(x) d x$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(2) If $\int_{1}^{\infty} f(x) d x$ is divergent, then $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Proof. By the monotonicity of f, one can see that

$$
\begin{equation*}
\int_{1}^{n+1} f(x) d x \leq s_{n}=\sum_{i=1}^{n} a_{i} \leq a_{1}+\int_{1}^{n} f(x) d x . \tag{11.1}
\end{equation*}
$$

If $\int_{1}^{\infty} f(x) d x=L \in \mathbb{R}$, then the second inequality of (11.1) implies that $s_{n} \leq a_{1}+L$ for $n \geq 1$. As s_{n} is increasing and bounded above, $\sum_{n=1}^{\infty} a_{n}$ converges. If $\int_{1}^{\infty} f(x) d x=\infty$, then the first inequality of (11.1) implies $s_{n} \rightarrow \infty$.

Example 11.11. Consider the p-series, $\sum_{n=1}^{\infty} n^{p}$. When $p>0, n^{p} \rightarrow \infty$; when $p=0, n^{p} \rightarrow 1$. This implies that the p-series is divergent. When $p=-1$, the p-series is the harmonic series and, thus, diverges. For $p<0$ and $p \neq-1$, set $f(x)=x^{p}$. Clearly, f is continuous, positive and decreasing. Note that

$$
\int_{1}^{t} x^{p} d x=\left.\frac{x^{p+1}}{p+1}\right|_{1} ^{t}=\frac{t^{p+1}-1}{p+1}
$$

Letting $t \rightarrow \infty$ implies that $\int_{1}^{\infty} f(x) d x$ is convergent if $p<-1$ and divergent if $-1<p<0$. By the integral test, we may conclude that $\sum_{n=1}^{\infty} n^{p}$ is convergent for $p<-1$ and divergent for $p \geq-1$.

Remark 11.6. The integral test is also valid for continuous and positive functions which are decreasing on $[r, \infty)$, where r is some constant, due to Lemma 11.7, i.e.

$$
\sum_{n=1}^{\infty} a_{n} \text { converges } \Leftrightarrow \quad \sum_{n=r}^{\infty} a_{n} \text { converges. }
$$

Example 11.12. Consider the series $\sum_{n} \ln n / n$. Let $f(x)=\ln x / x$ for $x \geq 1$. Note that $f^{\prime}(x)=x^{-2}(1-\ln x)$. Clearly, $f^{\prime}(x)<0$ if and only if $x>e$. This implies that f is decreasing on $[e, \infty)$. Since

$$
\int_{1}^{\infty} f(x) d x=\left.\lim _{t \rightarrow \infty} \frac{(\ln x)^{2}}{2}\right|_{1} ^{t}=\infty
$$

the series $\sum_{n=1}^{\infty} \ln n / n$ is divergent.
Remainder estimate Let f be continuous, positive and decreasing on $[N, \infty)$. Suppose $a_{n}=f(n)$ and $\sum_{n=1}^{\infty} a_{n}$ converges with sum s. Then,

$$
\int_{N+1}^{\infty} f(x) d x \leq s-s_{N} \leq \int_{N}^{\infty} f(x) d x .
$$

