11.3. The integral test and estimates of sums. In this section, we consider the convergency of sums of positive and decreasing sequences.

Theorem 11.8 (The integral test). Suppose $a_n = f(n)$, where f is a continuous, positive and decreasing function on $[1, \infty)$. Then, the convergency of $\sum_{n=1}^{\infty} a_n$ and $\int_1^{\infty} f(x) dx$ are consistent. That is:

- (1) If $\int_{1}^{\infty} f(x)dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent. (2) If $\int_{1}^{\infty} f(x)dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Proof. By the monotonicity of f, one can see that

(11.1)
$$\int_{1}^{n+1} f(x)dx \le s_n = \sum_{i=1}^{n} a_i \le a_1 + \int_{1}^{n} f(x)dx.$$

If $\int_{1}^{\infty} f(x)dx = L \in \mathbb{R}$, then the second inequality of (11.1) implies that $s_n \leq a_1 + L$ for $n \geq 1$. As s_n is increasing and bounded above, $\sum_{n=1}^{\infty} a_n$ converges. If $\int_{1}^{\infty} f(x)dx = \infty$, then the first inequality of (11.1) implies $s_n \to \infty$.

Example 11.11. Consider the *p*-series, $\sum_{n=1}^{\infty} n^p$. When p > 0, $n^p \to \infty$; when p = 0, $n^p \to 1$. This implies that the *p*-series is divergent. When p = -1, the *p*-series is the harmonic series and, thus, diverges. For p < 0 and $p \neq -1$, set $f(x) = x^p$. Clearly, f is continuous, positive and decreasing. Note that

$$\int_{1}^{t} x^{p} dx = \frac{x^{p+1}}{p+1} \Big|_{1}^{t} = \frac{t^{p+1} - 1}{p+1}.$$

Letting $t \to \infty$ implies that $\int_1^{\infty} f(x) dx$ is convergent if p < -1 and divergent if -1 . $By the integral test, we may conclude that <math>\sum_{n=1}^{\infty} n^p$ is convergent for p < -1 and divergent for $p \geq -1$.

Remark 11.6. The integral test is also valid for continuous and positive functions which are decreasing on $[r, \infty)$, where r is some constant, due to Lemma 11.7, i.e.

$$\sum_{n=1}^{\infty} a_n \text{ converges} \quad \Leftrightarrow \quad \sum_{n=r}^{\infty} a_n \text{ converges.}$$

Example 11.12. Consider the series $\sum_{n} \ln n/n$. Let $f(x) = \ln x/x$ for $x \ge 1$. Note that $f'(x) = x^{-2}(1 - \ln x)$. Clearly, f'(x) < 0 if and only if x > e. This implies that f is decreasing on $[e, \infty)$. Since

$$\int_{1}^{\infty} f(x)dx = \lim_{t \to \infty} \frac{(\ln x)^2}{2} \Big|_{1}^{t} = \infty,$$

the series $\sum_{n=1}^{\infty} \ln n/n$ is divergent.

Remainder estimate Let f be continuous, positive and decreasing on $[N, \infty)$. Suppose $\overline{a_n = f(n) \text{ and } \sum_{n=1}^{\infty} a_n}$ converges with sum s. Then,

$$\int_{N+1}^{\infty} f(x)dx \le s - s_N \le \int_N^{\infty} f(x)dx.$$