11.4. The comparison tests. In this section, we determine the convergency of sums of positive sequences through comparison.

Theorem 11.9 (The comparison test). Let $a_{n}>0$ and $b_{n}>0$ for all $n \geq 1$. Assume that $a_{n} \leq b_{n}$ for all n.
(1) If $\sum_{n=1}^{\infty} b_{n}$ is convergent, then $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(2) If $\sum_{n=1}^{\infty} a_{n}$ is divergent, then $\sum_{n=1}^{\infty} b_{n}$ is divergent.

Proof. As (2) is an equivalent statement of (1), we prove (1) here. Set $s_{n}=\sum_{i=1}^{n} a_{i}$ and $t_{n}=\sum_{i=1}^{n} b_{i}$. Clearly, $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are increasing sequences satisfying $s_{n} \leq t_{n}$ for all n. If $t_{n} \rightarrow t$, then $s_{n} \leq t$ for all n, which implies $\sum_{n=1}^{\infty} a_{n}$ is convergent.

Example 11.13. Consider two sequences, $a_{n}=\frac{1}{2^{n}+3 n+1}$ and $b_{n}=\frac{1}{3 n+1}$. Note that $a_{n} \leq 2^{-n}$ and $b_{n} \geq \frac{1}{4 n}$. By the comparison test, since $\sum_{n=1}^{\infty} 2^{-n}$ is convergent and the harmonic series is divergent, $\sum_{n=1}^{\infty} a_{n}$ is convergent and $\sum_{n=1}^{\infty} b_{n}$ is divergent.
Theorem 11.10 (The limit comparison test). Assume that $a_{n}>0$ and $b_{n}>0$ and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0
$$

Then, $\sum_{n=1}^{\infty} a_{n}$ is convergent if and only if $\sum_{n=1}^{\infty} b_{n}$ is convergent.
Proof. Let m, M be positive constants such that $m<c<M$. Since a_{n} / b_{n} converges to c, we may choose $N>0$ such that

$$
\begin{equation*}
m<\frac{a_{n}}{b_{n}}<M \quad \forall n \geq N \tag{11.2}
\end{equation*}
$$

This implies

$$
\begin{equation*}
b_{n}<\frac{1}{m} a_{n}, \quad a_{n}<M b_{n} \quad \forall n \geq N \tag{11.3}
\end{equation*}
$$

By the comparison test, $\sum_{n=N}^{\infty} a_{n}$ converges if and only if $\sum_{n=N}^{\infty} b_{n}$ converges. The desired equivalence is then given by Lemma 11.7.

Remark 11.7. In the above theorem, when $c=0$, the conclusion one can make from the second inequality of (11.2) is

$$
\sum_{n=1}^{\infty} b_{n} \text { converges } \Rightarrow \sum_{n=1}^{\infty} a_{n} \text { converges. }
$$

The converse can fail. See e.g. $a_{n}=1 / n^{2}$ and $b_{n}=1 / n$.
Example 11.14. Consider the series $\sum_{n=1}^{\infty} 1 /\left(2 n^{2}+3 n+(-1)^{n}\right)$. Note that

$$
\lim _{n \rightarrow \infty} \frac{1 /\left(2 n^{2}+3 n+(-1)^{n}\right)}{1 / n^{2}}=1 / 2 .
$$

As $\sum_{n=1}^{\infty} 1 / n^{2}$ converges, $\sum_{n=1}^{\infty} 1 /\left(2 n^{2}+3 n+(-1)^{n}\right)$ converges.
Example 11.15. Consider the series $\sum_{n=1}^{\infty} 1 /\left(n^{3}+1\right)$. As $n^{3}+1>n^{3}$ and $\sum_{n=1}^{\infty} 1 / n^{3}$ converges, $\sum_{n=1}^{\infty} 1 /\left(n^{3}+1\right)$ converges. Let s_{n} and s be the nth partial sum and the sum. Then, for $n \geq 1$,

$$
0<s-s_{n} \leq \int_{n}^{\infty} \frac{1}{x^{3}+1} d x \leq \int_{n}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{2 n^{2}}
$$

When $n=100,0<s-s_{100} \leq 5 \cdot 10^{-5}$.

