11.5. Alternating series.

Definition 11.7. An alternating series is a series of which terms are alternately positive and negative.

Example 11.16. The following series are alternating series.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}, \quad -\frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \frac{6}{5} - \dots = \sum_{n=1}^{\infty} \frac{(-1)^n (n+2)}{n+1}.$$

Theorem 11.11 (The alternating series test). Assume that $b_{n+1} \leq b_n$ for $n \geq 1$ and $b_n \to 0$. Then, the series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ converges.

Proof. Let s_n be the *n*th partial sum of the series. Then, $s_{2n} = \sum_{i=1}^n (b_{2i-1} - b_{2i}) \ge 0$ and $s_{2n} \le s_{2n+2}$ for all $n \ge 1$. Note that $s_{2n} = b_1 + \sum_{i=1}^{n-1} (-b_{2i} + b_{2i+1}) - b_{2n} \le b_1$. By the monotonic sequence theorem, $\{s_{2n}\}$ converges. Let s be the limit of $\{s_{2n}\}$. Since $\lim_{n\to\infty} b_n = 0$, one has

$$\lim_{n \to \infty} s_{2n+1} = \lim_{n \to \infty} (s_{2n} + b_{2n+1}) = \lim_{n \to \infty} s_{2n} + \lim_{n \to \infty} b_{2n+1} = s.$$

This proves that $\{s_n\}$ converges to s.

Example 11.17. Consider the following series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3 + 1}, \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}.$$

Note that $n^2/(n^3+1) \rightarrow 0, 1/n! \rightarrow 0$ and

$$\frac{n^2}{n^3+1} - \frac{(n+1)^2}{(n+1)^3+1} = \frac{n^4 + (2n+1)(n^2-1)}{(n^3+1)[(n+1)^3+1]} \ge 0, \quad \frac{1}{n!} > \frac{1}{(n+1)!}$$

By the alternating series test, both series are convergent.

Remark 11.8. Note that the assumption $b_{n+1} \leq b_n$ in the alternating series test cannot be removed. Consider the series $\sum_{n=1}^{\infty} a_n$, where $a_{2k-1} = 1/k$ and $a_{2k} = \ln k/k$. Let $s_n = \sum_{i=1}^{n} (-1)^{i+1} a_i$. Then, $s_{2k} = \sum_{i=1}^{k} 1/i - \sum_{i=1}^{k} \ln i/i$. Through a comparison, one has

$$\int_{1}^{k+1} \frac{dx}{x} \le \sum_{i=1}^{k} \frac{1}{i} \le 1 + \int_{1}^{k} \frac{dx}{x}, \quad \frac{\ln 2}{2} + \int_{3}^{k+1} \frac{\ln x}{x} dx \le \sum_{i=1}^{k} \frac{\ln i}{i} \le \frac{\ln 2}{2} + \frac{\ln 3}{3} + \int_{3}^{k} \frac{\ln x}{x} dx.$$

By the formulas, $\int \frac{1}{x} dx = \ln x + C$ and $\int \frac{\ln x}{x} dx = \frac{1}{2} (\ln x)^2 + C$, we obtain

$$s_{2k} \le 1 - \frac{\ln 2}{2} + \ln k - \frac{1}{2} [(\ln k)^2 - (\ln 3)^2] \to -\infty, \text{ as } k \to \infty.$$

Remark 11.9. Note that the assumption of $b_{n+1} \leq b_n$ is not necessary for the convergence of an alternating series. See e.g. the example of $\sum_{n=1}^{\infty} (-1)^{n+1}(a_n + b_n)$ with $a_1 = 1$, $a_{2n+1} = a_{2n} = 1/(n+1)$, $b_{2n} = 0$ and $b_{2n-1} = 2^{-n}$.

Theorem 11.12 (Alternating series estimation theorem). Assume that $b_n \ge b_{n+1}$ and $b_n \to 0$. Set $s_n = \sum_{i=1}^n (-1)^{i+1} b_i$ and $s = \sum_{i=1}^\infty (-1)^{i+1} b_i$. Then, $|s - s_n| \le b_{n+1}$.

Proof. The proof follows immediately from the fact $s_{2n} \leq s \leq s_{2n+1} = s_{2n} + b_{n+1}$ for $n \geq 1$. \Box