11.5. Alternating series.

Definition 11.7. An alternating series is a series of which terms are alternately positive and negative.

Example 11.16. The following series are alternating series.

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}, \quad-\frac{3}{2}+\frac{4}{3}-\frac{5}{4}+\frac{6}{5}-\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+2)}{n+1} .
$$

Theorem 11.11 (The alternating series test). Assume that $b_{n+1} \leq b_{n}$ for $n \geq 1$ and $b_{n} \rightarrow 0$. Then, the series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ converges.
Proof. Let s_{n} be the nth partial sum of the series. Then, $s_{2 n}=\sum_{i=1}^{n}\left(b_{2 i-1}-b_{2 i}\right) \geq 0$ and $s_{2 n} \leq s_{2 n+2}$ for all $n \geq 1$. Note that $s_{2 n}=b_{1}+\sum_{i=1}^{n-1}\left(-b_{2 i}+b_{2 i+1}\right)-b_{2 n} \leq b_{1}$. By the monotonic sequence theorem, $\left\{s_{2 n}\right\}$ converges. Let s be the limit of $\left\{s_{2 n}\right\}$. Since $\lim _{n \rightarrow \infty} b_{n}=0$, one has

$$
\lim _{n \rightarrow \infty} s_{2 n+1}=\lim _{n \rightarrow \infty}\left(s_{2 n}+b_{2 n+1}\right)=\lim _{n \rightarrow \infty} s_{2 n}+\lim _{n \rightarrow \infty} b_{2 n+1}=s
$$

This proves that $\left\{s_{n}\right\}$ converges to s.
Example 11.17. Consider the following series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}}{n^{3}+1}, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} .
$$

Note that $n^{2} /\left(n^{3}+1\right) \rightarrow 0,1 / n!\rightarrow 0$ and

$$
\frac{n^{2}}{n^{3}+1}-\frac{(n+1)^{2}}{(n+1)^{3}+1}=\frac{n^{4}+(2 n+1)\left(n^{2}-1\right)}{\left(n^{3}+1\right)\left[(n+1)^{3}+1\right]} \geq 0, \quad \frac{1}{n!}>\frac{1}{(n+1)!} .
$$

By the alternating series test, both series are convergent.
Remark 11.8. Note that the assumption $b_{n+1} \leq b_{n}$ in the alternating series test cannot be removed. Consider the series $\sum_{n=1}^{\infty} a_{n}$, where $a_{2 k-1}=1 / k$ and $a_{2 k}=\ln k / k$. Let $s_{n}=$ $\sum_{i=1}^{n}(-1)^{i+1} a_{i}$. Then, $s_{2 k}=\sum_{i=1}^{k} 1 / i-\sum_{i=1}^{k} \ln i / i$. Through a comparison, one has

$$
\int_{1}^{k+1} \frac{d x}{x} \leq \sum_{i=1}^{k} \frac{1}{i} \leq 1+\int_{1}^{k} \frac{d x}{x}, \quad \frac{\ln 2}{2}+\int_{3}^{k+1} \frac{\ln x}{x} d x \leq \sum_{i=1}^{k} \frac{\ln i}{i} \leq \frac{\ln 2}{2}+\frac{\ln 3}{3}+\int_{3}^{k} \frac{\ln x}{x} d x .
$$

By the formulas, $\int \frac{1}{x} d x=\ln x+C$ and $\int \frac{\ln x}{x} d x=\frac{1}{2}(\ln x)^{2}+C$, we obtain

$$
s_{2 k} \leq 1-\frac{\ln 2}{2}+\ln k-\frac{1}{2}\left[(\ln k)^{2}-(\ln 3)^{2}\right] \rightarrow-\infty, \quad \text { as } k \rightarrow \infty .
$$

Remark 11.9. Note that the assumption of $b_{n+1} \leq b_{n}$ is not necessary for the convergence of an alternating series. See e.g. the example of $\sum_{n=1}^{\infty}(-1)^{n+1}\left(a_{n}+b_{n}\right)$ with $a_{1}=1, a_{2 n+1}=$ $a_{2 n}=1 /(n+1), b_{2 n}=0$ and $b_{2 n-1}=2^{-n}$.

Theorem 11.12 (Alternating series estimation theorem). Assume that $b_{n} \geq b_{n+1}$ and $b_{n} \rightarrow 0$. Set $s_{n}=\sum_{i=1}^{n}(-1)^{i+1} b_{i}$ and $s=\sum_{i=1}^{\infty}(-1)^{i+1} b_{i}$. Then, $\left|s-s_{n}\right| \leq b_{n+1}$.
Proof. The proof follows immediately from the fact $s_{2 n} \leq s \leq s_{2 n+1}=s_{2 n}+b_{n+1}$ for $n \geq 1$.

