
11.7. Power series.

Definition 11.9. A power series is a series of the following form
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · · ,

where x is a variable and a, cn are constants. More precisely, we call it a power series centered
at a and call cn’s the coefficients.

Remark 11.14. The domain of a power series is the set of all x such that the power series is
convergent. For instance, the geometric series, 1+x+x2+x3+ · · · , has domain (−1, 1). Note
that any power series centered at a must be convergent at x = a.

Example 11.21. Consider the following power series.
∞∑
n=0

n!xn,
∞∑
n=0

(x− 3)n

n+ 1
,

∞∑
n=0

(−1)nx2n

22n(n!)2
.

To see their domains, we set

an = n!xn, bn =
(x− 3)n

n+ 1
, cn =

(−1)nx2n

22n(n!)2
.

For the first series, if x ̸= 0, then

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

n|x| = ∞.

By the ratio test,
∑∞

n=0 an is divergent for x ̸= 0.
For the second series, note that

lim
n→∞

|bn|1/n = lim
n→∞

|x− 3|
(n+ 1)1/n

= |x− 3|.

By the root test, the series is absolutely convergent if |x− 3| < 1 but divergent if |x− 3| > 1.
Note that |x − 3| = 1 implies x = 2 or x = 4. When x = 4, bn = 1/(n + 1) and

∑∞
n=0 bn

is the harmonic series, which is divergent. When x = 2, bn = (−1)n/(n + 1) and
∑∞

n=0 bn is
the alternating harmonic series, which is convergent. Thus, the domain of the second series is
[2, 4).

The third series is introduced by the German astronomer Friedrich Bessel and widely used
in mathematics, physics and chemistry. It is named after Friedrich Bessel as a Bessel function.
Observe that

lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣ = lim
n→∞

x2

22(n+ 1)2
= 0, ∀x ∈ R.

This implies that the Bessel function has domain R.

Lemma 11.16. Consider the power series
∑∞

n=0 cn(x− a)n.

(1) If the power series converges for some x0 ̸= a, then it converges absolutely for all
|x− a| < |x0 − a|.

(2) If the power series converges conditionally or diverges for some y0 ̸= a, then it diverges
for all |x− a| > |y0 − a|.

Proof. We prove (1) in the following, while (2) is an immediate result of (1). Let r0 = |x0−a|.
Fix x ∈ (a−r0, a+r0), set bn = cn(x0−a)n, r = (x−a)/(x0−a) and write cn(x−a)n = bnr

n.
Note that

|x− a| < r0 = |x0 − a| ⇒ |r| < 1.
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Since
∑∞

n=0 bn converges, bn → 0 and, hence, we may choose M > 0 such that |bn| < M for
all n. As a consequence, this implies

∞∑
n=0

|cn(x− a)n| =
∞∑
n=0

|bn| · |r|n ≤ M

1− |r|
< ∞.

�
Theorem 11.17. For any power series

∑∞
n=0 cn(x− a)n, exactly one of the following condi-

tions holds.

(1) The series converges only at a.
(2) The series converges for all x ∈ R.
(3) There is R > 0 such that the series converges for |x−a| < R and diverges for |x−a| >

R.

Remark 11.15. By Lemma 11.16, the convergence in Theorem 11.17(2)-(3) are in fact the
absolute convergence.

Remark 11.16. In Theorem 11.17(3), R is called the radius of convergence of the power se-
ries. Generally, we say that the radius of convergence of the power series in (1) and (2) are
respectively 0 and ∞.

Remark 11.17. In Theorem 11.17(3), the domain of the power series must be one of the
following four cases,

(a−R, a+R), [a−R, a+R), (a−R, a+R], [a−R, a+R],

and is called the interval of convergence of the power series.

Corollary 11.18. For the power series
∑∞

n=0 cn(x − a)n, assume that at least one of the
following limit exists,

L := lim
n→∞

|cn+1|
|cn|

, L := lim
n→∞

|cn|1/n.

Then, the radius of convergence of this power series is 1/L, where 1/0 := ∞ and 1/∞ := 0.

Example 11.22. Let k ∈ N. Consider the power series
∑∞

n=0
(n!)k

(kn)!x
n. By the ratio test, we

have

[(n+ 1)!]k|x|n+1/[k(n+ 1)]!

(n!)k|x|n/(kn)!
=

(n+ 1)k|x|
(kn+ 1)(kn+ 2) · · · (kn+ k)

=
(1 + 1/n)k|x|

kk(1 + 1/kn)(1 + 2/kn) · · · (1 + k/kn)
→ |x|

kk

as n → ∞. This implies that the radius of the convergence of this power series is kk.

Remark 11.18. Is it possible that a power series
∑∞

n=0 cn(x− a)n is convergent if and only if
x ∈ [0,∞)?
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