11.7. Power series.

Definition 11.9. A power series is a series of the following form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

where x is a variable and a, c_{n} are constants. More precisely, we call it a power series centered at a and call c_{n} 's the coefficients.

Remark 11.14. The domain of a power series is the set of all x such that the power series is convergent. For instance, the geometric series, $1+x+x^{2}+x^{3}+\cdots$, has domain $(-1,1)$. Note that any power series centered at a must be convergent at $x=a$.

Example 11.21. Consider the following power series.

$$
\sum_{n=0}^{\infty} n!x^{n}, \quad \sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n+1}, \quad \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

To see their domains, we set

$$
a_{n}=n!x^{n}, \quad b_{n}=\frac{(x-3)^{n}}{n+1}, \quad c_{n}=\frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

For the first series, if $x \neq 0$, then

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} n|x|=\infty
$$

By the ratio test, $\sum_{n=0}^{\infty} a_{n}$ is divergent for $x \neq 0$.
For the second series, note that

$$
\lim _{n \rightarrow \infty}\left|b_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty} \frac{|x-3|}{(n+1)^{1 / n}}=|x-3|
$$

By the root test, the series is absolutely convergent if $|x-3|<1$ but divergent if $|x-3|>1$. Note that $|x-3|=1$ implies $x=2$ or $x=4$. When $x=4, b_{n}=1 /(n+1)$ and $\sum_{n=0}^{\infty} b_{n}$ is the harmonic series, which is divergent. When $x=2, b_{n}=(-1)^{n} /(n+1)$ and $\sum_{n=0}^{\infty} b_{n}$ is the alternating harmonic series, which is convergent. Thus, the domain of the second series is $[2,4)$.

The third series is introduced by the German astronomer Friedrich Bessel and widely used in mathematics, physics and chemistry. It is named after Friedrich Bessel as a Bessel function. Observe that

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}}{c_{n}}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{2^{2}(n+1)^{2}}=0, \quad \forall x \in \mathbb{R}
$$

This implies that the Bessel function has domain \mathbb{R}.
Lemma 11.16. Consider the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$.
(1) If the power series converges for some $x_{0} \neq a$, then it converges absolutely for all $|x-a|<\left|x_{0}-a\right|$.
(2) If the power series converges conditionally or diverges for some $y_{0} \neq a$, then it diverges for all $|x-a|>\left|y_{0}-a\right|$.
Proof. We prove (1) in the following, while (2) is an immediate result of (1). Let $r_{0}=\left|x_{0}-a\right|$. Fix $x \in\left(a-r_{0}, a+r_{0}\right)$, set $b_{n}=c_{n}\left(x_{0}-a\right)^{n}, r=(x-a) /\left(x_{0}-a\right)$ and write $c_{n}(x-a)^{n}=b_{n} r^{n}$. Note that

$$
|x-a|<r_{0}=\left|x_{0}-a\right| \quad \Rightarrow \quad|r|<1
$$

Since $\sum_{n=0}^{\infty} b_{n}$ converges, $b_{n} \rightarrow 0$ and, hence, we may choose $M>0$ such that $\left|b_{n}\right|<M$ for all n. As a consequence, this implies

$$
\sum_{n=0}^{\infty}\left|c_{n}(x-a)^{n}\right|=\sum_{n=0}^{\infty}\left|b_{n}\right| \cdot|r|^{n} \leq \frac{M}{1-|r|}<\infty
$$

Theorem 11.17. For any power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, exactly one of the following conditions holds.
(1) The series converges only at a.
(2) The series converges for all $x \in \mathbb{R}$.
(3) There is $R>0$ such that the series converges for $|x-a|<R$ and diverges for $|x-a|>$ R.

Remark 11.15. By Lemma 11.16, the convergence in Theorem 11.17(2)-(3) are in fact the absolute convergence.

Remark 11.16. In Theorem 11.17(3), R is called the radius of convergence of the power series. Generally, we say that the radius of convergence of the power series in (1) and (2) are respectively 0 and ∞.

Remark 11.17. In Theorem 11.17(3), the domain of the power series must be one of the following four cases,

$$
(a-R, a+R), \quad[a-R, a+R), \quad(a-R, a+R], \quad[a-R, a+R],
$$

and is called the interval of convergence of the power series.
Corollary 11.18. For the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, assume that at least one of the following limit exists,

$$
L:=\lim _{n \rightarrow \infty} \frac{\left|c_{n+1}\right|}{\left|c_{n}\right|}, \quad L:=\lim _{n \rightarrow \infty}\left|c_{n}\right|^{1 / n} .
$$

Then, the radius of convergence of this power series is $1 / L$, where $1 / 0:=\infty$ and $1 / \infty:=0$.
Example 11.22. Let $k \in \mathbb{N}$. Consider the power series $\sum_{n=0}^{\infty} \frac{(n!)^{k}}{(k n)!} x^{n}$. By the ratio test, we have

$$
\begin{aligned}
\frac{[(n+1)!]^{k}|x|^{n+1} /[k(n+1)]!}{(n!)^{k}|x|^{n} /(k n)!} & =\frac{(n+1)^{k}|x|}{(k n+1)(k n+2) \cdots(k n+k)} \\
& =\frac{(1+1 / n)^{k}|x|}{k^{k}(1+1 / k n)(1+2 / k n) \cdots(1+k / k n)} \rightarrow \frac{|x|}{k^{k}}
\end{aligned}
$$

as $n \rightarrow \infty$. This implies that the radius of the convergence of this power series is k^{k}.
Remark 11.18. Is it possible that a power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is convergent if and only if $x \in[0, \infty)$?

