13. Vector functions

13.1. Vector functions and space curves.

Definition 13.1. A vector-valued function or vector function, $r(t)$, is a function of which domain is a subset of \mathbb{R} and range is a subset of a vector space V. When $V=\mathbb{R}^{3}$, we may write $r(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, h are called the component functions of r.
Remark 13.1. If $r(t)=\langle f(t), g(t), h(t)\rangle$ and $v=\langle a, b, c\rangle$, then $|r(t)-v|^{2}=|f(t)-a|^{2}+$ $|g(t)-b|^{2}+|h(t)-c|^{2}$. By the squeeze theorem, we may conclude that $r(t) \rightarrow v$ if and only if $f(t) \rightarrow a, g(t) \rightarrow b$ and $h(t) \rightarrow c$.

Definition 13.2. Consider the vector function $r(t)=\langle f(t), g(t), h(t)\rangle$.
(1) $r(t)$ converges as $t \rightarrow T$ if $f(t), g(t)$ and $h(t)$ converge as $t \rightarrow T$ and, also,

$$
\lim _{t \rightarrow T} r(t)=\left\langle\lim _{t \rightarrow T} f(t), \lim _{t \rightarrow T} g(t), \lim _{t \rightarrow T} h(t)\right\rangle
$$

(2) $r(t)$ is continuous at T if $\lim _{t \rightarrow T} r(t)=r(T)$.

Remark 13.2. It follows immediately from the above definition that $r(t)$ is continuous at $t=T$ if and only if f, g, h are continuous at $t=T$.
Remark 13.3. If the domain of $r(t)$ is an interval I, then the trajectory of $r(t)$ as t moves along I is called the space curve and the following three equations,

$$
x=f(t), \quad y=g(t), \quad z=h(t)
$$

are called the parametric equations, where t is called the parameter.
Example 13.1. Consider the following space curves.

$$
\text { (1) } r(t)=\langle 1+t, 2+5 t,-1+6 t\rangle, \quad \text { (2) } r(t)=\langle t, \sin t, 2 \cos t\rangle
$$

For (1), the trajectory forms a line passing through $(1,2,-1)$ and is parallel to $\langle 1,5,6\rangle$. For (2), observe that the parametric equations are

$$
x=t, \quad y=\sin t, \quad z=2 \cos t
$$

This implies $y^{2}+z^{2} / 4=1$ and, thus, the trajectory lies on the elliptic cylinder $y^{2}+z^{2} / 4=1$. Example 13.2. Let C be the intersection of the elliptic cylinder $x^{2} / 4+y^{2} / 9=1$ and the plane $y+z=2$. Using the polar coordinate on the $x y$-plane, one may write the elliptic cylinder as

$$
x=2 \cos \theta, \quad y=3 \sin \theta \quad \theta \in[0,2 \pi] .
$$

Then, the plane can be expressed as $3 \sin \theta+z=2$. As a result, C turns out the space curve with parametric equations,

$$
r(t)=\langle 2 \cos t, 3 \sin t, 2-3 \sin t\rangle \quad t \in[0,2 \pi]
$$

