13.3. Arc length and curvature. Recall that a plane curve with parametric equations $x=f(t)$ and $y=g(t)$ for $t \in[a, b]$ has length $L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t$.
Theorem 13.4. Consider a vector function $r(t)=\langle f(t), g(t), h(t)\rangle$. If r is continuously differentiable, then the length L of the curve $\{r(t) \mid a \leq t \leq b\}$ is given by $L=\int_{a}^{b}\left|r^{\prime}(t)\right| d t=$ $\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}} d t$.

Example 13.4. Consider the circular helix $r(t)=\langle\cos t, \sin t, t\rangle$ with $t \in[0,2 \pi]$. Then, the length of r is

$$
L=\int_{0}^{2 \pi}\left|r^{\prime}(t)\right| d t=\int_{0}^{2 \pi} \sqrt{\sin ^{2} t+\cos ^{2} t+1^{2}} d t=2 \sqrt{2} \pi
$$

Example 13.5. Consider the vector functions $r_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ with $t \in[1,2]$ and $r_{2}(s)=$ $\left\langle e^{s}, e^{2 s}, e^{3 s}\right\rangle$ with $s \in[0, \ln 2]$. It is easy to see that both equations denote the same curve and, theoretically, should have the same length. In detail, if L_{i} is the length of r_{i}, then

$$
L_{1}=\int_{1}^{2} \sqrt{1^{2}+(2 t)^{2}+\left(3 t^{2}\right)^{2}} d t, \quad L_{2}=\int_{0}^{\ln 2} e^{s} \sqrt{1+4 e^{2 s}+9 e^{4 s}} d s
$$

By the substitute $t=e^{s}$, one may derive $L_{1}=L_{2}$.
Remark 13.6. Let $r(t)$ be a continuously differentiable vector function with $t \in[a, b]$. As in the case of plane curves, the length function of this curve between $r(a)$ and $r(t)$ is defined by $s(t)=\int_{a}^{t}\left|r^{\prime}(u)\right| d u$. By the fundamental theorem of calculus, we have $s^{\prime}(t)=\left|r^{\prime}(t)\right|$.
Example 13.6. The length function of the helix $r(t)=\langle\cos t, \sin t, t\rangle$ starting from $r(0)$ is $s(t)=\int_{0}^{t} \sqrt{\sin ^{2} u+\cos ^{2} u+1} d u=\sqrt{2} t$.

Definition 13.5. A parametrization of a curve is its vector equation, say $r(t)$. If $r(t)$ is continuously differentiable on an interval I, then the parametrization is called smooth on I. A curve is called smooth if it has a smooth parametrization.
Definition 13.6. Let $r(t)$ be a parametrization of a curve C with unit tangent vector $T(t)$. Then, the curvature of C at $r(t)$ is defined by

$$
\kappa=\left|\frac{d T}{d s}\right| . \quad \text { or precisely } \quad \kappa(t)=\left|\frac{T^{\prime}(t)}{s^{\prime}(t)}\right|=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|} .
$$

Remark 13.7. The definition of curvature is independent of the choice of parametrization.
Example 13.7. Consider the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ and the smooth parametrization $r(t)=$ $\langle a \cos t, b \sin t\rangle$ with $t \in[0,2 \pi]$. Note that

$$
r^{\prime}(t)=\langle-a \sin t, b \cos t\rangle, \quad T^{\prime}(t)=\frac{d}{d t}\left(\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}\right)=\frac{r^{\prime \prime}(t)\left|r^{\prime}(t)\right|-r^{\prime}(t)\left|r^{\prime}(t)\right|^{\prime}}{\left|r^{\prime}(t)\right|^{2}}
$$

and

$$
\left|r^{\prime}(t)\right|^{2}=a^{2} \sin ^{2} t+b^{2} \cos ^{2} t, \quad\left|r^{\prime}(t)\right|^{\prime}=\frac{\left(a^{2}-b^{2}\right) \sin t \cos t}{\left|r^{\prime}(t)\right|}
$$

This implies

$$
T^{\prime}(t)=\frac{\left\langle-a b^{2} \cos t,-a^{2} b \sin t\right\rangle}{\left|r^{\prime}(t)\right|^{3}}, \quad\left|T^{\prime}(t)\right|=\frac{a b}{a^{2} \sin ^{2} t+b^{2} \cos ^{2} t}
$$

Hence, we have

$$
\kappa(t)=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}=\frac{a b}{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{3 / 2}}
$$

When $a>b, \kappa(0)=a / b^{2}>b / a^{2}=\kappa(\pi / 2)$. When $a=b, \kappa(t)=1 / a$ for all t.

Theorem 13.5. If $r(t)$ is a secondly differentiable parametrization of a curve C, then $\kappa(t)=$ $\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right| /\left|r^{\prime}(t)\right|^{3}$.
Proof. By the identities $T(t)=r^{\prime}(t) /\left|r^{\prime}(t)\right|$ and $s^{\prime}(t)=\left|r^{\prime}(t)\right|$, one has $r^{\prime}(t)=s^{\prime}(t) T(t)$. This implies $r^{\prime \prime}(t)=s^{\prime \prime}(t) T(t)+s^{\prime}(t) T^{\prime}(t)$. Since $|T(t)|=1$ for all $t, T(t)$ and $T^{\prime}(t)$ are perpendicular for all t, which leads to $r^{\prime}(t) \times r^{\prime \prime}(t)=s^{\prime}(t)^{2}\left(T(t) \times T^{\prime}(t)\right)$ and then $\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|=s^{\prime}(t)^{2} \mid T(t) \times$ $T^{\prime}(t)\left|=s^{\prime}(t)^{2}\right| T(t)| | T^{\prime}(t) \mid$. As a result, $\kappa(t)=\left|T^{\prime}(t)\right| /\left|r^{\prime}(t)\right|=\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right| /\left|r^{\prime}(t)\right|^{3}$.

Example 13.8. Consider the space curve $r(t)=\left\langle t^{2}, 2 t, \ln t\right\rangle$. In some computations, one can show that $r^{\prime}(t)=\langle 2 t, 2,1 / t\rangle, r^{\prime \prime}(t)=\left\langle 2,0,-1 / t^{2}\right\rangle$ and $r^{\prime}(t) \times r^{\prime \prime}(t)=\left\langle-2 / t^{2}, 4 / t,-4\right\rangle$. Consequently, we obtain

$$
\kappa(t)=\frac{\left|\left\langle-2 / t^{2}, 4 / t,-4\right\rangle\right|}{|\langle 2 t, 2,1 / t\rangle|^{3}}=\frac{\left.2\left(1 / t^{4}+4 / t^{2}+4\right)^{1 / 2}\right)}{\left(4 t^{2}+4+1 / t^{2}\right)^{3 / 2}} .
$$

At the point $(1,2,0)$, the curvature is $2 / 9$.
Example 13.9. To see the curvature of the plane curve $y=f(x)$, we embed it in \mathbb{R}^{3} as the space curve $r(x)=\langle x, f(x), 0\rangle$. Immediately, this implies $r^{\prime}(x)=\left\langle 1, f^{\prime}(x), 0\right\rangle, r^{\prime \prime}(x)=\left\langle 0, f^{\prime \prime}(x), 0\right\rangle$ and $r^{\prime}(x) \times r^{\prime \prime}(x)=\left\langle 0,0, f^{\prime \prime}(x)\right\rangle$. Hence, the curvature $\kappa(x)$ at point $(x, f(x), 0)$ is given by $\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}}$. When $f(x)=\ln x, \kappa(x)=\frac{1 / x^{2}}{\left(1+1 / x^{2}\right)^{3 / 2}}=\frac{x}{\left(x^{2}+1\right)^{3 / 2}} \rightarrow 0$ as $x \rightarrow 0$ or $x \rightarrow \infty$.

Definition 13.7. Given a smooth curve $r(t)$ with unit tangent vector $T(t)$, the principal unit normal vector and the binormal vector are respectively defined by

$$
N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}, \quad B(t)=T(t) \times N(t)
$$

Remark 13.8. Since $T(t)$ and $N(t)$ are perpendicular and of length $1,|B(t)|=|T(t)||N(t)|=1$. The plane determined by N and B is called the normal plane and the plane determined by N and T is called the osculating plane. The osculating circle of C at P is the circle lying on the osculating plane of C and on the concave side of C, which is the side that N points toward, with the same tangent as C at P and radius $1 / \kappa$.

Example 13.10. Consider the helix $r(t)=\langle\cos t, \sin t, t\rangle$ and $P=(-1,0, \pi)$. The normal plane at P has normal vector $r^{\prime}(\pi)=\langle 0,-1,1\rangle$ and the osculating plane at P has normal vector $B(\pi)$. A direct computation yields $B(t)=2^{-1 / 2}\langle\sin t,-\cos t, 1\rangle$ and then $B(\pi)=2^{-1 / 2}\langle 0,1,1\rangle$. Consequently, the normal and osculating planes at P are respectively $-y+z=\pi$ and $y+z=\pi$.
Example 13.11. For the curve $y=\ln x$, recall that $\kappa(x)=x /\left(x^{2}+1\right)^{3 / 2}$. By identifying this curve with $\langle x, \ln x, 0\rangle$, we may compute

$$
T(t)=\frac{x}{\sqrt{x^{2}+1}}\langle 1,1 / x, 0\rangle, \quad N(t)=\frac{1}{\sqrt{x^{2}+1}}\langle 1,-x, 0\rangle
$$

Then, the osculating circle of the curve $y=\ln x$ at the point $(x, \ln x)$ is centered at $(2 x+$ $1 / x, \ln x-x^{2}-1$) with radius $\left(x^{2}+1\right)^{3 / 2} / x$.

