13.3. Arc length and curvature. Recall that a plane curve with parametric equations
x = f(t) and y = g(t) for ¢ € [a,b] has length L = f(f V()% 4 ¢/ (t)3dt.

Theorem 13.4. Consider a vector function r(t) = (f(t),g(t),h(t)). If r is continuously
differentiable, then the length L of the curve {r(t)la < t < b} is given by L = ff |r'(t)|dt =
S PP+ g7 + WD)t

Ezample 13.4. Consider the circular helix r(t) = (cost,sint,t) with ¢ € [0,27]. Then, the
length of r is

21 2T
L= / |7 (¢)|dt = \/sin2 t 4+ cos2t + 12dt = 2v/27.
0 0

Ezample 13.5. Consider the vector functions ri(t) = (t,#%,¢3) with ¢ € [1,2] and rao(s) =
(€%, €25 e3%) with s € [0,In2]. It is easy to see that both equations denote the same curve and,
theoretically, should have the same length. In detail, if L; is the length of r;, then

In2

2
L= / V12 4+ (26)2 + (3t2)2dt, Ly = e’V 1+ 4e?s + 9e*sds.
1

0

By the substitute ¢t = e®, one may derive Ly = Lo.
Remark 13.6. Let r(t) be a continuously differentiable vector function with ¢ € [a,b]. As in

the case of plane curves, the length function of this curve between r(a) and r(t) is defined by
s(t) = fat |7’ (u)|du. By the fundamental theorem of calculus, we have s'(t) = |r/(t)].

Ezample 13.6. The length function of the helix r(¢) = (cost,sint,t) starting from r(0) is
s(t) = fot Vsin? u + cos? u 4 1du = v/2t.

Definition 13.5. A parametrization of a curve is its vector equation, say r(t). If r(t) is
continuously differentiable on an interval I, then the parametrization is called smooth on I.
A curve is called smooth if it has a smooth parametrization.

Definition 13.6. Let r(¢) be a parametrization of a curve C' with unit tangent vector T'(t).

Then, the curvature of C at r(t) is defined by
ar (0| ()
ds st | ()]

Remark 13.7. The definition of curvature is independent of the choice of parametrization.

K =

or precisely k(t) =

Ezample 13.7. Consider the ellipse 22/a? + y?/b?> = 1 and the smooth parametrization 7(t) =
(acost,bsint) with t € [0,27]. Note that

' (t) = (—asint,bcost), T'(t) =

a ( r'(t) ) _ @@= @@
dt \ |r'(t)| (87 ’

and
(a® — b?)sint cost

[7(8)]

Ir'(t)]> = a®sin®t + b2 cos?t, |r'(t)| =

This implies

—ab? cost, —absint) ab
T/ = ¢ i LT )] = .
*) 7 (t)|3 @)l a?sin?t + b2 cos?t
Hence, we have
T'(t b
- Tl “

@) (a®sin®t + b2 cos? t)3/2
When a > b, k(0) = a/b?® > b/a? = k(7/2). When a = b, k(t) = 1/a for all ¢.
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Theorem 13.5. If r(t) is a secondly differentiable parametrization of a curve C, then k(t) =
' (8) < " ()| 1 ().
Proof. By the identities T'(t) = r/(t)/|r/(t)| and s'(t) = |r'(t)|, one has 7'(t) = §'(¢)T'(t). This
implies 7 (t) = §"(¢t)T(t)+s'(t)T"(t). Since |T'(t)| = 1 for all ¢, T'(t) and T"(t) are perpendicular
for all ¢, which leads to r/(t) x 7" (t) = s'(t)2(T(t) x T'(t)) and then |r'(t) x 7" (t)| = s'(t)?|T(t) x
T'(t)| = ' (O)*ITW||T"(t)]- As avesult, w(t) = [T"(t)|/|r'(t)] = [r'(t) x " ()] /|r' (t)]>. 0
Ezample 13.8. Consider the space curve r(t) = (t?,2t,Int). In some computations, one can
show that r'(t) = (2t,2,1/t), r"(t) = (2,0, —1/t%) and +/(t) x 7" (t) = (—2/t%,4/t, —4). Conse-
quently, we obtain

o(t) = [(—2/82,4/t,—4)|  2(1/t* 4+ 4/1% + 4)/?)

242,182 (42 44+ 1/t2)3/2

At the point (1,2,0), the curvature is 2/9.

Example 13.9. To see the curvature of the plane curve y = f(z), we embed it in R? as the space
curve r(x) = (x, f(x),0). Immediately, this implies 7'(x) = (1, f'(x),0), "' (z) = (0, f"(z),0)
and 7' (x) x "' (x) = (0,0, f”(x)). Hence, the curvature k(x) at point (z, f(z),0) is given by

1" x $2 €T
H(fz = W When f(z) = lnz, k(z) = (1+i;x2)3/2 = e 0asz — 0 or
00.

Definition 13.7. Given a smooth curve r(¢) with unit tangent vector T'(¢), the principal unit
normal vector and the binormal vector are respectively defined by

T'(t)

N(t) = ——=+, B(t)=T(t) x N(t).

7" (2)|
Remark 13.8. Since T'(t) and N (¢) are perpendicular and of length 1, |B(t)| = |T'(¢)||N(t)| = 1.
The plane determined by N and B is called the normal plane and the plane determined by N
and T is called the osculating plane. The osculating circle of C at P is the circle lying on the
osculating plane of C' and on the concave side of C, which is the side that N points toward,
with the same tangent as C' at P and radius 1/k.

Ezample 13.10. Consider the helix r(t) = (cost,sint,t) and P = (—1,0, 7). The normal plane
at P has normal vector 7'(7) = (0, —1, 1) and the osculating plane at P has normal vector B(r).
A direct computation yields B(t) = 27 %/?(sint, —cost,1) and then B(w) = 2-12(0,1,1).
Consequently, the normal and osculating planes at P are respectively —y+z = 7 and y+2z = 7.

Ezample 13.11. For the curve y = Inz, recall that x(z) = z/(z? + 1)3/2. By identifying this
curve with (z,Inz,0), we may compute

T 1
Y 1,1/2,0), N(t)=—(1,—z,0).
/0, N = {1 -a0)
Then, the osculating circle of the curve y = Inx at the point (z,lnz) is centered at (2x +
1/z,Inz — 2? — 1) with radius (22 + 1)%/2/x.

T(t) =
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