
13.3. Arc length and curvature. Recall that a plane curve with parametric equations

x = f(t) and y = g(t) for t ∈ [a, b] has length L =
∫ b
a

√
f ′(t)2 + g′(t)2dt.

Theorem 13.4. Consider a vector function r(t) = ⟨f(t), g(t), h(t)⟩. If r is continuously

differentiable, then the length L of the curve {r(t)|a ≤ t ≤ b} is given by L =
∫ b
a |r′(t)|dt =∫ b

a

√
f ′(t)2 + g′(t)2 + h′(t)2dt.

Example 13.4. Consider the circular helix r(t) = ⟨cos t, sin t, t⟩ with t ∈ [0, 2π]. Then, the
length of r is

L =

∫ 2π

0
|r′(t)|dt =

∫ 2π

0

√
sin2 t+ cos2 t+ 12dt = 2

√
2π.

Example 13.5. Consider the vector functions r1(t) = ⟨t, t2, t3⟩ with t ∈ [1, 2] and r2(s) =
⟨es, e2s, e3s⟩ with s ∈ [0, ln 2]. It is easy to see that both equations denote the same curve and,
theoretically, should have the same length. In detail, if Li is the length of ri, then

L1 =

∫ 2

1

√
12 + (2t)2 + (3t2)2dt, L2 =

∫ ln 2

0
es
√

1 + 4e2s + 9e4sds.

By the substitute t = es, one may derive L1 = L2.

Remark 13.6. Let r(t) be a continuously differentiable vector function with t ∈ [a, b]. As in
the case of plane curves, the length function of this curve between r(a) and r(t) is defined by

s(t) =
∫ t
a |r

′(u)|du. By the fundamental theorem of calculus, we have s′(t) = |r′(t)|.

Example 13.6. The length function of the helix r(t) = ⟨cos t, sin t, t⟩ starting from r(0) is

s(t) =
∫ t
0

√
sin2 u+ cos2 u+ 1du =

√
2t.

Definition 13.5. A parametrization of a curve is its vector equation, say r(t). If r(t) is
continuously differentiable on an interval I, then the parametrization is called smooth on I.
A curve is called smooth if it has a smooth parametrization.

Definition 13.6. Let r(t) be a parametrization of a curve C with unit tangent vector T (t).
Then, the curvature of C at r(t) is defined by

κ =

∣∣∣∣dTds
∣∣∣∣ . or precisely κ(t) =

∣∣∣∣T ′(t)

s′(t)

∣∣∣∣ = |T ′(t)|
|r′(t)|

.

Remark 13.7. The definition of curvature is independent of the choice of parametrization.

Example 13.7. Consider the ellipse x2/a2 + y2/b2 = 1 and the smooth parametrization r(t) =
⟨a cos t, b sin t⟩ with t ∈ [0, 2π]. Note that

r′(t) = ⟨−a sin t, b cos t⟩, T ′(t) =
d

dt

(
r′(t)

|r′(t)|

)
=

r′′(t)|r′(t)| − r′(t)|r′(t)|′

|r′(t)|2
,

and

|r′(t)|2 = a2 sin2 t+ b2 cos2 t, |r′(t)|′ = (a2 − b2) sin t cos t

|r′(t)|
.

This implies

T ′(t) =
⟨−ab2 cos t,−a2b sin t⟩

|r′(t)|3
, |T ′(t)| = ab

a2 sin2 t+ b2 cos2 t
.

Hence, we have

κ(t) =
|T ′(t)|
|r′(t)|

=
ab

(a2 sin2 t+ b2 cos2 t)3/2
.

When a > b, κ(0) = a/b2 > b/a2 = κ(π/2). When a = b, κ(t) = 1/a for all t.
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Theorem 13.5. If r(t) is a secondly differentiable parametrization of a curve C, then κ(t) =
|r′(t)× r′′(t)|/|r′(t)|3.

Proof. By the identities T (t) = r′(t)/|r′(t)| and s′(t) = |r′(t)|, one has r′(t) = s′(t)T (t). This
implies r′′(t) = s′′(t)T (t)+s′(t)T ′(t). Since |T (t)| = 1 for all t, T (t) and T ′(t) are perpendicular
for all t, which leads to r′(t)×r′′(t) = s′(t)2(T (t)×T ′(t)) and then |r′(t)×r′′(t)| = s′(t)2|T (t)×
T ′(t)| = s′(t)2|T (t)||T ′(t)|. As a result, κ(t) = |T ′(t)|/|r′(t)| = |r′(t)× r′′(t)|/|r′(t)|3. �
Example 13.8. Consider the space curve r(t) = ⟨t2, 2t, ln t⟩. In some computations, one can
show that r′(t) = ⟨2t, 2, 1/t⟩, r′′(t) = ⟨2, 0,−1/t2⟩ and r′(t)× r′′(t) = ⟨−2/t2, 4/t,−4⟩. Conse-
quently, we obtain

κ(t) =
|⟨−2/t2, 4/t,−4⟩|

|⟨2t, 2, 1/t⟩|3
=

2(1/t4 + 4/t2 + 4)1/2)

(4t2 + 4 + 1/t2)3/2
.

At the point (1, 2, 0), the curvature is 2/9.

Example 13.9. To see the curvature of the plane curve y = f(x), we embed it in R3 as the space
curve r(x) = ⟨x, f(x), 0⟩. Immediately, this implies r′(x) = ⟨1, f ′(x), 0⟩, r′′(x) = ⟨0, f ′′(x), 0⟩
and r′(x) × r′′(x) = ⟨0, 0, f ′′(x)⟩. Hence, the curvature κ(x) at point (x, f(x), 0) is given by

κ(x) = |f ′′(x)|
[1+(f ′(x))2]3/2

. When f(x) = lnx, κ(x) = 1/x2

(1+1/x2)3/2
= x

(x2+1)3/2
→ 0 as x → 0 or

x → ∞.

Definition 13.7. Given a smooth curve r(t) with unit tangent vector T (t), the principal unit
normal vector and the binormal vector are respectively defined by

N(t) =
T ′(t)

|T ′(t)|
, B(t) = T (t)×N(t).

Remark 13.8. Since T (t) and N(t) are perpendicular and of length 1, |B(t)| = |T (t)||N(t)| = 1.
The plane determined by N and B is called the normal plane and the plane determined by N
and T is called the osculating plane. The osculating circle of C at P is the circle lying on the
osculating plane of C and on the concave side of C, which is the side that N points toward,
with the same tangent as C at P and radius 1/κ.

Example 13.10. Consider the helix r(t) = ⟨cos t, sin t, t⟩ and P = (−1, 0, π). The normal plane
at P has normal vector r′(π) = ⟨0,−1, 1⟩ and the osculating plane at P has normal vectorB(π).

A direct computation yields B(t) = 2−1/2⟨sin t,− cos t, 1⟩ and then B(π) = 2−1/2⟨0, 1, 1⟩.
Consequently, the normal and osculating planes at P are respectively −y+z = π and y+z = π.

Example 13.11. For the curve y = lnx, recall that κ(x) = x/(x2 + 1)3/2. By identifying this
curve with ⟨x, lnx, 0⟩, we may compute

T (t) =
x√

x2 + 1
⟨1, 1/x, 0⟩, N(t) =

1√
x2 + 1

⟨1,−x, 0⟩.

Then, the osculating circle of the curve y = lnx at the point (x, lnx) is centered at (2x +

1/x, lnx− x2 − 1) with radius (x2 + 1)3/2/x.
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