14. Partial Derivatives

14.1. Functions of several variables.

Definition 14.1. A function of n variables is a rule that assigns to each n-vector $\left(x_{1}, \ldots, x_{n}\right)$ a unique real number denoted by $f\left(x_{1}, \ldots, x_{n}\right)$. The set D where f is defined is called the domain of f and the range is the set of values where f takes, that is, $\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid\left(x_{1}, \ldots, x_{n}\right) \in D\right\}$.
Example 14.1. Let $f(x, y)=\sqrt{4-x^{2}-y^{2}}$. One can see without difficulty that the domain of f is $D=\left\{(x, y) \mid 4-x^{2}-y^{2} \geq 0\right\}$ and the range is $R=\{z \mid 0 \leq z \leq 2\}$.

Definition 14.2. Let f be a function of n variables with domain D. The graph of f is the set $\left\{\left(x_{1}, \ldots, x_{n}, z\right) \in \mathbb{R}^{n+1} \mid z=f\left(x_{1}, \ldots, x_{n}\right),\left(x_{1}, \ldots, x_{n}\right) \in D\right\}$.

Example 14.2. Let $f(x, y)=6-3 x-2 y, g(x, y)=\sqrt{4-x^{2}-y^{2}}$ and $h(x, y)=x^{2}+y^{2} / 4$. Then, the graphs of f, g, h are respectively a plane, a sphere and an elliptic paraboloid.

Definition 14.3. The level curve of a function f of two variables are the curves determined by the equation $f(x, y)=k$ where k is any constant. A level surface of a function g of three variables is the surface determined by $g(x, y, z)=k$.

Example 14.3. For the functions $f(x, y)=6-3 x-2 y, g(x, y)=\sqrt{4-x^{2}-y^{2}}$ and $h(x, y)=$ $x^{2}+y^{2} / 4$, the level curves are lines, circles, ellipses and their degenerate forms.

Example 14.4. For the function $f(x, y, z)=x^{2}-y^{2}+z^{2}$, the domain is \mathbb{R}^{3} and the level surface $f(x, y, z)=k$ is a hyperboloid of one sheet if $k>0$ and a hyperboloid of two sheet if $k<0$, whereas the level surface $f(x, y, z)=0$ is a cone.

