
14.2. Limits and continuity. Consider the following functions.

f(x, y) =
sin(x2 + y2)

x2 + y2
, g(x, y) =

x2 − y2

x2 + y2
, ∀(x, y) ̸= (0, 0).

Note that (x, y) approaches (0, 0) if and only if x2 + y2 approaches 0. By L’Hôpital’s rule,
f(x, y) → 1 as (x, y) approaches (0, 0). For g, it is clear that g(x, 0) = 1 for x ̸= 0 and
g(0, y) = −1 for y ̸= 0. Intuitively, g(x, y) has no limit as (x, y) approaches (0, 0).

Definition 14.4. Let f be a function of two variables whose domain includes points arbitrarily
close to (a, b). The value of f(x, y) can be arbitrarily close to L as (x, y) approaches (a, b) if,
for any ϵ > 0, there is δ > 0 such that

|f(x, y)− L| < ϵ for (x, y) ∈ D, 0 <
√

(x− a)2 + (y − b)2 < δ.

Briefly, we write f(x, y) → L as (x, y) → (a, b) or

lim
(x,y)→(a,b)

f(x, y) = L.

Remark 14.1. Let f(x, y) = x and g(x, y) = y. For any (a, b) ∈ R2, f(x, y) → a = f(a, b) and
g(x, y) → b = g(a, b) as (x, y) → (a, b).

Theorem 14.1. Let f be a function with domain D ⊂ R2. Assume that f has limit L as
(x, y) approaches (a, b). Then, by setting f(a, b) = L,

lim
t→T

f(a(t), b(t)) = L,

for any functions a(t), b(t) satisfying a(t) → a, b(t) → b as t → T .

Remark 14.2. By Theorem 14.1, if f has no limit at (a, b) along one curve or f has two different
limits at (a, b) along two curves, then f has no limit at (a, b).

Example 14.5. Consider the following functions.

f(x, y) =
xy

x2 + y2
, g(x, y) =

xy2

x2 + y2
, ∀(x, y) ̸= (0, 0).

As t → 0, f(t, 0) → 0 and f(t, t) → 1/2. This implies that f has no limit at (0, 0). For g, let

ϵ > 0 and choose δ = ϵ. If 0 <
√
x2 + y2 < δ, then |x| < δ = ϵ, which implies

|g(x, y)− 0| = |x|y2

x2 + y2
≤ ϵ.

This proves lim(x,y)→(0,0) g(x, y) = 0.

Limit laws Let f, g be functions of two variables with limits L,M at (a, b) and c ∈ R. Then,
as (x, y) → (a, b),

(1) f(x, y) + g(x, y) → L+M, (2) cf(x, y) → cL, (3) f(x, y)g(x, y) → LM,

(4) f(x, y)/g(x, y) → L/M provided M ̸= 0.

Remark 14.3. A polynomial of two variables is a finite sum of terms of the form cxmyn, where
c is a constant and m,n are non-negative integers. A rational function of two variables is
a ratio of two polynomials of two variables. By the limit laws, if f(x, y) is a polynomial or
rational function with domain D, then f(x, y) → f(a, b) for all (a, b) ∈ D.

Squeeze theorem If f ≤ g ≤ h and f, h have limits L at (a, b), then g has limit L at (a, b).
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Definition 14.5. A function f of two variables is continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).

f is continuous on D if f is continuous at (a, b) for all (a, b) ∈ D.

Remark 14.4. Polynomials and rational functions are continuous on their domains.

Example 14.6. Consider the following functions.

f(x, y) =

{
xy

x2+y2
for (x, y) ̸= (0, 0)

0 for (x, y) = (0, 0)
, g(x, y) =

{
xy4

x2+y4
for (x, y) ̸= (0, 0)

0 for (x, y) = (0, 0)
.

As f, g are rational functions on R2 \ {(0, 0)}, they must be continuous on R2 \ {(0, 0)}. It
has been proved before that f has no limit at (0, 0), this implies that f is not continuous
at (0, 0). For g, note that −|x| ≤ g(x, y) ≤ |x| for (x, y) ̸= (0, 0). By the squeeze theorem,
g(x, y) → 0 = g(0, 0) as (x, y) → (0, 0). This proves that g is continuous at (0, 0).

Theorem 14.2. If f has limit L at (a, b) and g is continuous at L, then (g ◦f)(x, y) has limit
g(L) at (a, b). In particular, if f is continuous at (a, b) and g is continuous at f(a, b), then
g ◦ f is continuous at (a, b).

Proof. Assume that f has limit L at (a, b) and g is continuous at L. Let ϵ > 0. By the
continuity of g, we may choose η > 0 such that |g(z)−g(L)| < ϵ for |z−L| < η. As f has limit

L at (a, b), we may select δ > 0 such that |f(x, y)− L| < η for 0 <
√
(x− a)2 + (y − b)2 < δ.

Replacing z with f(x, y) implies that |g ◦ f(x, y) − g(L)| < ϵ for 0 <
√
(x− a)2 + (y − b)2 <

δ. �
Example 14.7. Let g(t) = t+ln t and f(x, y) = (1−xy)/(1+x2y2). Note that f is continuous
on R2 and g is continuous on (0,∞). This implies that g ◦ f is continuous on its domain,
which is {(x, y)|xy < 1}.

Remark 14.5. For functions of n variables, their limits and continuities are defined in the same
way. In detail, f has limit L at a = (a1, ..., an) if, for any ϵ > 0, there is δ > 0 such that

|f(x)− L| < ϵ for |x− a| =
√
(x1 − a1)2 + · · ·+ (xn − an)2 < δ,

where x = (x1, x2, ..., xn). Also, f is said to be continuous at a if f(x) → f(a) as x → a. In a
similar reasoning, the limit laws, squeeze theorem and all above theorems are applicable for
functions of n variables.
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