14.2. Limits and continuity. Consider the following functions.

$$
f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}, \quad g(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, \quad \forall(x, y) \neq(0,0) .
$$

Note that (x, y) approaches $(0,0)$ if and only if $x^{2}+y^{2}$ approaches 0 . By L'Hôpital's rule, $f(x, y) \rightarrow 1$ as (x, y) approaches $(0,0)$. For g, it is clear that $g(x, 0)=1$ for $x \neq 0$ and $g(0, y)=-1$ for $y \neq 0$. Intuitively, $g(x, y)$ has no limit as (x, y) approaches $(0,0)$.
Definition 14.4. Let f be a function of two variables whose domain includes points arbitrarily close to (a, b). The value of $f(x, y)$ can be arbitrarily close to L as (x, y) approaches (a, b) if, for any $\epsilon>0$, there is $\delta>0$ such that

$$
|f(x, y)-L|<\epsilon \quad \text { for }(x, y) \in D, 0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta .
$$

Briefly, we write $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$ or

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L .
$$

Remark 14.1. Let $f(x, y)=x$ and $g(x, y)=y$. For any $(a, b) \in \mathbb{R}^{2}, f(x, y) \rightarrow a=f(a, b)$ and $g(x, y) \rightarrow b=g(a, b)$ as $(x, y) \rightarrow(a, b)$.
Theorem 14.1. Let f be a function with domain $D \subset \mathbb{R}^{2}$. Assume that f has limit L as (x, y) approaches (a, b). Then, by setting $f(a, b)=L$,

$$
\lim _{t \rightarrow T} f(a(t), b(t))=L
$$

for any functions $a(t), b(t)$ satisfying $a(t) \rightarrow a, b(t) \rightarrow b$ as $t \rightarrow T$.
Remark 14.2. By Theorem 14.1, if f has no limit at (a, b) along one curve or f has two different limits at (a, b) along two curves, then f has no limit at (a, b).
Example 14.5. Consider the following functions.

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}, \quad g(x, y)=\frac{x y^{2}}{x^{2}+y^{2}}, \quad \forall(x, y) \neq(0,0) .
$$

As $t \rightarrow 0, f(t, 0) \rightarrow 0$ and $f(t, t) \rightarrow 1 / 2$. This implies that f has no limit at $(0,0)$. For g, let $\epsilon>0$ and choose $\delta=\epsilon$. If $0<\sqrt{x^{2}+y^{2}}<\delta$, then $|x|<\delta=\epsilon$, which implies

$$
|g(x, y)-0|=\frac{|x| y^{2}}{x^{2}+y^{2}} \leq \epsilon
$$

This proves $\lim _{(x, y) \rightarrow(0,0)} g(x, y)=0$.
Limit laws Let f, g be functions of two variables with limits L, M at (a, b) and $c \in \mathbb{R}$. Then, as $(x, y) \rightarrow(a, b)$,
(1) $f(x, y)+g(x, y) \rightarrow L+M$,
(2) $c f(x, y) \rightarrow c L$,
(3) $f(x, y) g(x, y) \rightarrow L M$,
(4) $f(x, y) / g(x, y) \rightarrow L / M \quad$ provided $M \neq 0$.

Remark 14.3. A polynomial of two variables is a finite sum of terms of the form $c x^{m} y^{n}$, where c is a constant and m, n are non-negative integers. A rational function of two variables is a ratio of two polynomials of two variables. By the limit laws, if $f(x, y)$ is a polynomial or rational function with domain D, then $f(x, y) \rightarrow f(a, b)$ for all $(a, b) \in D$.

Squeeze theorem If $f \leq g \leq h$ and f, h have limits L at (a, b), then g has limit L at (a, b).

Definition 14.5. A function f of two variables is continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b) .
$$

f is continuous on D if f is continuous at (a, b) for all $(a, b) \in D$.
Remark 14.4. Polynomials and rational functions are continuous on their domains.
Example 14.6. Consider the following functions.

$$
f(x, y)=\left\{\begin{array}{ll}
\frac{x y}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\
0 & \text { for }(x, y)=(0,0)
\end{array}, \quad g(x, y)=\left\{\begin{array}{ll}
\frac{x y^{4}}{x^{2}+y^{4}} & \text { for }(x, y) \neq(0,0) \\
0 & \text { for }(x, y)=(0,0)
\end{array} .\right.\right.
$$

As f, g are rational functions on $\mathbb{R}^{2} \backslash\{(0,0)\}$, they must be continuous on $\mathbb{R}^{2} \backslash\{(0,0)\}$. It has been proved before that f has no limit at $(0,0)$, this implies that f is not continuous at $(0,0)$. For g, note that $-|x| \leq g(x, y) \leq|x|$ for $(x, y) \neq(0,0)$. By the squeeze theorem, $g(x, y) \rightarrow 0=g(0,0)$ as $(x, y) \rightarrow(0,0)$. This proves that g is continuous at $(0,0)$.

Theorem 14.2. If f has limit L at (a, b) and g is continuous at L, then $(g \circ f)(x, y)$ has limit $g(L)$ at (a, b). In particular, if f is continuous at (a, b) and g is continuous at $f(a, b)$, then $g \circ f$ is continuous at (a, b).
Proof. Assume that f has limit L at (a, b) and g is continuous at L. Let $\epsilon>0$. By the continuity of g, we may choose $\eta>0$ such that $|g(z)-g(L)|<\epsilon$ for $|z-L|<\eta$. As f has limit L at (a, b), we may select $\delta>0$ such that $|f(x, y)-L|<\eta$ for $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$. Replacing z with $f(x, y)$ implies that $|g \circ f(x, y)-g(L)|<\epsilon$ for $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<$ δ.
Example 14.7. Let $g(t)=t+\ln t$ and $f(x, y)=(1-x y) /\left(1+x^{2} y^{2}\right)$. Note that f is continuous on \mathbb{R}^{2} and g is continuous on $(0, \infty)$. This implies that $g \circ f$ is continuous on its domain, which is $\{(x, y) \mid x y<1\}$.
Remark 14.5. For functions of n variables, their limits and continuities are defined in the same way. In detail, f has limit L at $a=\left(a_{1}, \ldots, a_{n}\right)$ if, for any $\epsilon>0$, there is $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { for }|x-a|=\sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}}<\delta,
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Also, f is said to be continuous at a if $f(x) \rightarrow f(a)$ as $x \rightarrow a$. In a similar reasoning, the limit laws, squeeze theorem and all above theorems are applicable for functions of n variables.

