14.3. Partial derivatives.

Definition 14.6. Let $f(x, y)$ be a function of two variables. The partial derivative of f w.r.t. x at (a, b) is defined by

$$
f_{x}(a, b)=\lim _{s \rightarrow 0} \frac{f(a+s, b)-f(a, b)}{s}=g^{\prime}(a),
$$

where $g(x)=f(x, b)$, whereas the partial derivative of f w.r.t. y at (a, b) is defined by

$$
f_{y}(a, b)=\lim _{t \rightarrow 0} \frac{f(a, b+t)-f(a, b)}{t}=h^{\prime}(b),
$$

where $h(y)=g(a, y)$.
Example 14.8. Let $f(x, y)=\left(e^{x}+e^{y}\right) /(x+y)$ and set $g(x)=f(x, 0)=\left(e^{x}+1\right) / x$ and $h(y)=$ $f(1, y)=\left(e+e^{y}\right) /(1+y)$. Note that $g^{\prime}(x)=\left[(x-1) e^{x}-1\right] / x^{2}$ and $h^{\prime}(y)=\left(y e^{y}-e\right) /(1+y)^{2}$. This implies $f_{x}(1,0)=g^{\prime}(1)=-1$ and $f_{y}(1,0)=h^{\prime}(0)=-e$.

Definition 14.7. Let $f(x, y)$ be a function of two variables. The partial derivatives of f refer to functions, f_{x} and f_{y}, defined by

$$
f_{x}(x, y)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}, \quad f_{y}(x, y)=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y} .
$$

Remark 14.6 (Notations for partial derivatives). When writing $z=f(x, y)$, we also use the following notations to express the partial derivatives.

$$
f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=D_{x} f
$$

and

$$
f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\frac{\partial z}{\partial y}=D_{y} f
$$

Example 14.9. For $f(x, y)=x^{3}+x^{2} y^{3}-2 y^{2}, f_{x}(x, y)=3 x^{2}+2 x y^{3}$ and $f_{y}(x, y)=3 x^{2} y^{2}-4 y$.
Remark 14.7 (Interpretation of partial derivatives). Let $f(x, y)$ be a function of two variables and assume that $f_{x}(a, b)$ and $f_{y}(a, b)$ exist. By setting $g(x)=f(x, b)$ and $h(y)=f(a, y)$, one can see that $f_{x}(a, b)=g^{\prime}(a)$ and $f_{y}(a, b)=h^{\prime}(b)$. Note that the graph of $z=g(x)$ is the intersection of graphs of $z=f(x, y)$ and $y=b$. Clearly, $g^{\prime}(a)$ denotes the slope of the tangent line to the intersecting curve of $z=f(x, y)$ and $y=b$ at $(a, f(a, b))$. Similar, $h^{\prime}(b)$ refers to the slope of the tangent line to the intersecting curve of $z=f(x, y)$ and $x=a$ at $(b, f(a, b))$.

Example 14.10. Let $f(x, y)=x y /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. It has be proved before that f has no limit at $(0,0)$, so f is not continuous at $(0,0)$. But, the partial derivatives of f at $(0,0)$ exist and equal to 0 .

Example 14.11 (Chain rule). Let $f(x, y)=h(g(x, y))$. If f_{x}, f_{y}, h^{\prime} exist, then $f_{x}(x, y)=$ $h^{\prime}(g(x, y)) g_{x}(x, y)$ and $f_{y}(x, y)=h^{\prime}(g(x, y)) g_{y}(x, y)$. In particular, if $g(x, y)=x y$, then $\frac{\partial}{\partial x} h(x y)=y h^{\prime}(x y)$ and $\frac{\partial}{\partial y} h(x y)=x h^{\prime}(x y)$.

Example 14.12 (Implicit partial derivatives). Assume that z can be implicitly expressed as a function of x, y through equation $x^{3}+y^{2} z^{2}+x y z=1$. By regarding z as a function of x, y, say $z=f(x, y)$, and treating x, y as constants respectively, one may derive

$$
0=\frac{\partial\left(x^{3}+y^{2} f^{2}(x, y)+x y f(x, y)\right)}{\partial x}=3 x^{2}+2 y^{2} f(x, y) f_{x}(x, y)+y f(x, y)+x y f_{x}(x, y),
$$

and

$$
0=\frac{\partial\left(x^{3}+y^{2} f(x, y)^{2}+x y f(x, y)\right)}{\partial y}=2 y f(x, y)^{2}+2 y^{2} f(x, y) f_{y}(x, y)+x f(x, y)+x y f_{y}(x, y)
$$

This implies

$$
\frac{\partial z}{\partial x}=f_{x}(x, y)=-\frac{3 x^{2}+y z}{2 y^{2} z+x y}, \quad \frac{\partial z}{\partial y}=f_{y}(x, y)=-\frac{2 y z^{2}+x z}{2 y^{2} z+x y}
$$

Remark 14.8. For functions of n variables, say $f\left(x_{1}, \ldots, x_{n}\right)$, the partial derivatives are defined by

$$
f_{x_{i}}\left(x_{1}, \ldots, x_{n}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h}
$$

Example 14.13. Let $f(x, y, z)=z \ln (x+y)$. Then,

$$
f_{x}(x, y, z)=f_{y}(x, y, z)=\frac{z}{x+y}, \quad f_{z}(x, y, z)=\ln (x+y)
$$

Remark 14.9. For higher derivatives, we write

$$
f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}, \quad f_{x y y}=\left(f_{x y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial^{2} f}{\partial y \partial x}\right)=\frac{\partial^{3} f}{\partial y^{2} \partial x}
$$

Example 14.14. Let $f(x, y)=x^{3}-x^{2} y+x y^{2}-y^{3}$. Then, $f_{x}(x, y)=3 x^{2}-2 x y+y^{2}, f_{y}(x, y)=$ $-x^{2}+2 x y-3 y^{2}$ and

$$
f_{x x}=6 x-2 y, \quad f_{x y}=-2 x+2 y, \quad f_{y x}=-2 x+2 y, \quad f_{y y}=2 x-6 y
$$

Theorem 14.3 (Clairaut's theorem). Let f be a function with domain $D \subset \mathbb{R}^{2}$. If $f_{x y}$ and $f_{y x}$ are continuous on D, then $f_{x y}=f_{y x}$.
Example 14.15. Consider the following function,

$$
f(x, y)=\frac{x^{3} y-x y^{3}}{x^{2}+y^{2}}, \forall(x, y) \neq(0,0), \quad f(0,0)=0
$$

In some computations, we obtain $f_{x}(0,0)=0, f_{y}(0,0)=0$ and, for $(x, y) \neq(0,0)$,

$$
f_{x}(x, y)=\frac{x^{4} y+4 x^{2} y^{3}-y^{5}}{\left(x^{2}+y^{2}\right)^{2}}, \quad f_{y}(x, y)=\frac{-x y^{4}-4 x^{3} y^{2}+x^{5}}{\left(x^{2}+y^{2}\right)^{2}}
$$

This implies

$$
f_{x y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}=-1, \quad f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=1
$$

Theorem 14.4. Let $f(x)$ be a function of n variables, where $x=\left(x_{1}, \ldots, x_{n}\right)$, with domain $D \subset \mathbb{R}^{n}$. For $i \neq j$, if $f_{x_{i} x_{j}}$ and $f_{x_{j} x_{i}}$ are continuous on D, then $f_{x_{i} x_{j}}=f_{x_{j} x_{i}}$ on D.

