
14.5. The chain rules.

Theorem 14.7. Let z = f(x, y) be differentiable in x, y and x = g(t), y = h(t) be differentiable
in t. Then, z = f(g(t), h(t)) is differentiable in t and

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= fx(g(t), h(t))g

′(t) + fy(g(t), h(t))h
′(t).

Proof. Since f is differentiable, we have

∆z = fx∆x+ fy∆y + ϵ1∆x+ ϵ2∆y

where (ϵ1, ϵ2) → (0, 0) as (∆x,∆y) → (0, 0). Dividing both sides with ∆t gives

∆z

∆t
= fx

∆x

∆t
+ fy

∆y

∆t
+ ϵ1

∆x

∆t
+ ϵ2

∆y

∆t
.

Letting ∆t → 0 implies (∆x,∆y) → (0, 0), which leads to

dz

dt
= lim

∆t→0

∆z

∆t
= fx

dx

dt
+ fy

dy

dt
.

�

Remark 14.14. In Leibnitz’s notation, the chain rule can be expressed as dz
dt = ∂z

∂x
dx
dt +

∂z
∂y

dy
dt .

Example 14.20. Let z = x2y + xy2, x = e2t and y = cos t. Then,

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
= (2xy + y2)(2e2t) + (x2 + 2xy)(− sin t)

= [2e2t cos t+ cos2 t]2e2t + [e4t + 2e2t cos t](− sin t)

Theorem 14.8. Let z = f(x, y), x = g(s, t) and y = h(s, t) be differentiable functions. Then,
f(g(s, t), h(s, t)) is differentiable in s, t and

∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
,

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
.

Proof. Since f , g and h are differentiable, we have

∆z = fx∆x+ fy∆y + ϵ1∆x+ ϵ2∆y,

where ϵ1 → 0, ϵ2 → 0 as (∆x,∆y) → (0, 0), and

∆x = gs∆s+ gt∆t+ ϵ3∆s+ ϵ4∆t, ∆y = hs∆s+ ht∆t+ ϵ5∆s+ ϵ6∆t,

where (ϵ3, ϵ4, ϵ5, ϵ6) → (0, 0, 0, 0) as (∆s,∆t) → (0, 0). This implies

∆z = (fxgs + fyhs)∆s+ (fxgt + fyht)∆t+ ϵ7∆s+ ϵ8∆t,

where

ϵ7 = ϵ1(gs + ϵ3) + ϵ2(hs + ϵ5), ϵ8 = ϵ1(gt + ϵ4) + ϵ2(ht + ϵ6).

It is easy to see that, as (∆s,∆t) → (0, 0), (∆x,∆y) → (0, 0) and then (ϵ7, ϵ8) → (0, 0). This
proves that z is differentiable in s, t and ∂z

∂s = fxgs + fyhs,
∂z
∂t = fxgt + fyht. �

Example 14.21. Let z = x2y + xy2, x = r cos θ and y = r sin θ. Then,

∂z

∂r
=

∂z

∂x

∂x

∂r
+

∂z

∂y

∂y

∂r
= (2xy + y2) cos θ + (x2 + 2xy) sin θ

= (2r2 sin θ cos θ + r2 sin2 θ) cos θ + (r2 cos2 θ + 2r2 sin θ cos θ) sin θ
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and
∂z

∂θ
=

∂z

∂x

∂x

∂θ
+

∂z

∂y

∂y

∂θ
= (2xy + y2)r(− sin θ) + (x2 + 2xy)r cos θ

= (2r2 sin θ cos θ + r2 sin2 θ)r(− sin θ) + (r2 cos2 θ + 2r2 sin θ cos θ)r cos θ

Remark 14.15. In the chain rule, s, t are called independent variables and z is called the
dependent variable, whereas x, y are called the indeterminate variables.

Theorem 14.9. Let z be differentiable in y1, y2, ..., yn and yi be differentiable in x1, ..., xm for
all 1 ≤ i ≤ n. Then, z is differentiable in x1, ..., xm and

∂z

∂xi
=

n∑
j=1

∂z

∂yj

∂yj
∂xi

.

Example 14.22. Let w = x2yz+xy2z+xyz2, x = r cos θ cosϕ, y = r cos θ sinϕ and z = r sin θ.
Then,

∂w

∂ϕ
= (2xyz + y2z + yz2)

∂x

∂ϕ
+ (x2z + 2xyz + xz2)

∂y

∂ϕ
+ (x2y + xy2 + 2xyz)

∂z

∂ϕ

= (2xyz + y2z + yz2)(−r cos θ sinϕ) + (x2z + 2xyz + xz2)r cos θ cosϕ

To see partial derivatives of implicit functions, let F be a function of variables x, y, z.
Assume that the solution of F (x, y, z) = 0 has the implicit function z = f(x, y), that is,
F (x, y, f(x, y)) = 0. Differentiating both sides partially with respect to x yields

0 =
∂F (x, y, f(x, y))

∂x
= Fx(x, y, f(x, y)) + Fz(x, y, f(x, y))fx(x, y),

which implies
∂z

∂x
= fx(x, y) = −Fx(x, y, f(x, y))

Fz(x, y, f(x, y))
.

Similarly, one can show that

∂z

∂y
= fy(x, y) = −Fy(x, y, f(x, y))

Fz(x, y, f(x, y))
.

The theorem supporting the above computations is the implicit function theorem.

Theorem 14.10 (The implicit function theorem). Let F (x, y, z) be a function defined on
an open set D ⊂ R3 and (x0, y0, z0) ∈ D. Assume that Fx, Fy, Fz are continuous on D
and Fz(x0, y0, z0) ̸= 0. Then, in a neighborhood of (x0, y0, z0), the solution of the equation,
F (x, y, z) = F (x0, y0, z0), can be expressed as a function z = f(x, y). Moreover, the function
f is continuously differentiable at (x0, y0) and

fx(x0, y0) = −Fx(x0, y0, z0)

Fz(x0, y0, z0)
, fy(x0, y0) = −Fy(x0, y0, z0)

Fz(x0, y0, z0)
.

Example 14.23. For equation x3+y3+z3+6xyz = 1, one may use the above formula to derive

∂z

∂x
= −Fx

Fz
= −x2 + 2yz

z2 + 2xy
,

∂z

∂y
= −Fy

Fz
= −y2 + 2xz

z2 + 2xy
.
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