14.5. The chain rules.

Theorem 14.7. Let $z=f(x, y)$ be differentiable in x, y and $x=g(t), y=h(t)$ be differentiable in t. Then, $z=f(g(t), h(t))$ is differentiable in t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=f_{x}(g(t), h(t)) g^{\prime}(t)+f_{y}(g(t), h(t)) h^{\prime}(t)
$$

Proof. Since f is differentiable, we have

$$
\Delta z=f_{x} \Delta x+f_{y} \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

where $\left(\epsilon_{1}, \epsilon_{2}\right) \rightarrow(0,0)$ as $(\Delta x, \Delta y) \rightarrow(0,0)$. Dividing both sides with Δt gives

$$
\frac{\Delta z}{\Delta t}=f_{x} \frac{\Delta x}{\Delta t}+f_{y} \frac{\Delta y}{\Delta t}+\epsilon_{1} \frac{\Delta x}{\Delta t}+\epsilon_{2} \frac{\Delta y}{\Delta t}
$$

Letting $\Delta t \rightarrow 0$ implies $(\Delta x, \Delta y) \rightarrow(0,0)$, which leads to

$$
\frac{d z}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta z}{\Delta t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}
$$

Remark 14.14. In Leibnitz's notation, the chain rule can be expressed as $\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}$.
Example 14.20. Let $z=x^{2} y+x y^{2}, x=e^{2 t}$ and $y=\cos t$. Then,

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=\left(2 x y+y^{2}\right)\left(2 e^{2 t}\right)+\left(x^{2}+2 x y\right)(-\sin t) \\
& =\left[2 e^{2 t} \cos t+\cos ^{2} t\right] 2 e^{2 t}+\left[e^{4 t}+2 e^{2 t} \cos t\right](-\sin t)
\end{aligned}
$$

Theorem 14.8. Let $z=f(x, y), x=g(s, t)$ and $y=h(s, t)$ be differentiable functions. Then, $f(g(s, t), h(s, t))$ is differentiable in s, t and

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}, \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Proof. Since f, g and h are differentiable, we have

$$
\Delta z=f_{x} \Delta x+f_{y} \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

where $\epsilon_{1} \rightarrow 0, \epsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$, and

$$
\Delta x=g_{s} \Delta s+g_{t} \Delta t+\epsilon_{3} \Delta s+\epsilon_{4} \Delta t, \quad \Delta y=h_{s} \Delta s+h_{t} \Delta t+\epsilon_{5} \Delta s+\epsilon_{6} \Delta t
$$

where $\left(\epsilon_{3}, \epsilon_{4}, \epsilon_{5}, \epsilon_{6}\right) \rightarrow(0,0,0,0)$ as $(\Delta s, \Delta t) \rightarrow(0,0)$. This implies

$$
\Delta z=\left(f_{x} g_{s}+f_{y} h_{s}\right) \Delta s+\left(f_{x} g_{t}+f_{y} h_{t}\right) \Delta t+\epsilon_{7} \Delta s+\epsilon_{8} \Delta t
$$

where

$$
\epsilon_{7}=\epsilon_{1}\left(g_{s}+\epsilon_{3}\right)+\epsilon_{2}\left(h_{s}+\epsilon_{5}\right), \quad \epsilon_{8}=\epsilon_{1}\left(g_{t}+\epsilon_{4}\right)+\epsilon_{2}\left(h_{t}+\epsilon_{6}\right)
$$

It is easy to see that, as $(\Delta s, \Delta t) \rightarrow(0,0),(\Delta x, \Delta y) \rightarrow(0,0)$ and then $\left(\epsilon_{7}, \epsilon_{8}\right) \rightarrow(0,0)$. This proves that z is differentiable in s, t and $\frac{\partial z}{\partial s}=f_{x} g_{s}+f_{y} h_{s}, \frac{\partial z}{\partial t}=f_{x} g_{t}+f_{y} h_{t}$.
Example 14.21. Let $z=x^{2} y+x y^{2}, x=r \cos \theta$ and $y=r \sin \theta$. Then,

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r}=\left(2 x y+y^{2}\right) \cos \theta+\left(x^{2}+2 x y\right) \sin \theta \\
& =\left(2 r^{2} \sin \theta \cos \theta+r^{2} \sin ^{2} \theta\right) \cos \theta+\left(r^{2} \cos ^{2} \theta+2 r^{2} \sin \theta \cos \theta\right) \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial z}{\partial \theta} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}=\left(2 x y+y^{2}\right) r(-\sin \theta)+\left(x^{2}+2 x y\right) r \cos \theta \\
& =\left(2 r^{2} \sin \theta \cos \theta+r^{2} \sin ^{2} \theta\right) r(-\sin \theta)+\left(r^{2} \cos ^{2} \theta+2 r^{2} \sin \theta \cos \theta\right) r \cos \theta
\end{aligned}
$$

Remark 14.15. In the chain rule, s, t are called independent variables and z is called the dependent variable, whereas x, y are called the indeterminate variables.

Theorem 14.9. Let z be differentiable in $y_{1}, y_{2}, \ldots, y_{n}$ and y_{i} be differentiable in x_{1}, \ldots, x_{m} for all $1 \leq i \leq n$. Then, z is differentiable in x_{1}, \ldots, x_{m} and

$$
\frac{\partial z}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}} .
$$

Example 14.22. Let $w=x^{2} y z+x y^{2} z+x y z^{2}, x=r \cos \theta \cos \phi, y=r \cos \theta \sin \phi$ and $z=r \sin \theta$. Then,

$$
\begin{aligned}
\frac{\partial w}{\partial \phi} & =\left(2 x y z+y^{2} z+y z^{2}\right) \frac{\partial x}{\partial \phi}+\left(x^{2} z+2 x y z+x z^{2}\right) \frac{\partial y}{\partial \phi}+\left(x^{2} y+x y^{2}+2 x y z\right) \frac{\partial z}{\partial \phi} \\
& =\left(2 x y z+y^{2} z+y z^{2}\right)(-r \cos \theta \sin \phi)+\left(x^{2} z+2 x y z+x z^{2}\right) r \cos \theta \cos \phi
\end{aligned}
$$

To see partial derivatives of implicit functions, let F be a function of variables x, y, z. Assume that the solution of $F(x, y, z)=0$ has the implicit function $z=f(x, y)$, that is, $F(x, y, f(x, y))=0$. Differentiating both sides partially with respect to x yields

$$
0=\frac{\partial F(x, y, f(x, y))}{\partial x}=F_{x}(x, y, f(x, y))+F_{z}(x, y, f(x, y)) f_{x}(x, y)
$$

which implies

$$
\frac{\partial z}{\partial x}=f_{x}(x, y)=-\frac{F_{x}(x, y, f(x, y))}{F_{z}(x, y, f(x, y))} .
$$

Similarly, one can show that

$$
\frac{\partial z}{\partial y}=f_{y}(x, y)=-\frac{F_{y}(x, y, f(x, y))}{F_{z}(x, y, f(x, y))}
$$

The theorem supporting the above computations is the implicit function theorem.
Theorem 14.10 (The implicit function theorem). Let $F(x, y, z)$ be a function defined on an open set $D \subset \mathbb{R}^{3}$ and $\left(x_{0}, y_{0}, z_{0}\right) \in D$. Assume that F_{x}, F_{y}, F_{z} are continuous on D and $F_{z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0$. Then, in a neighborhood of $\left(x_{0}, y_{0}, z_{0}\right)$, the solution of the equation, $F(x, y, z)=F\left(x_{0}, y_{0}, z_{0}\right)$, can be expressed as a function $z=f(x, y)$. Moreover, the function f is continuously differentiable at $\left(x_{0}, y_{0}\right)$ and

$$
f_{x}\left(x_{0}, y_{0}\right)=-\frac{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)}, \quad f_{y}\left(x_{0}, y_{0}\right)=-\frac{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)} .
$$

Example 14.23. For equation $x^{3}+y^{3}+z^{3}+6 x y z=1$, one may use the above formula to derive

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{x^{2}+2 y z}{z^{2}+2 x y}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{y^{2}+2 x z}{z^{2}+2 x y} .
$$

