
14.6. Directional derivatives and the gradient vector.

Definition 14.11. The directional derivative of f at (x0, y0) in the direction of a unit vector
u = ⟨a, b⟩ is

Duf(x0, y0) = lim
h→0

f(x0 + ah, y0 + bh)− f(x0, y0)

h
.

Remark 14.16. If u has length c and expressed as u = ⟨ac, bc⟩, then the limit in the above
definition leads to

lim
h→0

f(x0 + ach, y0 + bch)− f(x0, y0)

h
= cDu(x0, y0).

Remark 14.17. If i = ⟨1, 0⟩ and j = ⟨0, 1⟩, then fx(x0, y0) = Dif(x0, y0) and fy(x0, y0) =
Djf(x0, y0).

Example 14.24. Let f(x, y) = x2 + y2 and u = ⟨1/2,
√
3/2⟩. Then,

Duf(1, 2) = lim
h→0

f(1 + h/2, 2 +
√
3h/2)− f(1, 2)

h
= 1 + 2

√
3.

Theorem 14.11. If f(x, y) is differentiable at (x0, y0), then for any unit vector u = ⟨a, b⟩,
Duf(x0, y0) = afx(x0, y0) + bfy(x0, y0).

Proof. Since f is differentiable at (x0, y0),

f(x0 + ah, y0 + bh) = f(x0, y0) + fx(x0, y0)ah+ fy(x0, y0)bh+ ϵ1ah+ ϵ2bh

where (ϵ1, ϵ2) → (0, 0) as h → 0. This implies

lim
h→0

f(x0 + ah, y0 + bh)− f(x0, y0)

h
= afx(x0, y0) + bfy(x0, y0).

�

Example 14.25. Let f(x, y) = ex sinπy and u = ⟨1/2,
√
3/2⟩. Then, fx = ex sinπy sinπy and

fy = ex sinπyπx cosπy. Since fx and fy is continuous on R2, f is differentiable on R2 and

Duf(1, 0) =
1

2
fx(1, 0) +

√
3

2
fy(1, 0) =

√
3π

2
.

Example 14.26. Let f(x, y) = xy2/(x2 + y2) for (x, y) ̸= (0, 0) and f(0, 0) = 0. It has been
proved before that f is continuous at (0, 0). For unit vector u = ⟨a, b⟩, one may compute

Duf(0, 0) = lim
h→0

f(ah, bh)− f(0, 0)

h
= ab2.

This implies that Duf(0, 0) ̸= 0 for a ̸= 0 and b ̸= 0. Note that fx(0, 0) = fy(0, 0) = 0 and
this yields afx(0, 0)+ bfy(0, 0) = 0. As Duf(0, 0) ̸= afx(0, 0)+ bfy(0, 0), f is not differentiable
at (0, 0). It is remarkable that the existence of directional derivatives in all directions is not
sufficient for the differentiability.

Definition 14.12. The gradient of f(x, y) is the vector function ∇f(x, y) or gradf(x, y)
defined by ∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

Remark 14.18. If f is a differentiable function at (x0, y0), then Duf(x0, y0) = ∇f(x0, y0) · u.

Example 14.27. For function f(x, y) = ex sinπy, ∇f(x, y) = f(x, y)⟨sinπy, πx cosπy⟩.
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Remark 14.19. For functions of n variables say f(x1, ..., xn), the directional derivative of f at
x = (x1, ..., xn) in the direction of a unit vector u = ⟨a1, ..., an⟩ is defined by

Duf(x) = lim
h→0

f(x1 + a1h, ..., xn + anh)− f(x1, ..., xn)

h
.

The gradient of f at x is defined to be the vector ∇f(x) = ⟨fx1(x), ..., fxn(x)⟩. When f is
differentiable at x, then Duf(x) = ∇f(x) · u.

Example 14.28. For f(x, y, z) = sinxyz, ∇f = ⟨yz cosxyz, xz cosxyz, xy cosxyz⟩ and the
directional derivative of f at (1, 1, π) in the direction u = ⟨1/2, 1/2, 1/

√
2⟩ is

∇f(1, 1, π) · u = ⟨−π,−π,−1⟩ · ⟨1/2, 1/2, 1/
√
2⟩ = −π − 1/

√
2.

Theorem 14.12. Let f(x) be differentiable with x = (x1, ..., xn) ∈ Rn and U = {u ∈ Rn :
|u| = 1}. Then, max{|Duf(x)| : u ∈ U} = |Dvf(x)| = |D−vf(x)| = |∇f(x)|, where v =
∇f(x)/|∇f(x)|.

Proof. Note that Duf(x) = ∇f(x) · u = |∇f(x)| cos θ, where θ is the angle between ∇f(x)
and u. This implies that |Duf(x)| achieves its maximum when θ = 0 or π, that is, u = v or
u = −v, where v = ∇f(x)/|∇f(x)|. In this case, we have |Dvf(x)| = |∇f(x)|. �
Example 14.29. Let f(x, y) = xey and P = (1, 0). Then, the maximum rate of change of f at
P equals |∇f(P )| = |⟨1, 1⟩| =

√
2 in the direction of ∇f(P ) = ⟨1, 1⟩.

The gradient vector is closely related to the level curve. Consider the level curve f(x, y) = k,
where k is a constant. Assume that the curve has parametrization r(t) = ⟨x(t), y(t)⟩. This
implies f(x(t), y(t)) = k and then

0 = fx(r(t))x
′(t) + fy(r(t))y

′(t) = ∇f(r(t)) · r′(t).
It is easy to see from the above equality that the gradient vector and the tangent line of a
level curve are perpendicular.

For functions of three variables, let r(t) = ⟨x(t), y(t), z(t)⟩ be a parametric curve on the
level surface F (x, y, z) = k, where k is a constant. As before, we have F (r(t)) = k and
∇F (r(t)) · r′(t) = 0. Consequently, when F (x0, y0, z0) = k and the level surface F (x, y, z) = k
has a tangent plane at (x0, y0, z0), ∇F (x0, y0, z0) is the normal vector to the tangent plane and
thus the tangent plane is given by ∇F (x0, y0, z0) · ⟨x− x0, y − y0, z − z0⟩ = 0 or equivalently

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

Immediately, the normal line to the surface F (x, y, z) = k at (x0, y0, z0) is {(x0, y0, z0) +
t∇F (x0, y0, z0)|t ∈ R}. Particularly, if F (x, y, z) = f(x, y) − z and k = 0, then the tangent
plane to F (x, y, z) = 0 (i.e. z = f(x, y)) at (x0, y0, z0) with z0 = f(x0, y0) is given by

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)− (z − z0) = 0,

which is exactly the same as before.

Example 14.30. Let F (x, y, z) = x2 − y2 + z2. Note that ∇F (x, y, z) = 2⟨x,−y, z⟩ and
F (1, 1, 0) = 0. Then, the tangent plane to the surface F (x, y, z) = 0 at (1, 1, 0) has equation
x = y and the normal line is parametrized by x = 1 + t, y = 1− t and z = 0 for t ∈ R.
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