14.6. Directional derivatives and the gradient vector.

Definition 14.11. The directional derivative of f at (x_0, y_0) in the direction of a unit vector $u = \langle a, b \rangle$ is

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}.$$

Remark 14.16. If u has length c and expressed as $u = \langle ac, bc \rangle$, then the limit in the above definition leads to

$$\lim_{h \to 0} \frac{f(x_0 + ach, y_0 + bch) - f(x_0, y_0)}{h} = cD_u(x_0, y_0).$$

Remark 14.17. If $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$, then $f_x(x_0, y_0) = D_\mathbf{i} f(x_0, y_0)$ and $f_y(x_0, y_0) = D_\mathbf{j} f(x_0, y_0)$.

Example 14.24. Let $f(x,y) = x^2 + y^2$ and $u = \langle 1/2, \sqrt{3}/2 \rangle$. Then,

$$D_u f(1,2) = \lim_{h \to 0} \frac{f(1+h/2, 2+\sqrt{3}h/2) - f(1,2)}{h} = 1 + 2\sqrt{3}.$$

Theorem 14.11. If f(x,y) is differentiable at (x_0, y_0) , then for any unit vector $u = \langle a, b \rangle$, $D_u f(x_0, y_0) = a f_x(x_0, y_0) + b f_y(x_0, y_0)$.

Proof. Since f is differentiable at (x_0, y_0) ,

$$f(x_0 + ah, y_0 + bh) = f(x_0, y_0) + f_x(x_0, y_0)ah + f_y(x_0, y_0)bh + \epsilon_1ah + \epsilon_2bh$$

where $(\epsilon_1, \epsilon_2) \to (0, 0)$ as $h \to 0$. This implies

$$\lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h} = af_x(x_0, y_0) + bf_y(x_0, y_0).$$

Example 14.25. Let $f(x,y) = e^{x \sin \pi y}$ and $u = \langle 1/2, \sqrt{3}/2 \rangle$. Then, $f_x = e^{x \sin \pi y} \sin \pi y$ and $f_y = e^{x \sin \pi y} \pi x \cos \pi y$. Since f_x and f_y is continuous on \mathbb{R}^2 , f is differentiable on \mathbb{R}^2 and

$$D_u f(1,0) = \frac{1}{2} f_x(1,0) + \frac{\sqrt{3}}{2} f_y(1,0) = \frac{\sqrt{3}\pi}{2}$$

Example 14.26. Let $f(x,y) = \frac{xy^2}{x^2 + y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0. It has been proved before that f is continuous at (0,0). For unit vector $u = \langle a, b \rangle$, one may compute

$$D_u f(0,0) = \lim_{h \to 0} \frac{f(ah, bh) - f(0,0)}{h} = ab^2$$

This implies that $D_u f(0,0) \neq 0$ for $a \neq 0$ and $b \neq 0$. Note that $f_x(0,0) = f_y(0,0) = 0$ and this yields $af_x(0,0) + bf_y(0,0) = 0$. As $D_u f(0,0) \neq af_x(0,0) + bf_y(0,0)$, f is not differentiable at (0,0). It is remarkable that the existence of directional derivatives in all directions is not sufficient for the differentiability.

Definition 14.12. The gradient of f(x, y) is the vector function $\nabla f(x, y)$ or $\operatorname{grad} f(x, y)$ defined by $\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle$.

Remark 14.18. If f is a differentiable function at (x_0, y_0) , then $D_u f(x_0, y_0) = \nabla f(x_0, y_0) \cdot u$.

Example 14.27. For function $f(x,y) = e^{x \sin \pi y}$, $\nabla f(x,y) = f(x,y) \langle \sin \pi y, \pi x \cos \pi y \rangle$.

Remark 14.19. For functions of n variables say $f(x_1, ..., x_n)$, the directional derivative of f at $\mathbf{x} = (x_1, ..., x_n)$ in the direction of a unit vector $u = \langle a_1, ..., a_n \rangle$ is defined by

$$D_u f(\mathbf{x}) = \lim_{h \to 0} \frac{f(x_1 + a_1 h, \dots, x_n + a_n h) - f(x_1, \dots, x_n)}{h}$$

The gradient of f at \mathbf{x} is defined to be the vector $\nabla f(\mathbf{x}) = \langle f_{x_1}(\mathbf{x}), ..., f_{x_n}(\mathbf{x}) \rangle$. When f is differentiable at \mathbf{x} , then $D_u f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot u$.

Example 14.28. For $f(x, y, z) = \sin xyz$, $\nabla f = \langle yz \cos xyz, xz \cos xyz, xy \cos xyz \rangle$ and the directional derivative of f at $(1, 1, \pi)$ in the direction $u = \langle 1/2, 1/2, 1/\sqrt{2} \rangle$ is

$$\nabla f(1,1,\pi) \cdot u = \langle -\pi, -\pi, -1 \rangle \cdot \langle 1/2, 1/2, 1/\sqrt{2} \rangle = -\pi - 1/\sqrt{2}.$$

Theorem 14.12. Let $f(\mathbf{x})$ be differentiable with $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$ and $U = \{u \in \mathbb{R}^n : |u| = 1\}$. Then, $\max\{|D_u f(\mathbf{x})| : u \in U\} = |D_v f(\mathbf{x})| = |D_{-v} f(\mathbf{x})| = |\nabla f(\mathbf{x})|$, where $v = \nabla f(\mathbf{x})/|\nabla f(\mathbf{x})|$.

Proof. Note that $D_u f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot u = |\nabla f(\mathbf{x})| \cos \theta$, where θ is the angle between $\nabla f(\mathbf{x})$ and u. This implies that $|D_u f(\mathbf{x})|$ achieves its maximum when $\theta = 0$ or π , that is, u = v or u = -v, where $v = \nabla f(\mathbf{x})/|\nabla f(\mathbf{x})|$. In this case, we have $|D_v f(\mathbf{x})| = |\nabla f(\mathbf{x})|$.

Example 14.29. Let $f(x, y) = xe^y$ and P = (1, 0). Then, the maximum rate of change of f at P equals $|\nabla f(P)| = |\langle 1, 1 \rangle| = \sqrt{2}$ in the direction of $\nabla f(P) = \langle 1, 1 \rangle$.

The gradient vector is closely related to the level curve. Consider the level curve f(x, y) = k, where k is a constant. Assume that the curve has parametrization $r(t) = \langle x(t), y(t) \rangle$. This implies f(x(t), y(t)) = k and then

$$0 = f_x(r(t))x'(t) + f_y(r(t))y'(t) = \nabla f(r(t)) \cdot r'(t).$$

It is easy to see from the above equality that the gradient vector and the tangent line of a level curve are perpendicular.

For functions of three variables, let $r(t) = \langle x(t), y(t), z(t) \rangle$ be a parametric curve on the level surface F(x, y, z) = k, where k is a constant. As before, we have F(r(t)) = k and $\nabla F(r(t)) \cdot r'(t) = 0$. Consequently, when $F(x_0, y_0, z_0) = k$ and the level surface F(x, y, z) = k has a tangent plane at (x_0, y_0, z_0) , $\nabla F(x_0, y_0, z_0)$ is the normal vector to the tangent plane and thus the tangent plane is given by $\nabla F(x_0, y_0, z_0) \cdot \langle x - x_0, y - y_0, z - z_0 \rangle = 0$ or equivalently

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Immediately, the normal line to the surface F(x, y, z) = k at (x_0, y_0, z_0) is $\{(x_0, y_0, z_0) + t\nabla F(x_0, y_0, z_0) | t \in \mathbb{R}\}$. Particularly, if F(x, y, z) = f(x, y) - z and k = 0, then the tangent plane to F(x, y, z) = 0 (i.e. z = f(x, y)) at (x_0, y_0, z_0) with $z_0 = f(x_0, y_0)$ is given by

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0,$$

which is exactly the same as before.

Example 14.30. Let $F(x, y, z) = x^2 - y^2 + z^2$. Note that $\nabla F(x, y, z) = 2\langle x, -y, z \rangle$ and F(1, 1, 0) = 0. Then, the tangent plane to the surface F(x, y, z) = 0 at (1, 1, 0) has equation x = y and the normal line is parametrized by x = 1 + t, y = 1 - t and z = 0 for $t \in \mathbb{R}$.