14.6. Directional derivatives and the gradient vector.

Definition 14.11. The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $u=\langle a, b\rangle$ is

$$
D_{u} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

Remark 14.16. If u has length c and expressed as $u=\langle a c, b c\rangle$, then the limit in the above definition leads to

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a c h, y_{0}+b c h\right)-f\left(x_{0}, y_{0}\right)}{h}=c D_{u}\left(x_{0}, y_{0}\right)
$$

Remark 14.17. If $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$, then $f_{x}\left(x_{0}, y_{0}\right)=D_{\mathbf{i}} f\left(x_{0}, y_{0}\right)$ and $f_{y}\left(x_{0}, y_{0}\right)=$ $D_{\mathbf{j}} f\left(x_{0}, y_{0}\right)$.

Example 14.24. Let $f(x, y)=x^{2}+y^{2}$ and $u=\langle 1 / 2, \sqrt{3} / 2\rangle$. Then,

$$
D_{u} f(1,2)=\lim _{h \rightarrow 0} \frac{f(1+h / 2,2+\sqrt{3} h / 2)-f(1,2)}{h}=1+2 \sqrt{3}
$$

Theorem 14.11. If $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then for any unit vector $u=\langle a, b\rangle$, $D_{u} f\left(x_{0}, y_{0}\right)=a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right)$.

Proof. Since f is differentiable at $\left(x_{0}, y_{0}\right)$,

$$
f\left(x_{0}+a h, y_{0}+b h\right)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) a h+f_{y}\left(x_{0}, y_{0}\right) b h+\epsilon_{1} a h+\epsilon_{2} b h
$$

where $\left(\epsilon_{1}, \epsilon_{2}\right) \rightarrow(0,0)$ as $h \rightarrow 0$. This implies

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+a h, y_{0}+b h\right)-f\left(x_{0}, y_{0}\right)}{h}=a f_{x}\left(x_{0}, y_{0}\right)+b f_{y}\left(x_{0}, y_{0}\right)
$$

Example 14.25. Let $f(x, y)=e^{x \sin \pi y}$ and $u=\langle 1 / 2, \sqrt{3} / 2\rangle$. Then, $f_{x}=e^{x \sin \pi y} \sin \pi y$ and $f_{y}=e^{x \sin \pi y} \pi x \cos \pi y$. Since f_{x} and f_{y} is continuous on \mathbb{R}^{2}, f is differentiable on \mathbb{R}^{2} and

$$
D_{u} f(1,0)=\frac{1}{2} f_{x}(1,0)+\frac{\sqrt{3}}{2} f_{y}(1,0)=\frac{\sqrt{3} \pi}{2}
$$

Example 14.26. Let $f(x, y)=x y^{2} /\left(x^{2}+y^{2}\right)$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. It has been proved before that f is continuous at $(0,0)$. For unit vector $u=\langle a, b\rangle$, one may compute

$$
D_{u} f(0,0)=\lim _{h \rightarrow 0} \frac{f(a h, b h)-f(0,0)}{h}=a b^{2}
$$

This implies that $D_{u} f(0,0) \neq 0$ for $a \neq 0$ and $b \neq 0$. Note that $f_{x}(0,0)=f_{y}(0,0)=0$ and this yields $a f_{x}(0,0)+b f_{y}(0,0)=0$. As $D_{u} f(0,0) \neq a f_{x}(0,0)+b f_{y}(0,0), f$ is not differentiable at $(0,0)$. It is remarkable that the existence of directional derivatives in all directions is not sufficient for the differentiability.

Definition 14.12. The gradient of $f(x, y)$ is the vector function $\nabla f(x, y)$ or $\operatorname{grad} f(x, y)$ defined by $\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle$.

Remark 14.18. If f is a differentiable function at $\left(x_{0}, y_{0}\right)$, then $D_{u} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot u$.
Example 14.27. For function $f(x, y)=e^{x \sin \pi y}, \nabla f(x, y)=f(x, y)\langle\sin \pi y, \pi x \cos \pi y\rangle$.

Remark 14.19. For functions of n variables say $f\left(x_{1}, \ldots, x_{n}\right)$, the directional derivative of f at $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ in the direction of a unit vector $u=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is defined by

$$
D_{u} f(\mathbf{x})=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+a_{1} h, \ldots, x_{n}+a_{n} h\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h} .
$$

The gradient of f at \mathbf{x} is defined to be the vector $\nabla f(\mathbf{x})=\left\langle f_{x_{1}}(\mathbf{x}), \ldots, f_{x_{n}}(\mathbf{x})\right\rangle$. When f is differentiable at \mathbf{x}, then $D_{u} f(\mathbf{x})=\nabla f(\mathbf{x}) \cdot u$.
Example 14.28. For $f(x, y, z)=\sin x y z, \nabla f=\langle y z \cos x y z, x z \cos x y z, x y \cos x y z\rangle$ and the directional derivative of f at $(1,1, \pi)$ in the direction $u=\langle 1 / 2,1 / 2,1 / \sqrt{2}\rangle$ is

$$
\nabla f(1,1, \pi) \cdot u=\langle-\pi,-\pi,-1\rangle \cdot\langle 1 / 2,1 / 2,1 / \sqrt{2}\rangle=-\pi-1 / \sqrt{2} .
$$

Theorem 14.12. Let $f(\mathbf{x})$ be differentiable with $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $U=\left\{u \in \mathbb{R}^{n}\right.$: $|u|=1\}$. Then, $\max \left\{\left|D_{u} f(\mathbf{x})\right|: u \in U\right\}=\left|D_{v} f(\mathbf{x})\right|=\left|D_{-v} f(\mathbf{x})\right|=|\nabla f(\mathbf{x})|$, where $v=$ $\nabla f(\mathbf{x}) /|\nabla f(\mathbf{x})|$.
Proof. Note that $D_{u} f(\mathbf{x})=\nabla f(\mathbf{x}) \cdot u=|\nabla f(\mathbf{x})| \cos \theta$, where θ is the angle between $\nabla f(\mathbf{x})$ and u. This implies that $\left|D_{u} f(\mathbf{x})\right|$ achieves its maximum when $\theta=0$ or π, that is, $u=v$ or $u=-v$, where $v=\nabla f(\mathbf{x}) /|\nabla f(\mathbf{x})|$. In this case, we have $\left|D_{v} f(\mathbf{x})\right|=|\nabla f(\mathbf{x})|$.
Example 14.29. Let $f(x, y)=x e^{y}$ and $P=(1,0)$. Then, the maximum rate of change of f at P equals $|\nabla f(P)|=|\langle 1,1\rangle|=\sqrt{2}$ in the direction of $\nabla f(P)=\langle 1,1\rangle$.
The gradient vector is closely related to the level curve. Consider the level curve $f(x, y)=k$, where k is a constant. Assume that the curve has parametrization $r(t)=\langle x(t), y(t)\rangle$. This implies $f(x(t), y(t))=k$ and then

$$
0=f_{x}(r(t)) x^{\prime}(t)+f_{y}(r(t)) y^{\prime}(t)=\nabla f(r(t)) \cdot r^{\prime}(t) .
$$

It is easy to see from the above equality that the gradient vector and the tangent line of a level curve are perpendicular.

For functions of three variables, let $r(t)=\langle x(t), y(t), z(t)\rangle$ be a parametric curve on the level surface $F(x, y, z)=k$, where k is a constant. As before, we have $F(r(t))=k$ and $\nabla F(r(t)) \cdot r^{\prime}(t)=0$. Consequently, when $F\left(x_{0}, y_{0}, z_{0}\right)=k$ and the level surface $F(x, y, z)=k$ has a tangent plane at $\left(x_{0}, y_{0}, z_{0}\right), \nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is the normal vector to the tangent plane and thus the tangent plane is given by $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0$ or equivalently

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 .
$$

Immediately, the normal line to the surface $F(x, y, z)=k$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is $\left\{\left(x_{0}, y_{0}, z_{0}\right)+\right.$ $\left.t \nabla F\left(x_{0}, y_{0}, z_{0}\right) \mid t \in \mathbb{R}\right\}$. Particularly, if $F(x, y, z)=f(x, y)-z$ and $k=0$, then the tangent plane to $F(x, y, z)=0$ (i.e. $z=f(x, y))$ at $\left(x_{0}, y_{0}, z_{0}\right)$ with $z_{0}=f\left(x_{0}, y_{0}\right)$ is given by

$$
f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)-\left(z-z_{0}\right)=0,
$$

which is exactly the same as before.
Example 14.30. Let $F(x, y, z)=x^{2}-y^{2}+z^{2}$. Note that $\nabla F(x, y, z)=2\langle x,-y, z\rangle$ and $F(1,1,0)=0$. Then, the tangent plane to the surface $F(x, y, z)=0$ at $(1,1,0)$ has equation $x=y$ and the normal line is parametrized by $x=1+t, y=1-t$ and $z=0$ for $t \in \mathbb{R}$.

