14.7. Maximum and minimum values.

Definition 14.13. A function f of n variables is said to have a local maximum (resp. local minimum) at $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ if there is $\epsilon>0$ such that

$$
\begin{equation*}
f(\mathbf{x}) \leq f(\mathbf{a}) \quad(\text { resp. } f(\mathbf{x}) \geq f(\mathbf{a})) \quad \forall|\mathbf{x}-\mathbf{a}|=\left(\sum_{i=1}^{n}\left|x_{i}-a_{i}\right|^{2}\right)^{1 / 2}<\epsilon \tag{14.2}
\end{equation*}
$$

Here, $f(\mathbf{a})$ is called a local maximum (resp. minimum) value. When (14.2) holds for all \mathbf{x} in the domain of f, we say that f has an absolute maximum (resp. minimum) at a.

Theorem 14.13. If $f(\mathbf{x})$ has a local maximum or minimum at \mathbf{a} and f has first-order partial derivatives at \mathbf{a}, then $\nabla f(\mathbf{a})=\mathbf{0}:=(0, \ldots, 0)$.

Remark 14.20. The proof follows directly from Fermat's theorem. As in the one-dimensional case, we call \mathbf{x} a critical point of f if either $\nabla f(\mathbf{x})$ does not exist or $\nabla f(\mathbf{x})=\mathbf{0}$

Example 14.31. For $f(x, y)=x^{2}+y^{2}+x-2 y$, note that $\nabla f=\langle 2 x+1,2 y-2\rangle$. Clearly, $\nabla f(x, y)=\langle 0,0\rangle$ if and only if $(x, y)=(-1 / 2,1)$.

Remark 14.21. Note that $\nabla f=0$ is sufficient for the existence of local extrema. For example, if $f(x, y)=x^{2}-y^{2}$, then $(0,0)$ is the unique critical point but $(0,0)$ is neither a local maximum nor a local minimum. Such a point is called a saddle point, a critical point which is not a local maximum or minimum.

Theorem 14.14. Let f be a function of two variables with continuous second order partial derivatives. Assume $\nabla f\left(x_{0}, y_{0}\right)=\mathbf{0}$ and set $D\left(x_{0}, y_{0}\right)=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-\left[f_{x y}\left(x_{0}, y_{0}\right)\right]^{2}$.
(1) If $D\left(x_{0}, y_{0}\right)>0$ and $f_{x x}\left(x_{0}, y_{0}\right)>0$, then $f\left(x_{0}, y_{0}\right)$ is a local minimum.
(2) If $D\left(x_{0}, y_{0}\right)>0$ and $f_{x x}\left(x_{0}, y_{0}\right)<0$, then $f\left(x_{0}, y_{0}\right)$ is a local maximum.
(3) If $D\left(x_{0}, y_{0}\right)<0$, then $\left(x_{0}, y_{0}\right)$ is a saddle point.
(4) If $D\left(x_{0}, y_{0}\right)=0$, no conclusion.

Remark 14.22. Let $f(x, y)=x^{2} y^{2}$ and $g(x, y)=x y^{2}$. Note that $(0,0)$ is a critical point of f and g, while f has a local minimum at $(0,0)$ and g has a saddle point at $(0,0)$.

Example 14.32. Consider the function $f(x, y)=x^{4}+y^{4}-4 x y+1$. Note that

$$
f_{x}=4 x^{3}-4 y, \quad f_{y}=4 y^{3}-4 x, \quad f_{x x}=12 x^{2}, \quad f_{y y}=12 y^{2}, \quad f_{x y}=f_{y x}=-4
$$

Clearly, the critical points (x, y) of f satisfy $x^{3}=y$ and $y^{3}=x$. This implies $x^{9}=x$ or equivalently $x(x-1)(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)=0$. Hence, the critical points of f contain $(0,0)$, $(1,1),(-1,-1)$ and $D(0,0)=-16, D(1,1)=D(-1,-1)=128$. By Theorem $14.14,(0,0)$ is a saddle point, whereas $(1,1)$ and $(-1,-1)$ are local minima.
Example 14.33. A rectangle box without a lid is to be made from a $12 \mathrm{~m}^{2}$ cardboard. Let x, y, z be the length, width and height of the box. Then, the volume V is given by $V=x y z$. Along with the restriction of $x y+2 y z+2 x z=12$, we may rewrite the volume as

$$
V(x, y)=\frac{x y(12-x y)}{2(x+y)} \quad \forall(x, y) \in E=\{(x, y) \mid x>0, y>0, x y<12\}
$$

Clearly, $V(x, y)=0$ on the boundary of E and $V(x, y) \leq 18 /(x+y) \rightarrow 0$ as $x \rightarrow \infty$ or $y \rightarrow \infty$. This implies that the maximum of f must exist and in the interior of E. In some computations, one has

$$
V_{x}=\frac{y^{2}\left(-x^{2}-2 x y+12\right)}{2(x+y)^{2}}, \quad V_{y}=\frac{x^{2}\left(-y^{2}-2 x y+12\right)}{2(x+y)^{2}}
$$

This implies that $(2,2)$ is the unique critical point. Hence, the dimensions of the box with maximum volume are $(x, y, z)=(2,2,1)$ and the volume is $4 m^{3}$.

Theorem 14.15. If f is continuous on a closed and bounded set $D \subset \mathbb{R}^{n}$, then f attains its absolute maximum and minimum.

Strategy to find the absolute extremum Let f be a continuous function on a closed and bounded set $D \subset \mathbb{R}^{n}$.
(1) Find the values of f at the critical points of f in D.
(2) Find the extremum values of f on the boundary of D.
(3) The largest and smallest values in Steps 1 and 2 are the absolute maximum and minimum.

Example 14.34. Let $f(x, y)=x^{2}-2 x y+2 y$ and $D=[0,3] \times[0,2]$. Note that $\nabla f(x, y)=$ $\langle 2 x-2 y,-2 x+2\rangle$. This implies that $(1,1)$ is the unique critical point and $(1,1) \in D$. On the boundary, one has

$$
f(x, 0)=x^{2}, \quad f(x, 2)=x^{2}-4 x+4, \quad \forall x \in[0,3],
$$

and

$$
f(0, y)=2 y, \quad f(3, y)=9-4 y, \quad \forall y \in[0,2] .
$$

Thus, the maximum and minimum values of f on the boundary of D are 9 and 0 . As $f(1,1)=$ 1, the maximum and minimum values of f on D are 9 and 0 .

Partial proof of Theorem 14.14. Here, we consider the case $f_{x x}\left(x_{0}, y_{0}\right)>0$ and $D\left(x_{0}, y_{0}\right)>0$. Let $u=\langle a, b\rangle$ be a unit vector. Note that

$$
D_{u} f=a f_{x}+b f_{y}, \quad D_{u}^{2} f=D_{u}\left(D_{u} f\right)=a^{2} f_{x x}+2 a b f_{x y}+b^{2} f_{y y},
$$

where the second directional derivative also uses Clairaut's theorem. Write

$$
D_{u}^{2} f=f_{x x}\left(a+\frac{f_{x y}}{f_{x x}} b\right)^{2}+\frac{b^{2}}{f_{x x}}\left(f_{x x} f_{y y}-f_{x y}^{2}\right) .
$$

Since $f_{x x}$ and D are continuous and positive at $\left(x_{0}, y_{0}\right)$, we may select $\delta>0$ such that $f_{x x}$ and D are positive on $B=\left\{(x, y):\left|\left(x-x_{0}, y-y_{0}\right)\right|<\delta\right\}$. This implies $D_{u}^{2} f>0$ on B for all u. To show $\left(x_{0}, y_{0}\right)$ is a local minimum of f, it suffices to show that $f\left(x_{0}, y_{0}\right) \leq f(x, y)$ for $(x, y) \in B$. Set $F(h)=f\left(x_{0}+a h, y_{0}+b h\right)$. Note that

$$
F^{\prime}(0)=\nabla f\left(x_{0}, y_{0}\right) \cdot u=0, \quad F^{\prime \prime}(h)=D_{u}^{2} f\left(x_{0}+a h, y_{0}+b h\right)>0, \quad \forall|h|<\delta .
$$

By the second derivative test, F is concave upward on $(-\delta, \delta)$ and 0 is a local minimum, as desired

