14.7. Maximum and minimum values.

Definition 14.13. A function f of n variables is said to have a local maximum (resp. local
minimum) at a = (ay, ..., a,) if there is € > 0 such that

n 1/2
(14.2) f(x) < f(a) (resp. f(x) > f(a)) VIx—a|= (Z i — ail2> <e
i=1

Here, f(a) is called a local maximum (resp. minimum) value. When (14.2) holds for all x in
the domain of f, we say that f has an absolute maximum (resp. minimum) at a.

Theorem 14.13. If f(x) has a local maximum or minimum at a and f has first-order partial
derivatives at a, then V f(a) =0 := (0,...,0).

Remark 14.20. The proof follows directly from Fermat’s theorem. As in the one-dimensional
case, we call x a critical point of f if either V f(x) does not exist or Vf(x) =0

Example 14.31. For f(x,y) = x? +y?> + = — 2y, note that Vf = (2x + 1,2y — 2). Clearly,
Vf(z,y) =(0,0) if and only if (z,y) = (—1/2,1).

Remark 14.21. Note that V f = 0 is sufficient for the existence of local extrema. For example,
if f(x,y) = 22 —y?, then (0,0) is the unique critical point but (0,0) is neither a local maximum
nor a local minimum. Such a point is called a saddle point, a critical point which is not a
local maximum or minimum.

Theorem 14.14. Let f be a function of two variables with continuous second order partial
derivatives. Assume V f(z0,90) = 0 and set D(z0,Y0) = fzz(T0, Y0) fyu(T0, Y0) — [fry(T0, ¥0)]?-
(1) If D(xo,y0) > 0 and fzz(z0,y0) > 0, then f(xo,yo) is a local minimum.
(2) If D(x0,y0) > 0 and fzz(x0,v0) <0, then f(xo,v0) is a local maximum.
(3) If D(x0,y0) < 0, then (x0,y0) is a saddle point.
(4) If D(x0,y0) = 0, no conclusion.

Remark 14.22. Let f(z,y) = ?y? and g(z,y) = xy?. Note that (0,0) is a critical point of f
and g, while f has a local minimum at (0,0) and g has a saddle point at (0,0).

Ezample 14.32. Consider the function f(z,y) = * +y* — 42y 4+ 1. Note that

fl‘:4x3_4y7 fy:4y3_4x7 fxz:12x2> fyy:12y27 Sy = fya = —4.

Clearly, the critical points (z,y) of f satisfy 2 = y and > = x. This implies 2° = z or

equivalently z(x — 1)(x +1)(2? +1)(2* + 1) = 0. Hence, the critical points of f contain (0, 0),
(1,1), (=1, 1) and D(0,0) = —16, D(1,1) = D(—1,—1) = 128. By Theorem 14.14, (0, 0) is
a saddle point, whereas (1,1) and (—1,—1) are local minima.

Example 14.33. A rectangle box without a lid is to be made from a 12 m? cardboard. Let
x,1, z be the length, width and height of the box. Then, the volume V is given by V = zyz.
Along with the restriction of zy + 2yz 4+ 2xz = 12, we may rewrite the volume as

xy(12 — zy)
V(z,y) = =29
@)= =Ty
Clearly, V(z,y) = 0 on the boundary of E and V(z,y) < 18/(x +y) — 0 as = — oo or

y — oo. This implies that the maximum of f must exist and in the interior of E. In some
computations, one has

V(z,y) € E={(z,y)|lz >0,y >0, zy < 12}.

y?(—2% — 2zy + 12)

22 (—y? — 2zy + 12)
2(z +y)? '

2(z +y)?

V, = .V, =
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This implies that (2,2) is the unique critical point. Hence, the dimensions of the box with
maximum volume are (z,y,z) = (2,2,1) and the volume is 4m3.

Theorem 14.15. If f is continuous on a closed and bounded set D C R™, then f attains its
absolute mazximum and minimum.

’Strategy to find the absolute extremum‘ Let f be a continuous function on a closed
and bounded set D C R"™.
(1) Find the values of f at the critical points of f in D.
(2) Find the extremum values of f on the boundary of D.
(3) The largest and smallest values in Steps 1 and 2 are the absolute maximum and
minimum.

Ezample 14.34. Let f(x,y) = 2% — 22y + 2y and D = [0,3] x [0,2]. Note that Vf(z,y) =

(2x — 2y, —2x 4 2). This implies that (1,1) is the unique critical point and (1,1) € D. On the
boundary, one has

f(z,0) =22, f(x,2)=2>—4a+4, Vzel0,3],
and
fOy) =2y, fBy)=9-4y, Vyel0,2]
Thus, the maximum and minimum values of f on the boundary of D are 9 and 0. As f(1,1) =
1, the maximum and minimum values of f on D are 9 and 0.

Partial proof of Theorem 14.14. Here, we consider the case fy.(2o,y0) > 0 and D(xo,yo) > 0.
Let u = (a,b) be a unit vector. Note that

Dyf =afs + bfya Dif = Du(Duf) = a2f:m + 2abf:]cy + b2fyya
where the second directional derivative also uses Clairaut’s theorem. Write

D2f—f <a+f“”yb>2+b2<f Fou— 12)
who fmm fxx ey o

Since fz, and D are continuous and positive at (x¢,%0), we may select § > 0 such that f,,
and D are positive on B = {(z,y) : |(x — 20,y — v0)| < §}. This implies D2f > 0 on B for
all u. To show (x0,yo) is a local minimum of f, it suffices to show that f(zg,yo) < f(z,y) for
(x,y) € B. Set F(h) = f(xo + ah,yo + bh). Note that

F'(0) = Vf(zo,y0) -u=0, F"(h)=D?f(xq+ ah,yo+bh) >0, V|h| <.

By the second derivative test, F' is concave upward on (—d,40) and 0 is a local minimum, as
desired O
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