
14.7. Maximum and minimum values.

Definition 14.13. A function f of n variables is said to have a local maximum (resp. local
minimum) at a = (a1, ..., an) if there is ϵ > 0 such that

(14.2) f(x) ≤ f(a) (resp. f(x) ≥ f(a)) ∀|x− a| =

(
n∑

i=1

|xi − ai|2
)1/2

< ϵ.

Here, f(a) is called a local maximum (resp. minimum) value. When (14.2) holds for all x in
the domain of f , we say that f has an absolute maximum (resp. minimum) at a.

Theorem 14.13. If f(x) has a local maximum or minimum at a and f has first-order partial
derivatives at a, then ∇f(a) = 0 := (0, ..., 0).

Remark 14.20. The proof follows directly from Fermat’s theorem. As in the one-dimensional
case, we call x a critical point of f if either ∇f(x) does not exist or ∇f(x) = 0

Example 14.31. For f(x, y) = x2 + y2 + x − 2y, note that ∇f = ⟨2x + 1, 2y − 2⟩. Clearly,
∇f(x, y) = ⟨0, 0⟩ if and only if (x, y) = (−1/2, 1).

Remark 14.21. Note that ∇f = 0 is sufficient for the existence of local extrema. For example,
if f(x, y) = x2−y2, then (0, 0) is the unique critical point but (0, 0) is neither a local maximum
nor a local minimum. Such a point is called a saddle point, a critical point which is not a
local maximum or minimum.

Theorem 14.14. Let f be a function of two variables with continuous second order partial
derivatives. Assume ∇f(x0, y0) = 0 and set D(x0, y0) = fxx(x0, y0)fyy(x0, y0)− [fxy(x0, y0)]

2.

(1) If D(x0, y0) > 0 and fxx(x0, y0) > 0, then f(x0, y0) is a local minimum.
(2) If D(x0, y0) > 0 and fxx(x0, y0) < 0, then f(x0, y0) is a local maximum.
(3) If D(x0, y0) < 0, then (x0, y0) is a saddle point.
(4) If D(x0, y0) = 0, no conclusion.

Remark 14.22. Let f(x, y) = x2y2 and g(x, y) = xy2. Note that (0, 0) is a critical point of f
and g, while f has a local minimum at (0, 0) and g has a saddle point at (0, 0).

Example 14.32. Consider the function f(x, y) = x4 + y4 − 4xy + 1. Note that

fx = 4x3 − 4y, fy = 4y3 − 4x, fxx = 12x2, fyy = 12y2, fxy = fyx = −4.

Clearly, the critical points (x, y) of f satisfy x3 = y and y3 = x. This implies x9 = x or
equivalently x(x− 1)(x+1)(x2 +1)(x4 +1) = 0. Hence, the critical points of f contain (0, 0),
(1, 1), (−1,−1) and D(0, 0) = −16, D(1, 1) = D(−1,−1) = 128. By Theorem 14.14, (0, 0) is
a saddle point, whereas (1, 1) and (−1,−1) are local minima.

Example 14.33. A rectangle box without a lid is to be made from a 12 m2 cardboard. Let
x, y, z be the length, width and height of the box. Then, the volume V is given by V = xyz.
Along with the restriction of xy + 2yz + 2xz = 12, we may rewrite the volume as

V (x, y) =
xy(12− xy)

2(x+ y)
∀(x, y) ∈ E = {(x, y)|x > 0, y > 0, xy < 12}.

Clearly, V (x, y) = 0 on the boundary of E and V (x, y) ≤ 18/(x + y) → 0 as x → ∞ or
y → ∞. This implies that the maximum of f must exist and in the interior of E. In some
computations, one has

Vx =
y2(−x2 − 2xy + 12)

2(x+ y)2
, Vy =

x2(−y2 − 2xy + 12)

2(x+ y)2
.
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This implies that (2, 2) is the unique critical point. Hence, the dimensions of the box with
maximum volume are (x, y, z) = (2, 2, 1) and the volume is 4m3.

Theorem 14.15. If f is continuous on a closed and bounded set D ⊂ Rn, then f attains its
absolute maximum and minimum.

Strategy to find the absolute extremum Let f be a continuous function on a closed

and bounded set D ⊂ Rn.

(1) Find the values of f at the critical points of f in D.
(2) Find the extremum values of f on the boundary of D.
(3) The largest and smallest values in Steps 1 and 2 are the absolute maximum and

minimum.

Example 14.34. Let f(x, y) = x2 − 2xy + 2y and D = [0, 3] × [0, 2]. Note that ∇f(x, y) =
⟨2x− 2y,−2x+2⟩. This implies that (1, 1) is the unique critical point and (1, 1) ∈ D. On the
boundary, one has

f(x, 0) = x2, f(x, 2) = x2 − 4x+ 4, ∀x ∈ [0, 3],

and
f(0, y) = 2y, f(3, y) = 9− 4y, ∀y ∈ [0, 2].

Thus, the maximum and minimum values of f on the boundary of D are 9 and 0. As f(1, 1) =
1, the maximum and minimum values of f on D are 9 and 0.

Partial proof of Theorem 14.14. Here, we consider the case fxx(x0, y0) > 0 and D(x0, y0) > 0.
Let u = ⟨a, b⟩ be a unit vector. Note that

Duf = afx + bfy, D2
uf = Du(Duf) = a2fxx + 2abfxy + b2fyy,

where the second directional derivative also uses Clairaut’s theorem. Write

D2
uf = fxx

(
a+

fxy
fxx

b

)2

+
b2

fxx
(fxxfyy − f2

xy).

Since fxx and D are continuous and positive at (x0, y0), we may select δ > 0 such that fxx
and D are positive on B = {(x, y) : |(x − x0, y − y0)| < δ}. This implies D2

uf > 0 on B for
all u. To show (x0, y0) is a local minimum of f , it suffices to show that f(x0, y0) ≤ f(x, y) for
(x, y) ∈ B. Set F (h) = f(x0 + ah, y0 + bh). Note that

F ′(0) = ∇f(x0, y0) · u = 0, F ′′(h) = D2
uf(x0 + ah, y0 + bh) > 0, ∀|h| < δ.

By the second derivative test, F is concave upward on (−δ, δ) and 0 is a local minimum, as
desired �
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