14.8. Lagrange multipliers. In this section, we consider the extreme value of a function with constraint given by another function. As a beginning, let f, g be functions of two variables. Here, the aim is to find the extremum values of $f(x, y)$ with constraint $g(x, y)=k$, where k is a constant. By regarding $g(x, y)=k$ as a geometric curve on the $x y$-plane, one can imagine that, if m is the extreme value of f over $g=k$, then the level curve $f(x, y)=m$ will intersect $g(x, y)=k$. More precisely, if $r(t)=\langle x(t), y(t)\rangle$ is the parametric equation for $g=k$ and $r\left(t_{0}\right)$ is the maximum of f over $g=k$, then

$$
g(x(t), y(t))=k, \quad f(x(t), y(t)) \leq f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right), \quad \forall t
$$

This implies

$$
\nabla g \cdot r^{\prime}=0, \quad \nabla f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \cdot r^{\prime}\left(t_{0}\right)=0
$$

Hence, if $\nabla g\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \neq \mathbf{0}$, then $\nabla f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)=\lambda \nabla g\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$ for some constant λ.
Next, let f, g be functions of three variables and k be a constraint. If $r(t)=\langle x(t), y(t), z(t)\rangle$ is a curve on the level surface $g=k$ and, along $r(t), f$ reaches its extremum at $t=t_{0}$, then

$$
\nabla g \cdot r^{\prime}=0, \quad \nabla f\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right) \cdot r^{\prime}\left(t_{0}\right)=0
$$

By choosing another curve with non-parallel tangent vector at $r\left(t_{0}\right)$, we may conclude that

$$
\nabla f\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)=\lambda \nabla g\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)
$$

for some constant λ, provided $\nabla g\left(r\left(t_{0}\right)\right) \neq \mathbf{0}$.
In either case of dimensions two and three, λ is called a Lagrange multiplier.
Method of Lagrange multipliers: One constraint Let f, g be functions of two or three variables. Assume that the extremum values of f under the constraint $g=k$ exist and $\nabla g \neq 0$ on $g=k$.
(1) Solve the system of equations, $\nabla f=\lambda \nabla g$ and $g=k$.
(2) Determine the values of f for all solutions in (1). The largest and smallest are the maximum and minimum values of f under the constraint $g=k$.
Example 14.35. Let $f(x, y)=x^{2}+2 y^{2}$ and $g(x, y)=2 x^{2}+y^{2}$. Note that $\nabla f=\langle 2 x, 4 y\rangle$ and $\nabla g=\langle 4 x, 2 y\rangle$. Clearly, $\nabla g \neq \mathbf{0}$ on $g=1$. By the Lagrange multiplier method, we need to solve the following system,

$$
2 x=4 \lambda x, \quad 4 y=2 \lambda y, \quad 2 x^{2}+y^{2}=1
$$

The first equation leads to $x=0$ or $\lambda=1 / 2$. When $x=0, y= \pm 1$. When $\lambda=1 / 2, y=0$ and $x= \pm 1 / \sqrt{2}$. Consequently, $(0, \pm 1)$ and $(\pm 1 / \sqrt{2}, 0)$ are all solutions. As $f(0, \pm 1)=2$ and $f(\pm 1 / \sqrt{2}, 0)=1 / 2$, the maximum and minimum values of f on $g=1$ are 2 and $1 / 2$.
Example 14.36. Consider the extremum values of $f(x, y)=x^{2}+2 y^{2}$ on $D=\{g \leq 1\}$, where $g(x, y)=2 x^{2}+y^{2}$. First, one may solve the system $\nabla f=\mathbf{0}$ on D to conclude that $(0,0)$ is the unique critical point, which has value $f(0,0)=0$. Along with the extremum values of f on $g=1$ (see the previous example), the extremum values of f on D are respectively 2 (the maximum value) and 0 (the minimum value).

Next, let's consider the extremum value problem of $f(x, y, z)$ with constraints, $g_{1}(x, y, z)=$ k_{1} and $g_{2}(x, y, z)=k_{2}$. Geometrically, the set $\gamma=\left\{(x, y, z) \mid g_{1}(x, y, z)=k_{1}, g_{2}(x, y, z)=k_{2}\right\}$ is the intersection of two (level) surfaces. Assuming that ∇g_{1} and ∇g_{2} are not parallel on γ, one may regard γ as a curve, say $r(t)=\langle x(t), y(t), z(t)\rangle$. As before, if $r\left(t_{0}\right)$ is an (local or global) extremum point of f, then

$$
\nabla f\left(r\left(t_{0}\right)\right) \cdot r^{\prime}\left(t_{0}\right)=\nabla g_{1}\left(r\left(t_{0}\right)\right) \cdot r^{\prime}\left(t_{0}\right)=\nabla g_{2}\left(r\left(t_{0}\right)\right) \cdot r^{\prime}\left(t_{0}\right)=0
$$

When $r^{\prime}\left(t_{0}\right) \neq \mathbf{0}$, we obtain

$$
\nabla f\left(r\left(t_{0}\right)\right)=\lambda \nabla g_{1}\left(r\left(t_{0}\right)\right)+\mu \nabla g_{2}\left(r\left(t_{0}\right)\right)
$$

where λ and μ are two constants and called Lagrange multipliers. It is worthwhile to note that the assumption of $r^{\prime}\left(t_{0}\right) \neq \mathbf{0}$ can be easily satisfied.
Method of Lagrange multipliers: Two constraints Let f, g_{1}, g_{2} be functions of three variables. Assume that the extremum values of f under constraints $g_{1}=k_{1}$ and $g_{2}=k_{2}$ exist, and further that ∇g_{1} and ∇g_{2} are not parallel on $\left\{g_{1}=k_{1}, g_{2}=k_{2}\right\}$.
(1) Solve the system of equations, $\nabla f=\lambda \nabla g_{1}+\mu \nabla g_{2}, g_{1}=k_{1}$ and $g_{2}=k_{2}$.
(2) Determine the values of f for all solutions in (1). The largest and smallest are the maximum and minimum values of f under the constraint $\left\{g_{1}=k_{1}, g_{2}=k_{2}\right\}$.

Example 14.37. Let $f(x, y, z)=x+2 y+3 z$ and γ be the intersecting curve of plane $g(x, y, z)=$ $x-y+z=1$ and cylinder $h(x, y, z)=x^{2}+y^{2}=1$. It is easy to examine that ∇g and ∇h are not parallel on γ. First, let's solve the following system

$$
\nabla f=\lambda \nabla g+\mu \nabla h, \quad g=h=1
$$

or equivalently

$$
1=\lambda+2 \mu x, \quad 2=-\lambda+2 \mu y, \quad 3=\lambda, \quad x-y+z=1, \quad x^{2}+y^{2}=1
$$

The first three equations give $x=-1 / \mu, y=5 /(2 \mu)$, while the combination of the last equality implies $1 / \mu^{2}+25 /\left(4 \mu^{2}\right)=1$. Hence, we have $\mu= \pm \sqrt{29} / 2$ and then

$$
x=\mp 2 / \sqrt{29}, \quad y= \pm 5 / \sqrt{29}, \quad z=1 \pm 7 / \sqrt{29}
$$

As the corresponding values of the above solutions in f are

$$
\mp 2 / \sqrt{29}+2(\pm 5 / \sqrt{29})+3(1 \pm 7 / \sqrt{29})=3 \pm \sqrt{29}
$$

we may conclude that the maximum and minimum values of f are $3+\sqrt{29}$ and $3-\sqrt{29}$.
Example 14.38. Consider the extremum value of the function $f(x, y)=x$ with constraint $g(x, y)=y^{2}+x^{4}-x^{3}=0$. Note that $g=0$ implies $x \in[0,1]$ and $y= \pm \sqrt{x^{3}(1-x)}$. Let r be the parametric curve of the equation $g=0$. Then,

$$
r(t)= \begin{cases}\langle-t, t \sqrt{-t(1+t)}\rangle & \text { for } t \in[-1,0] \\ \langle t, t \sqrt{t(1-t)}\rangle & \text { for } t \in[0,1]\end{cases}
$$

It is clear that $f(r(t))$ attains its minimum at $t=0$ with $f(r(0))=f(0,0)=0$. Back to the method of Lagrange multiplier, one has to solve the system of $\nabla f=\lambda \nabla g$ and $g=0$, i.e.

$$
1=\lambda\left(4 x^{3}-3 x^{2}\right), \quad 0=2 \lambda y, \quad y^{2}=x^{3}(x-1)
$$

As it is easy to check that this system has only one solution $(1,0)$, the method of Lagrange multiplier fails in this example. It is remarkable that, at the minimum point $(0,0), \nabla f(0,0)=$ $\langle 1,0\rangle$ and $\nabla g(0,0)=\langle 0,0\rangle$.

