
14.8. Lagrange multipliers. In this section, we consider the extreme value of a function with
constraint given by another function. As a beginning, let f, g be functions of two variables.
Here, the aim is to find the extremum values of f(x, y) with constraint g(x, y) = k, where k is
a constant. By regarding g(x, y) = k as a geometric curve on the xy-plane, one can imagine
that, if m is the extreme value of f over g = k, then the level curve f(x, y) = m will intersect
g(x, y) = k. More precisely, if r(t) = ⟨x(t), y(t)⟩ is the parametric equation for g = k and r(t0)
is the maximum of f over g = k, then

g(x(t), y(t)) = k, f(x(t), y(t)) ≤ f(x(t0), y(t0)), ∀t.

This implies

∇g · r′ = 0, ∇f(x(t0), y(t0)) · r′(t0) = 0.

Hence, if ∇g(x(t0), y(t0)) ̸= 0, then ∇f(x(t0), y(t0)) = λ∇g(x(t0), y(t0)) for some constant λ.
Next, let f, g be functions of three variables and k be a constraint. If r(t) = ⟨x(t), y(t), z(t)⟩

is a curve on the level surface g = k and, along r(t), f reaches its extremum at t = t0, then

∇g · r′ = 0, ∇f(x(t0), y(t0), z(t0)) · r′(t0) = 0.

By choosing another curve with non-parallel tangent vector at r(t0), we may conclude that

∇f(x(t0), y(t0), z(t0)) = λ∇g(x(t0), y(t0), z(t0)),

for some constant λ, provided ∇g(r(t0)) ̸= 0.
In either case of dimensions two and three, λ is called a Lagrange multiplier.

Method of Lagrange multipliers: One constraint Let f, g be functions of two or three

variables. Assume that the extremum values of f under the constraint g = k exist and ∇g ̸= 0
on g = k.

(1) Solve the system of equations, ∇f = λ∇g and g = k.
(2) Determine the values of f for all solutions in (1). The largest and smallest are the

maximum and minimum values of f under the constraint g = k.

Example 14.35. Let f(x, y) = x2 + 2y2 and g(x, y) = 2x2 + y2. Note that ∇f = ⟨2x, 4y⟩ and
∇g = ⟨4x, 2y⟩. Clearly, ∇g ̸= 0 on g = 1. By the Lagrange multiplier method, we need to
solve the following system,

2x = 4λx, 4y = 2λy, 2x2 + y2 = 1.

The first equation leads to x = 0 or λ = 1/2. When x = 0, y = ±1. When λ = 1/2, y = 0
and x = ±1/

√
2. Consequently, (0,±1) and (±1/

√
2, 0) are all solutions. As f(0,±1) = 2 and

f(±1/
√
2, 0) = 1/2, the maximum and minimum values of f on g = 1 are 2 and 1/2.

Example 14.36. Consider the extremum values of f(x, y) = x2 + 2y2 on D = {g ≤ 1}, where
g(x, y) = 2x2 + y2. First, one may solve the system ∇f = 0 on D to conclude that (0, 0) is
the unique critical point, which has value f(0, 0) = 0. Along with the extremum values of f
on g = 1 (see the previous example), the extremum values of f on D are respectively 2 (the
maximum value) and 0 (the minimum value).

Next, let’s consider the extremum value problem of f(x, y, z) with constraints, g1(x, y, z) =
k1 and g2(x, y, z) = k2. Geometrically, the set γ = {(x, y, z)|g1(x, y, z) = k1, g2(x, y, z) = k2}
is the intersection of two (level) surfaces. Assuming that ∇g1 and ∇g2 are not parallel on γ,
one may regard γ as a curve, say r(t) = ⟨x(t), y(t), z(t)⟩. As before, if r(t0) is an (local or
global) extremum point of f , then

∇f(r(t0)) · r′(t0) = ∇g1(r(t0)) · r′(t0) = ∇g2(r(t0)) · r′(t0) = 0.
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When r′(t0) ̸= 0, we obtain

∇f(r(t0)) = λ∇g1(r(t0)) + µ∇g2(r(t0)),

where λ and µ are two constants and called Lagrange multipliers. It is worthwhile to note
that the assumption of r′(t0) ̸= 0 can be easily satisfied.

Method of Lagrange multipliers: Two constraints Let f, g1, g2 be functions of three

variables. Assume that the extremum values of f under constraints g1 = k1 and g2 = k2 exist,
and further that ∇g1 and ∇g2 are not parallel on {g1 = k1, g2 = k2}.

(1) Solve the system of equations, ∇f = λ∇g1 + µ∇g2, g1 = k1 and g2 = k2.
(2) Determine the values of f for all solutions in (1). The largest and smallest are the

maximum and minimum values of f under the constraint {g1 = k1, g2 = k2}.

Example 14.37. Let f(x, y, z) = x+2y+3z and γ be the intersecting curve of plane g(x, y, z) =
x− y+ z = 1 and cylinder h(x, y, z) = x2 + y2 = 1. It is easy to examine that ∇g and ∇h are
not parallel on γ. First, let’s solve the following system

∇f = λ∇g + µ∇h, g = h = 1,

or equivalently

1 = λ+ 2µx, 2 = −λ+ 2µy, 3 = λ, x− y + z = 1, x2 + y2 = 1.

The first three equations give x = −1/µ, y = 5/(2µ), while the combination of the last equality
implies 1/µ2 + 25/(4µ2) = 1. Hence, we have µ = ±

√
29/2 and then

x = ∓2/
√
29, y = ±5/

√
29, z = 1± 7/

√
29.

As the corresponding values of the above solutions in f are

∓2/
√
29 + 2(±5/

√
29) + 3(1± 7/

√
29) = 3±

√
29,

we may conclude that the maximum and minimum values of f are 3 +
√
29 and 3−

√
29.

Example 14.38. Consider the extremum value of the function f(x, y) = x with constraint

g(x, y) = y2 + x4 − x3 = 0. Note that g = 0 implies x ∈ [0, 1] and y = ±
√
x3(1− x). Let r be

the parametric curve of the equation g = 0. Then,

r(t) =

{
⟨−t, t

√
−t(1 + t)⟩ for t ∈ [−1, 0]

⟨t, t
√

t(1− t)⟩ for t ∈ [0, 1]

It is clear that f(r(t)) attains its minimum at t = 0 with f(r(0)) = f(0, 0) = 0. Back to the
method of Lagrange multiplier, one has to solve the system of ∇f = λ∇g and g = 0, i.e.

1 = λ(4x3 − 3x2), 0 = 2λy, y2 = x3(x− 1).

As it is easy to check that this system has only one solution (1, 0), the method of Lagrange
multiplier fails in this example. It is remarkable that, at the minimum point (0, 0), ∇f(0, 0) =
⟨1, 0⟩ and ∇g(0, 0) = ⟨0, 0⟩.
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