
15. Multiple integrals

15.1. Double integrals over rectangles. Let z = f(x, y) ≥ 0 for (x, y) ∈ R = [a, b]× [c, d]
and consider the solid S = {(x, y, z)|0 ≤ z ≤ f(x, y), (x, y) ∈ R}. To estimate the volume of
S, we partition S into sub-rectangles of form

Rij = [xi−1, xi]× [yj−1, yj ] = {(x, y)|xi−1 ≤ x ≤ xi, yj−1 ≤ y ≤ yj}

where xi = a + i∆x, yj = c + j∆y, ∆x = (b − a)/m and ∆y = (d − c)/n. Then, the area
of Rij equals ∆A = ∆x∆y. By choosing a sample point (x∗ij , y

∗
ij) in Ri,j , the volume of

the solid with basement Rij is approximately f(x∗ij , y
∗
ij)∆A and the volume of S is roughly∑m

i=1

∑n
j=1 f(x

∗
ij , y

∗
ij)∆A. When f is “smooth” enough, we may expect the volume equals the

following limit

lim
m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij , y
∗
ij)∆A.

Definition 15.1. The double integral of f over the rectangle R = [a, b]× [c, d] is defined by

(15.1)

∫∫
R
f(x, y)dA = lim

m,n→∞

m∑
i=1

n∑
j=1

f(x∗ij , y
∗
ij)∆A,

provided the limit exists and is independent of the choice of (x∗ij , y
∗
ij). The summation at the

right-hand side is called a double Riemann sum.

Remark 15.1. Precisely, the limit in (15.1) is L if, for any ϵ > 0, there is N = N(ϵ) such that

n,m ≥ N, ⇒

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

f(x∗ij , y
∗
ij)∆A− L

∣∣∣∣∣∣ < ϵ.

Remark 15.2. If f ≥ 0 on R, then the volume of the solid under z = f(x, y) and above R is
defined to be

∫∫
R f(x, y)dA.

Properties of double integrals Let f, g be integrable functions on the region R. Then,

for any constants α, β, αf + βg is integrable on R and∫∫
R
[αf(x, y) + βg(x, y)]dA = α

∫∫
R
f(x, y)dA+ β

∫∫
R
g(x, y)dA.

If f ≥ g on R, then ∫∫
R
f(x, y)dA ≥

∫∫
R
g(x, y)dA.

Example 15.1. Consider function f(x, y) = 16 − x2 − y2 with domain R = [0, 2] × [0, 2]. Set
∆x = 2/m and ∆y = 2/n. Note that, for (x, y) ∈ Rij = [(i− 1)∆x, i∆x]× [(j − 1)∆y, j∆y],

|f(x, y)− f(i∆x, j∆y)| = |x2 − (i∆x)2 + y2 − (j∆y)2|

=(x+ i∆x)|x− i∆x|+ (y + j∆y)|y − j∆y| ≤ 8

m
+

8

n

This implies, for any (x∗ij , y
∗
ij) ∈ Rij ,∣∣∣∣∣∣

m∑
i=1

n∑
j=1

f(x∗ij , y
∗
ij)∆A−

m∑
i=1

n∑
j=1

f(i∆x, j∆y)∆A

∣∣∣∣∣∣ ≤ 32

m
+

32

n
.

39



Note that
m∑
i=1

n∑
j=1

f(i∆x, j∆y)∆A =64−
m∑
i=1

n∑
j=1

(
4i2

m2
+

4j2

n2

)
4

mn

=64− 16

m∑
i=1

(
i

m

)2 1

m
− 16

n∑
j=1

(
j

n

)2 1

n
.

Consequently, we obtain∫∫
R
f(x, y)dA = 64− 16

∫ 1

0
x2dx− 16

∫ 1

0
y2dy =

160

3
.

Remark 15.3. The midpoint rule for double integrals uses the midpoints as the sample points,
i.e. x∗ij = (xi + xi−1)/2 and y∗ij = (yi + yj−1)/2.

Theorem 15.1 (Fubini’s theorem). Let f(x, y) be a function defined on R = [a, b]× [c, d]. If
f is continuous on R, then

∫∫
R f(x, y)dA exists and∫∫

R
f(x, y)dA =

∫ d

c

∫ b

a
f(x, y)dxdy =

∫ b

a

∫ d

c
f(x, y)dydx.

The integrals on the right-hand side are called iterated integrals. In particular, if f(x, y) =
g(x)h(y) and g, h are continuous, then∫∫

R
f(x, y)dA =

∫ b

a
g(x)dx×

∫ d

c
h(y)dy.

Remark 15.4. Fubini’s theorem in fact holds for bounded functions of which discontinuity
appears in a finite union of smooth curves.

Example 15.2. Let f(x, y) = y cosxy and R = [1, 2]× [0, π]. Then,∫∫
R
f(x, y)dA =

∫ π

0

∫ 2

1
f(x, y)dxdy =

∫ π

0

(
sinxy

∣∣∣∣x=2

x=1

)
dy =

∫ π

0
[sin 2y − sin y]dy

=

(
cos y − cos 2y

2

) ∣∣∣∣y=π

y=0

= −2.

For R ⊂ R2, the average value of f(x, y) over R is defined to be

fave =
1

A(R)

∫∫
R
f(x, y)dA,

where A(R) is the area of R.

Example 15.3. The average value of f(x, y) = 16− x2 − y2 over R = [0, 2]× [0, 2] is

1

A(R)

∫∫
R
f(x, y)dA =

40

3
.
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