## 15. Multiple integrals

15.1. Double integrals over rectangles. Let $z=f(x, y) \geq 0$ for $(x, y) \in R=[a, b] \times[c, d]$ and consider the solid $S=\{(x, y, z) \mid 0 \leq z \leq f(x, y),(x, y) \in R\}$. To estimate the volume of $S$, we partition $S$ into sub-rectangles of form

$$
R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]=\left\{(x, y) \mid x_{i-1} \leq x \leq x_{i}, y_{j-1} \leq y \leq y_{j}\right\}
$$

where $x_{i}=a+i \Delta x, y_{j}=c+j \Delta y, \Delta x=(b-a) / m$ and $\Delta y=(d-c) / n$. Then, the area of $R_{i j}$ equals $\Delta A=\Delta x \Delta y$. By choosing a sample point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ in $R_{i, j}$, the volume of the solid with basement $R_{i j}$ is approximately $f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$ and the volume of $S$ is roughly $\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$. When $f$ is "smooth" enough, we may expect the volume equals the following limit

$$
\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

Definition 15.1. The double integral of $f$ over the rectangle $R=[a, b] \times[c, d]$ is defined by

$$
\begin{equation*}
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A \tag{15.1}
\end{equation*}
$$

provided the limit exists and is independent of the choice of $\left(x_{i j}^{*}, y_{i j}^{*}\right)$. The summation at the right-hand side is called a double Riemann sum.

Remark 15.1. Precisely, the limit in (15.1) is $L$ if, for any $\epsilon>0$, there is $N=N(\epsilon)$ such that

$$
n, m \geq N, \quad \Rightarrow \quad\left|\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A-L\right|<\epsilon
$$

Remark 15.2. If $f \geq 0$ on $R$, then the volume of the solid under $z=f(x, y)$ and above $R$ is defined to be $\iint_{R} f(x, y) d A$.

Properties of double integrals Let $f, g$ be integrable functions on the region $R$. Then, for any constants $\alpha, \beta, \alpha f+\beta g$ is integrable on $R$ and

$$
\iint_{R}[\alpha f(x, y)+\beta g(x, y)] d A=\alpha \iint_{R} f(x, y) d A+\beta \iint_{R} g(x, y) d A
$$

If $f \geq g$ on $R$, then

$$
\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A
$$

Example 15.1. Consider function $f(x, y)=16-x^{2}-y^{2}$ with domain $R=[0,2] \times[0,2]$. Set $\Delta x=2 / m$ and $\Delta y=2 / n$. Note that, for $(x, y) \in R_{i j}=[(i-1) \Delta x, i \Delta x] \times[(j-1) \Delta y, j \Delta y]$,

$$
\begin{aligned}
& |f(x, y)-f(i \Delta x, j \Delta y)|=\left|x^{2}-(i \Delta x)^{2}+y^{2}-(j \Delta y)^{2}\right| \\
= & (x+i \Delta x)|x-i \Delta x|+(y+j \Delta y)|y-j \Delta y| \leq \frac{8}{m}+\frac{8}{n}
\end{aligned}
$$

This implies, for any $\left(x_{i j}^{*}, y_{i j}^{*}\right) \in R_{i j}$,

$$
\left|\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A-\sum_{i=1}^{m} \sum_{j=1}^{n} f(i \Delta x, j \Delta y) \Delta A\right| \leq \frac{32}{m}+\frac{32}{n}
$$

Note that

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{n} f(i \Delta x, j \Delta y) \Delta A & =64-\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\frac{4 i^{2}}{m^{2}}+\frac{4 j^{2}}{n^{2}}\right) \frac{4}{m n} \\
& =64-16 \sum_{i=1}^{m}\left(\frac{i}{m}\right)^{2} \frac{1}{m}-16 \sum_{j=1}^{n}\left(\frac{j}{n}\right)^{2} \frac{1}{n}
\end{aligned}
$$

Consequently, we obtain

$$
\iint_{R} f(x, y) d A=64-16 \int_{0}^{1} x^{2} d x-16 \int_{0}^{1} y^{2} d y=\frac{160}{3}
$$

Remark 15.3. The midpoint rule for double integrals uses the midpoints as the sample points, i.e. $x_{i j}^{*}=\left(x_{i}+x_{i-1}\right) / 2$ and $y_{i j}^{*}=\left(y_{i}+y_{j-1}\right) / 2$.

Theorem 15.1 (Fubini's theorem). Let $f(x, y)$ be a function defined on $R=[a, b] \times[c, d]$. If $f$ is continuous on $R$, then $\iint_{R} f(x, y) d A$ exists and

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x
$$

The integrals on the right-hand side are called iterated integrals. In particular, if $f(x, y)=$ $g(x) h(y)$ and $g, h$ are continuous, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} g(x) d x \times \int_{c}^{d} h(y) d y
$$

Remark 15.4. Fubini's theorem in fact holds for bounded functions of which discontinuity appears in a finite union of smooth curves.

Example 15.2. Let $f(x, y)=y \cos x y$ and $R=[1,2] \times[0, \pi]$. Then,

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{0}^{\pi} \int_{1}^{2} f(x, y) d x d y=\int_{0}^{\pi}\left(\left.\sin x y\right|_{x=1} ^{x=2}\right) d y=\int_{0}^{\pi}[\sin 2 y-\sin y] d y \\
& =\left.\left(\cos y-\frac{\cos 2 y}{2}\right)\right|_{y=0} ^{y=\pi}=-2
\end{aligned}
$$

For $R \subset \mathbb{R}^{2}$, the average value of $f(x, y)$ over $R$ is defined to be

$$
f_{\mathrm{ave}}=\frac{1}{A(R)} \iint_{R} f(x, y) d A
$$

where $A(R)$ is the area of $R$.
Example 15.3. The average value of $f(x, y)=16-x^{2}-y^{2}$ over $R=[0,2] \times[0,2]$ is

$$
\frac{1}{A(R)} \iint_{R} f(x, y) d A=\frac{40}{3} .
$$

