15.2. Double integrals over general regions.

Definition 15.2. Let $D \subset \mathbb{R}^{2}$ be a bounded region (not necessarily a rectangle) and R be a rectangle containing D. The integral of a function f over D is defined to be

$$
\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A, \text { where } F(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \in D \tag{15.2}\\ 0 & \text { if }(x, y) \in R \backslash D\end{cases}
$$

provided the integral $\iint_{R} F(x, y) d A$ is independent of R that contains D.
In the following, we consider two specific types of region D.
Type I region $D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$, where g_{1}, g_{2} are continuous on $[a, b]$. Let $R=[a, b] \times[c, d]$ be a rectangle containing D and F be the function in (15.2). By Fubini's theorem, if F is continuous on D, then F is integrable and

$$
\iint_{D} f(x, y) d A=\iint_{R} F(x, y) d A=\int_{a}^{b} \int_{c}^{d} F(x, y) d y d x \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Type II region $D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}$, where h_{1}, h_{2} are continuous functions. Then,

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Example 15.4. Let $f(x, y)=x y$ and D be the region enclosed by $y=x$ and $y=x^{2}$. Note that $D=\left\{(x, y) \mid 0 \leq x \leq 1, x^{2} \leq y \leq x\right\}$. Then,

$$
\iint_{D} f(x, y) d A=\int_{0}^{1} \int_{x^{2}}^{x} x y d y d x=\frac{1}{2} \int_{0}^{1} x\left(x^{2}-x^{4}\right) d x=\frac{1}{24}
$$

Example 15.5. Let S be the solid enclosed by the parabolic cylinders $y=x^{2}-1, y=1-x^{2}$ and the planes $x+y+z=2$ and $2 x+2 y-z+10=0$. Let $D=\{(x, y) \mid-1 \leq x \leq$ $\left.1, x^{2}-1 \leq y \leq 1-x^{2}\right\}$. Note that the height of S at $(x, y) \in D$ is given by $h(x, y)=$ $|(2 x+2 y+10)-(2-x-y)|=|3 x+3 y+8|=3 x+3 y+8$. Then, the volume of S is

$$
V=\int_{-1}^{1} \int_{x^{2}-1}^{1-x^{2}}(3 x+3 y+8) d y d x=\int_{-1}^{1} 2(3 x+8)\left(1-x^{2}\right) d x=16 \int_{-1}^{1}\left(1-x^{2}\right) d x=\frac{64}{3}
$$

Example 15.6. Consider the iterated integral $\int_{0}^{1} \int_{x}^{1} \sin y^{2} d y d x$. Set

$$
D=\{(x, y) \mid 0 \leq x \leq 1, x \leq y \leq 1\}=\{(x, y) \mid 0 \leq y \leq 1,0 \leq x \leq y\}
$$

By Fubini's theorem, one may rewrite the above integral as

$$
\int_{0}^{1} \int_{x}^{1} \sin y^{2} d y d x=\int_{0}^{1} \int_{0}^{y} \sin y^{2} d x d y=\int_{0}^{1} y \sin y^{2} d y=-\left.\frac{\cos y^{2}}{2}\right|_{0} ^{1}=\frac{1-\cos 1}{2}
$$

Properties of double integrals Let f, g be integrable functions over $D \subset \mathbb{R}^{2}$.
(1) For $\alpha, \beta \in \mathbb{R}, \iint_{D}[\alpha f(x, y)+\beta g(x, y)] d A=\alpha \iint_{D} f(x, y) d A+\beta \iint_{D} g(x, y) d A$.
(2) If $A(D)$ is the area of D, then $\iint_{D} 1 d A=A(D)$.
(3) If $f \geq g$ on D, then $\iint_{D} f(x, y) d A \geq \iint_{D} g(x, y) d A$.
(4) If $m \leq f(x, y) \leq M$ on D, then $m A(D) \leq \iint_{D} f(x, y) d A \leq M A(D)$.
(5) Assume that f is integrable on D_{1} and D_{2}, where $D=D_{1} \cup D_{2}$ and D_{1}, D_{2} do not overlap except on their boundaries. Then, $\iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+$ $\iint_{D_{2}} f(x, y) d A$.

