15.3. Double integrals in polar coordinates. Consider the following region

$$
D=\left\{(x, y) \mid y \geq 0,1 \leq x^{2}+y^{2} \leq 4\right\}
$$

Through the polar coordinate $x=r \cos \theta$ and $y=r \sin \theta$, the region can be expressed as

$$
R=\{(r, \theta) \mid 0 \leq \theta \leq \pi, 1 \leq r \leq 2\}
$$

Here, we call the set D a polar rectangle. In the following, let's treat a more general case. Let $D \subset \mathbb{R}^{2}$ be the polar rectangle $R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}$ with $\beta-\alpha \leq 2 \pi$. Set

$$
\Delta r=\frac{b-a}{m}, \quad \Delta \theta=\frac{\beta-\alpha}{n}, \quad r_{i}=a+i \Delta r, \quad \theta_{j}=\alpha+j \Delta \theta, \quad S_{i j}=\left[r_{i-1}, r_{i}\right] \times\left[\theta_{j-1}, \theta_{j}\right]
$$

Use a similar reasoning for the double integral, if f is continuous on D, then

$$
\begin{equation*}
\iint_{D} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i j}^{*} \cos \theta_{i j}^{*}, r_{i j}^{*} \sin \theta_{i j}^{*}\right) \Delta A_{i j} \tag{15.3}
\end{equation*}
$$

where $\left(r_{i j}^{*}, \theta_{i j}^{*}\right) \in S_{i j}$ and $\Delta A_{i j}$ is the area of $S_{i j}$. By the midpoint rule, (15.3) also holds for the specific case of $r_{i j}^{*}=r_{i}^{*}=\frac{1}{2}\left(r_{i-1}+r_{i}\right)$ and $\theta_{i j}^{*}=\theta_{j}^{*}=\frac{1}{2}\left(\theta_{j-1}+\theta_{j}\right)$. In addition with these notations, one may derive $\Delta A_{i j}=\frac{1}{2}\left(r_{i}^{2}-r_{i-1}^{2}\right) \Delta \theta=r_{i}^{*} \Delta r \Delta \theta$ and then obtain

$$
\iint_{D} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(r_{i}^{*} \cos \theta_{j}^{*}, r_{i}^{*} \sin \theta_{j}^{*}\right) r_{i}^{*} \Delta r \Delta \theta=\iint_{R} g(r, \theta) d A
$$

where $g(r, \theta)=r f(r \cos \theta, r \sin \theta)$. We summarize the above discussion in the following theorem.

Theorem 15.2. Let $f(x, y)$ be a continuous function defined on a polar rectangle D given by $R=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}$ with $\beta-\alpha \leq 2 \pi$. Then,

$$
\iint_{D} f(x, y) d A=\iint_{R} r f(r \cos \theta, r \sin \theta) d A=\int_{\alpha}^{\beta} \int_{a}^{b} r f(r \cos \theta, r \sin \theta) d r d \theta
$$

Remark 15.5. Theorem 15.2 also holds for types I and II polar regions.
Example 15.7. Consider the integral $I=\int_{0}^{a} \int_{-\sqrt{a^{2}-y^{2}}}^{0} x^{2} y d x d y$. Set $f(x, y)=x^{2} y$ and D be the polar rectangle with $0 \leq r \leq a$ and $\pi / 2 \leq \theta \leq \pi$. Then,

$$
I=\iint_{D} f(x, y) d A=\iint_{R} r f(r \cos \theta, r \sin \theta) d A=\int_{\pi / 2}^{\pi} \int_{0}^{a} r^{4} \sin \theta \cos ^{2} \theta d r d \theta=\frac{a^{5}}{15}
$$

Example 15.8. Let S be the solid below the cone $z=\sqrt{x^{2}+y^{2}}$ and above the disk D : $x^{2}+y^{2} \leq 4$ on the $x y$-plane. Set $f(x, y)=\sqrt{x^{2}+y^{2}}$ and $R=\{(r, \theta) \mid 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi\}$. Then, the volume of S is given by

$$
V=\iint_{D} f(x, y) d A=\iint_{R} r f(r \cos \theta, r \sin \theta) d A=\int_{0}^{2 \pi} \int_{0}^{2} r^{2} d r d \theta=\frac{16 \pi}{3}
$$

Example 15.9. Consider the solid below the paraboloid $z=x^{2}+y^{2}$, above the $x y$-plane and inside the cylinder $x^{2}+y^{2}=2 x$. Let $R=\{(r, \theta) \mid 0 \leq r \leq 2 \cos \theta,-\pi / 2 \leq \theta \leq \pi / 2\}$. Then,

$$
\begin{aligned}
V & =\int_{R} r^{3} d r d \theta=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{3} d r d \theta=\int_{-\pi / 2}^{\pi / 2} 4 \cos ^{4} \theta d \theta \\
& =2 \int_{0}^{\pi / 2}(1+\cos 2 \theta)^{2} d \theta=\int_{0}^{\pi / 2}[2+4 \cos 2 \theta+1+\cos 4 \theta] d \theta=\frac{3 \pi}{2}
\end{aligned}
$$

