15.4. Application of double integrals. A random variable $X$ is said to have a normal distribution with mean 0 and variance 1 if the probability density function of $X$ is given by

$$
f(x)=c e^{-x^{2} / 2}, \quad \forall x \in \mathbb{R}
$$

where $c$ is a normalizing constant, which must be positive. In this setting, the probability of the event $\{X \leq x\}$ equals the improper integral $\int_{-\infty}^{x} f(t) d t$ for any $x \in \mathbb{R}$. To determine the precise value of the integral, one needs the value of $c$. Note that the probability of $\{X \in(-\infty, \infty)\}$ is 1 and this leads to $c \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=1$. By Fubini's theorem, we have

$$
c^{-2}=\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x \cdot \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y=\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right) / 2} d A .
$$

Through the polar coordinate, the region $\mathbb{R}^{2}$ is the polar rectangle $R=\{(r, \theta) \mid 0 \leq r<\infty, 0 \leq$ $\theta \leq 2 \pi\}$. As a result, this implies

$$
c^{-2}=\iint_{R} r e^{-r^{2} / 2} d r=2 \pi \int_{0}^{\infty} r e^{-r^{2} / 2} d r=-\left.2 \pi e^{-r^{2} / 2}\right|_{0} ^{\infty}=2 \pi .
$$

15.5. Surface area. Let $z=f(x, y)$ be a function defined on $D=[a, b] \times[c, d]$ and $S$ be the surface $\{(x, y, f(x, y)) \mid(x, y) \in D\}$. To compute the area of $S$, we partition $D$ into subrectangles $\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ as before, i.e. $\Delta x=\frac{b-a}{m}, \Delta y=\frac{d-c}{n}, x_{i}=a+i \Delta x$ and $y_{j}=c+j \Delta y$. Note that $S$ is a union of $S_{i j}=\left\{(x, y, f(x, y)) \mid x_{i-1} \leq x \leq x_{i}, y_{j-1} \leq y \leq y_{j}\right\}$. Let $A(S)$ and $A\left(S_{i j}\right)$ be the surface areas of $S$ and $S_{i j}$. Clearly, $A(S)=\sum_{i=1}^{m} \sum_{j=1}^{n} A\left(S_{i j}\right)$. To compute $A\left(S_{i j}\right)$, observe that the tangent plane to $S$ at $\left(x_{i}, y_{j}\right)$ is given by

$$
L(x, y)=f\left(x_{i}, y_{j}\right)+f_{x}\left(x_{i}, y_{j}\right)\left(x-x_{i}\right)+f_{y}\left(x_{i}, y_{j}\right)\left(y-y_{j}\right) .
$$

Let $P=\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right), Q=\left(x_{i-1}, y_{j}, L\left(x_{i-1}, y_{j}\right)\right)$ and $R=\left(x_{i}, y_{j-1}, L\left(x_{i}, y_{j-1}\right)\right)$. If $f$ is differentiable on $D$, then $S_{i j}$ is approximately the parallelogram spanned by vectors $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ of which area is given by

$$
\|\overrightarrow{P Q} \times \overrightarrow{P R}\|=\left\|\left\langle-f_{x}\left(x_{i}, y_{j}\right),-f_{y}\left(x_{i}, y_{j}\right), 1\right\rangle\right\| \Delta x \Delta y=\sqrt{f_{x}^{2}\left(x_{i}, y_{j}\right)+f_{y}^{2}\left(x_{i}, y_{j}\right)+1} \Delta x \Delta y
$$

Letting $n, m$ tend to infinity leads to the following theorem.
Theorem 15.3. Let $z=f(x, y)$ be a function defined on a region $D$ and $A(S)$ be the area of the surface $\{(x, y, f(x, y)) \mid(x, y) \in D\}$. Suppose $f_{x}, f_{y}$ are continuous on $D$. Then,

$$
A(S)=\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d A
$$

Example 15.10. Consider the paraboloid $z=x^{2}+y^{2}$ with domain $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Let $R=\{(r, \theta) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi\}$. By Theorem 15.3, the surface area equals

$$
\iint_{D} \sqrt{4 x^{2}+4 y^{2}+1} d A=\iint_{R} \sqrt{4 r^{2}+1} r d A=2 \pi \times\left.\frac{\left(4 r^{2}+1\right)^{3 / 2}}{12}\right|_{0} ^{1}=\frac{(5 \sqrt{5}-1) \pi}{6} .
$$

