15.8. Triple integrals in spherical coordinates. The spherical coordinate is given as follows. For $(x, y, z) \in \mathbb{R}^{3}$, set $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ and let ϕ be the angle between $\langle x, y, z\rangle$ and the $\langle 0,0,1\rangle$ and let (r, θ) be the polar coordinate of (x, y) on the $x y$-plane. As (x, y, z) is the projection of (x, y, z) onto the $x y$-plane, one has $r=\rho \sin \phi$ and this implies

$$
\begin{equation*}
x=\rho \sin \phi \cos \theta, \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi \tag{15.4}
\end{equation*}
$$

with $\rho \geq 0,0 \leq \theta<2 \pi$ and $0 \leq \phi \leq \pi$. The triple (ρ, θ, ϕ) is called the spherical coordinate of (x, y, z).

Example 15.19. The spherical coordinates of points $(0,0,1),(\sqrt{2} / 2, \sqrt{6} / 2, \sqrt{2}),(1,1, \sqrt{2})$ and $(-\sqrt{3},-3,-2)$ are respectively $(1,0,0),(2, \pi / 3, \pi / 4),(2, \pi / 4, \pi / 4)$ and $(4,2 \pi / 3,2 \pi / 3)$.
Example 15.20. Consider the surfaces, $\rho=\sin \theta \sin \phi$ and $\rho^{2}\left(\sin ^{2} \phi \sin ^{2} \theta+\cos ^{2} \phi\right)=9$. In the former equation, one has $x^{2}+y^{2}+z^{2}=\rho^{2}=\rho \sin \theta \sin \rho=y$, which is the sphere of radius $1 / 2$ centered at $(0,1 / 2,0)$. In the latter equation, we have $9=(\rho \sin \theta \sin \phi)^{2}+(\rho \cos \phi)^{2}=y^{2}+z^{2}$, which is a cylinder.

Example 15.21. The solid of which spherical coordinate (ρ, θ, ϕ) satisfies $2 \leq \rho \leq 3$ and $\pi / 2 \leq \phi \leq \pi$ is enclosed by spheres $x^{2}+y^{2}+z^{2}=4, x^{2}+y^{2}+z^{2}=9$ and below the plane $z=0$.

Example 15.22. Let S be the solid lying above the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=z$. Clearly, $S=\left\{(x, y, z) \mid z \geq \sqrt{x^{2}+y^{2}}, z \geq x^{2}+y^{2}+z^{2}\right\}$. By (15.4), the inequalities describing S become

$$
\rho \cos \phi \geq \rho \sin \phi, \quad \rho \cos \phi \geq \rho^{2}, \quad 0 \leq \theta \leq 2 \pi
$$

or equivalently

$$
0 \leq \phi \leq \pi / 4, \quad \rho \leq \cos \phi, \quad 0 \leq \theta \leq 2 \pi
$$

Let E be the spherical box $\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}$. Set $\Delta \rho=(b-a) / l$, $\Delta \phi=(\beta-\alpha) / m, \Delta \theta=(d-c) / n$ and $E_{i j k}=\left\{(\rho, \theta, \phi) \mid \rho \in\left[\rho_{i-1}, \rho_{i}\right], \theta \in\left[\theta_{j-1}, \theta_{j}\right], \phi \in\right.$ $\left.\left[\phi_{k-1}, \phi_{k}\right]\right\}$, where $\rho_{i}=a+i \Delta \rho, \theta_{j}=\alpha+j \Delta \theta$ and $\phi_{k}=c+k \Delta \phi$. Then, the the volume $\Delta V_{i j k}$ of $E_{i j k}$ is approximately

$$
\Delta V_{i j k} \approx(\Delta \rho)\left(\rho_{i} \Delta \phi\right)\left(\rho_{i} \sin \phi_{k} \Delta \theta\right)=\rho_{i}^{2} \sin \phi_{k} \Delta \rho \Delta \theta \Delta \phi
$$

As a result, for any continuous function f on E,

$$
\begin{aligned}
& \iiint_{E} f(x, y, z) d V=\lim _{l, m, n \rightarrow \infty} \sum_{i, j, k} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V_{i j k} \\
= & \lim _{l, m, n \rightarrow \infty} \sum_{i, j, k} F\left(\rho_{i j k}^{*}, \theta_{i j k}^{*}, \phi_{i j k}^{*}\right) \Delta \rho \Delta \theta \Delta \phi=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} F(\rho, \theta, \phi) d \rho d \theta d \phi
\end{aligned}
$$

where $F(\rho, \theta, \phi)=\rho^{2} \sin \phi f(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$.
Example 15.23. Consider the following integrals

$$
\text { (a) } \iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V, \quad \text { (b) } \iiint_{E} x^{2} d V
$$

where B is the ball centered at the origin with radius 5 and E is the region enclosed by the $x z$-plane and hemispheres $y=\sqrt{9-x^{2}-z^{2}}$ and $y=\sqrt{16-x^{2}-z^{2}}$. In the spherical coordinates, B and E can be expressed as

$$
\{(\rho, \theta, \phi) \mid \rho \in[0,5], \theta \in[0,2 \pi], \phi \in[0, \pi]\}, \quad\{(\rho, \theta, \phi) \mid \rho \in[3,4], \theta \in[0, \pi], \phi \in[0, \pi]\}
$$

This implies

$$
\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V=\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{5} \rho^{6} \sin \phi d \rho d \theta d \phi=\frac{312500 \pi}{7}
$$

and

$$
\iiint_{E} x^{2} d V=\int_{0}^{\pi} \int_{0}^{\pi} \int_{3}^{4} \rho^{4} \cos ^{2} \theta \sin ^{3} \phi d \rho d \theta d \phi=\frac{1562 \pi}{15} .
$$

Example 15.24. Let E be the solid lying above the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}-2 z=0$ and V be the volume of E. Note that, in the spherical coordinate, E can be expressed as

$$
\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 2 \cos \phi, 0 \leq \phi \leq \pi / 4,0 \leq \theta \leq 2 \pi\}
$$

and then

$$
\begin{aligned}
V & =\iiint_{E} 1 d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2 \cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\frac{8}{3} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \sin \phi \cos ^{3} \phi d \phi d \theta=\pi
\end{aligned}
$$

Example 15.25. Consider the following integral

$$
I=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} x y d z d y d x
$$

By writing $I=\iiint_{D} x y d V$, one has $D=\left\{(x, y, z) \mid x^{2}+y^{2} \leq 1, x^{2}+y^{2} \leq z^{2} \leq 2-x^{2}-y^{2}, x \geq\right.$ $0, y \geq 0, z \geq 0\}$. In the spherical coordinate, D can be expressed as

$$
\{(\rho, \theta, \phi) \mid 0 \leq \theta \leq \pi / 2,0 \leq \phi \leq \pi / 4,0 \leq \rho \leq \sqrt{2}\},
$$

which implies

$$
I=\int_{0}^{\pi / 2} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} \rho^{4} \sin ^{3} \phi \sin \theta \cos \theta d \rho d \phi d \theta=\frac{4 \sqrt{2}-5}{15} .
$$

