15.9. Change of variables in multiple integrals. In the following, we consider the change of variable in multiple integrals. Note that, for multi-variables domains, the change of variable is a transformation. Typical examples consist of changing the two-dimensional Cartesian coordinate into the polar coordinate and changing the three-dimensional Cartesian coordinate into the cylindrical or spherical coordinates. Generally, a transformation T is a mapping from the $u v$-plane into the $x y$-plane, say $(x, y)=T(u, v) . T$ is called one-to-one if no two points have the same image. When T is one-to-one, we write T^{-1} for the inverse transformation of T that maps points from the $x y$-plane into the $u v$-plane.

Example 15.26. Let $(x, y)=T(u, v)$ be a transformation given by $x=u^{2}-v^{2}$ and $y=2 u v$. Consider the square $S=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\}$. In some computations, one can see that

$$
\left\{\begin{array}{l}
T(\{(u, 0) \mid 0 \leq u \leq 1\})=\{(x, 0) \mid 0 \leq x \leq 1\}, \\
T(\{(0, v) \mid 0 \leq v \leq 1\})=\{(x, 0) \mid-1 \leq x \leq 0\}, \\
T(\{(u, 1) \mid 0 \leq u \leq 1\})=\left\{(x, y) \mid x=y^{2} / 4-1,0 \leq y \leq 2\right\}, \\
T(\{(1, v) \mid 0 \leq v \leq 1\})=\left\{(x, y) \mid x=1-y^{2} / 4,0 \leq y \leq 2\right\} .
\end{array}\right.
$$

To see how the change of variable works for double integrals, let S be the square with corners $\left(u_{0}, v_{0}\right),\left(u_{0}+\Delta u, v_{0}\right),\left(u_{0}, v_{0}+\Delta v\right),\left(u_{0}+\Delta u, v_{0}+\Delta v\right)$ and let $T(S)=R$. For convenience, we write $T=(g, h)$ and let $\left(x_{0}, y_{0}\right)=T\left(u_{0}, v_{0}\right)$. In this setting, the area $A(R)$ of R is approximately

$$
A(R) \approx\left|T\left(u_{0}+\Delta u, v_{0}\right)-T\left(u_{0}, v_{0}\right)\right| \times\left|T\left(u_{0}, v_{0}+\Delta v\right)-T\left(u_{0}, v_{0}\right)\right| \sin \theta
$$

where θ is the angle between vectors $T\left(u_{0}+\Delta u, v_{0}\right)-T\left(u_{0}, v_{0}\right)$ and $T\left(u_{0}, v_{0}+\Delta v\right)-T\left(u_{0}, v_{0}\right)$. Assume that g, h are continuously differentiable. By the mean value theorem, one has

$$
T\left(u_{0}+\Delta u, v_{0}\right)-T\left(u_{0}, v_{0}\right) \approx \Delta u\left\langle g_{u}\left(u_{0}, v_{0}\right), h_{u}\left(u_{0}, v_{0}\right)\right\rangle
$$

and

$$
T\left(u_{0}, v_{0}+\Delta v\right)-T\left(u_{0}, v_{0}\right) \approx \Delta v\left\langle g_{v}\left(u_{0}, v_{0}\right), h_{v}\left(u_{0}, v_{0}\right)\right\rangle .
$$

Consequently, this leads to

$$
A(R) \approx \operatorname{abs}\left(\left|\begin{array}{ll}
g_{u}\left(u_{0}, v_{0}\right) & g_{v}\left(u_{0}, v_{0}\right) \\
h_{u}\left(u_{0}, v_{0}\right) & h_{v}\left(u_{0}, v_{0}\right)
\end{array}\right|\right) A(S),
$$

where $A(S)$ is the area of S.
Definition 15.4. The Jacobian of a transformation $(x, y)=(g(u, v), h(u, v))$ is defined by

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}=g_{u} h_{v}-g_{v} h_{u}
$$

Consider the case that S is the rectangle $[a, b] \times[c, d]$ in the $u v$-plane. Set $\Delta u=(b-a) / m$, $\Delta v=(d-c) / n, u_{i}=a+i \Delta x, v_{j}=c+j \Delta v$ and $S_{i j}=\left[u_{i-1}, u_{i}\right] \times\left[v_{j-1}, v_{j}\right]$. Select $\left(u_{i j}^{*}, v_{i j}^{*}\right) \in$ $S_{i j}$ and define correspondingly $\left(x_{i j}^{*}, y_{i j}^{*}\right)=T\left(u_{i j}^{*}, v_{i j}^{*}\right), R_{i j}=T\left(S_{i j}\right)$ and $R=T(S)$. Let $J=g_{u} h_{v}-g_{v} h_{u}$. When g, h are continuously differentiable, $A\left(R_{i j}\right) \approx\left|J\left(u_{i}, v_{j}\right)\right| A\left(S_{i j}\right) \approx$ $\left|J\left(u_{i j}^{*}, v_{i j}^{*}\right)\right| A\left(S_{i j}\right)$, one has

$$
\begin{aligned}
\iint_{R} f(x, y) d A & \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) A\left(R_{i j}\right) \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(T\left(u_{i j}^{*}, v_{i j}^{*}\right)\right)\left|J\left(u_{i j}^{*}, v_{i j}^{*}\right)\right| A\left(S_{i j}\right) \\
& \approx \iint_{S} f(T(u, v))|J(u, v)| d A
\end{aligned}
$$

Theorem 15.5 (Change of variables in double integrals). Let $(x, y)=T(u, v)$ be a continuously differentiable transformation with domain S. Assume that T is one-to-one on S except on the boundary of S and the Jacobian of T is non-zero on S. Assume further that S and $T(S)$ are of types I or II. Then, for any function f continuous on $T(S)$,

$$
\iint_{T(S)} f(x, y) d A=\iint_{S} f(T(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A
$$

Example 15.27. Let R be the region bounded by parabolas $y^{2}=4-4 x$ and $y^{2}=4+4 x$ and above the x-axis. By using the change of variables $x=u^{2}-v^{2}$ and $y=2 u v$, one may check that R is the image of $S=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\}$ under this transformation. Note that $\frac{\partial(x, y)}{\partial(u, v)}=4\left(u^{2}+v^{2}\right)$. By Theorem 15.5, we obtain

$$
\iint_{R} y d A=\iint_{S} 2 u v \cdot 4\left(u^{2}+v^{2}\right) d A=2 .
$$

Example 15.28. Consider the integral $\iint_{R} e^{(x+y) /(x-y)} d A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,-2)$ and $(0,-1)$. Let $x=u+v, y=u-v$ and $S=\{(u, v) \mid 1 / 2 \leq$ $v \leq 1,-v \leq u \leq v\}$. It is easy to check that R is the image of S under this transformation. As $\frac{\partial(x, y)}{\partial(u, v)}=-2$, we obtain

$$
\iint_{R} e^{(x+y) /(x-y)} d A=2 \iint_{S} e^{-u / v} d A=2 \int_{1 / 2}^{1} \int_{-v}^{v} e^{-u / v} d u d v=\frac{3(e-1 / e)}{4}
$$

Example 15.29. Consider the integral $\iint_{R} x y d A$, where R is the region in the first quadrant bounded by the lines $y=x, y=3 x$ and the hyperbolas $x y=1, x y=3$. Through the change of variables, $x=u / v$ and $y=v$, one can see that R is the image of $S=\{(u, v) \mid 1 \leq u \leq$ $3, \sqrt{u} \leq v \leq \sqrt{3 u}\}$. Note that $\frac{\partial(x, y)}{\partial(u, v)}=1 / v$. This implies

$$
\iint_{R} x y d A=\iint_{S} u / v d A=\int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3 u}} u / v d v d u=\frac{\ln 3}{2} \int_{1}^{3} u d u=2 \ln 3
$$

For triple integrals, consider the change of variables $(x, y, z)=T(u, v, w)$. Let S be a set in the $u v w$-space and assume that the transformation is one-to-one on S except on its boundary. By writing $x=g(u, v, w), y=h(u, v, w)$ and $z=k(u, v, w)$, if f is continuous on $T(S)$, then

$$
\iiint_{T(S)} f(x, y, z) d V=\iiint_{S} f(g, h, k)\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d V, \quad \frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{ccc}
g_{u} & g_{v} & g_{w} \\
h_{u} & h_{v} & h_{w} \\
k_{u} & k_{v} & k_{w}
\end{array}\right|
$$

Particularly, for the spherical coordinate, one has $\left|\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}\right|=\rho^{2} \sin \phi$.
Example 15.30. For the transformation $x=u v, y=v w$ and $z=u w,\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|=2 u v w$.
Example 15.31. Let E be the solid enclosed by the ellipsoid $x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1$. Through the change of variables $x=a u, y=b v$ and $z=c w, E$ is the image of $S=$ $\left\{(u, v, w) \mid u^{2}+v^{2}+w^{2} \leq 1\right\}$. As $\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right|=a b c$, we have

$$
V(E)=\iiint_{E} d V=a b c \iiint_{S} d V=V(S)=\frac{4 \pi a b c}{3}
$$

