LECTURE NOTES IN CALCULUS I

GUAN-YU CHEN

1. Functions and models

1.1. Notations and terminology. (Sec. 1.1-1.3 in the textbook)

In this notes, we will use the following notations,

- $\mathbb{N}=\{1,2,3, \ldots\}$: The natural numbers.
- $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$: The integers.
- $\mathbb{Q}=\{p / q \mid p, q \in \mathbb{Z}, q \neq 0\}$: The rational numbers.
$\bullet \mathbb{R}=$ completion of \mathbb{Q} : The real numbers.
- $\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}, i=\sqrt{-1}\}$: The complex numbers. and logic symbols,

For $a, b \in \mathbb{R}$, we write

$$
[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}, \quad(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}
$$

and

$$
[a, \infty)=\{x \in \mathbb{R} \mid x \geq a\}, \quad(-\infty, a]=\{x \in \mathbb{R} \mid x \leq a\}
$$

The intervals, $[a, b),(a, b),(a, \infty)$ and $(-\infty, a)$, are defined in a similar way.
Definition 1.1. Let D, E be sets. A function $f: D \rightarrow E$ is a rule that assigns each element x in D exactly one element, named $f(x)$, in E. Here, $f(x)$ is called the value of f at x, D is called the domain of f and the set $\{f(x) \mid x \in D\}$ is called the range of f.

In the following, we recall some basic functions.
(1) Absolute values. The absolute value of a number a is denoted by $|a|$ and defined by

$$
\begin{cases}|a|=a & \text { if } a>0 \\ |a|=-a & \text { if } a \leq 0\end{cases}
$$

One may regard $|\cdot|$ as a function with domain \mathbb{R} and range $[0, \infty)$.
(2) Polynomials. A polynomial is a function P of the following form

$$
P(x)=a_{0}+\sum_{k=1}^{n} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, \quad \forall x \in \mathbb{R},
$$

where n is a nonnegative integer, which is called the degree of P when $a_{n} \neq 0$, and a_{0}, \ldots, a_{n} are real numbers, which are called the coefficients of P. In the case that $n=2$ and $a_{2} \neq 0, P$ is also called a quadratic function.
(3) Power functions. A power function is a function of the form $f(x)=x^{a}$, where a is a constant. If $a \in \mathbb{N}$, then $f(x)$ is a polynomial with domain \mathbb{R}. If $a=1 / n$ with $n \in \mathbb{N}$, then f is a root function with domain $[0, \infty)$. If $a=-1$, then f is the reciprocal function with domain $(0, \infty)$.
(4) Rational functions. A rational function is a function of the form $f(x)=p(x) / q(x)$, where $p(x)$ and $q(x)$ are both polynomials. One can see that the domain of f is $\{x \in \mathbb{R} \mid q(x) \neq 0\}$.
(5) Algebraic functions. An algebraic function is a function constructed by using algebraic operators including addition, subtraction, multiplication, division and taking roots. For example, $\sqrt{x^{2}+1}-x-2$ and $\left(x^{1 / 3}-1\right) / \sqrt{x+4}$ are algebraic functions.
(6) Trigonometric functions. Trigonometric functions consist of $\sin x, \cos x, \tan x, \cot x$, $\sec x$ and $\csc x$.
(7) Exponential functions. An exponential function is a function of the form $f(x)=b^{x}$, where $b>0$ is a constant and called the base. The domain of f is \mathbb{R} and its definition will be discussed in the next subsection.
(8) Logarithmic functions. A logarithmic function is a function of the form $f(x)=\log _{b} x$, where $b>0$ is called the base. Logarithmic functions are defined to be the inverse function of exponential functions.

Definition 1.2. A function f defined on an interval I is increasing if $x<y$ implies $f(x)<f(y)$ and decreasing if $x<y$ implies $f(x)>f(y)$.
Example 1.1. $f(x)=x^{3}$ is increasing on \mathbb{R} and $g(x)=\cos x$ is increasing on $[(2 k-1) \pi, 2 k \pi]$ and decreasing on $[2 k \pi,(2 k+1) \pi]$ for $k \in \mathbb{Z}$.

Definition 1.3. Let D be a region satisfying $\{-x \mid x \in D\}=D$. A function f with domain D is even (resp. odd) if $f(-x)=f(x)$ (resp. $f(-x)=-f(x)$) for all $x \in D$.
Example 1.2. $\sin x$ is odd and $\cos x$ is even.
Definition 1.4 (Combination of functions). Let f and g be functions with domains D_{f}, D_{g}.
(1) The addition $f+g$ and multiplication $f g$ are defined by

$$
(f+g)(x)=f(x)+g(x),(f g)(x)=f(x) g(x) \quad \forall x \in D_{f} \cap D_{g} .
$$

(2) The ratio f / g is a function with domain $\left\{x \in D_{f} \cap D_{g} \mid g(x) \neq 0\right\}$ and defined by $(f / g)(x)=f(x) / g(x)$.
(3) The composition of f and g is denoted by $g \circ f$ and defined by

$$
(g \circ f)(x)=g(f(x)), \quad \forall x \in D_{f}, f(x) \in D_{g} .
$$

Example 1.3. Let $f(x)=\cos x$ and $g(x)=2 x$. Then, $(f \circ g)(x)=f(g(x))=f(2 x)=\cos (2 x)$. To avoid any confusion, we write $\cos (2 x)$ for $f \circ g$ instead of $\cos 2 x$.

