1.2. Exponential functions. (Sec. 1.4 in the textbook) Generally, an exponential function is a function of the form

$$f(x) = b^x$$

where b is a positive constant, called the base, and x is any real number.

• In the case that x is an integer, say $n, b^0 = 1$ if n = 0 and

$$b^n = \underbrace{b \times b \times \cdots \times b}_{n}, \quad b^{-n} = 1/b^n, \quad \forall n \in \mathbb{N}.$$

• In the case that x is a rational number, say p/q with $p, q \in \mathbb{N}$ and $q \neq 0$,

$$b^{p/q} = \sqrt[q]{b^p} = (\sqrt[q]{b})^p$$

To see the meaning of b^x when x is irrational, we consider the case $x = \pi$. Note that $\pi = 3.14159\cdots$. By the law of rational exponents, one can show that

$$2^3 < 2^{3.1} < 2^{3.14} < 2^{3.141} < 2^{3.1415} < \cdots$$

and

 $2^4 > 2^{3.2} > 2^{3.15} > 2^{3.142} > 2^{3.1416} > \cdots$

Observe that $2^{3.2} - 2^{3.1} = 2^{3.1}(2^{0.1} - 1) < 16(2^{0.1} - 1)$. Similarly, one can show that

$$\begin{array}{rcrcrcrc} 2^{3.15}-2^{3.14} &<& 16(2^{0.01}-1)\\ 2^{3.142}-2^{3.141} &<& 16(2^{0.001}-1)\\ 2^{3.1416}-2^{3.1415} &<& 16(2^{0.0001}-1)\\ && \vdots\end{array}$$

Inductively, we may approximate 2^{π} using the sequence $2^{3.1}$, $2^{3.14}$, $2^{3.141}$, $2^{3.1415}$, ... or the sequence $2^{3.2}$, $2^{3.15}$, $2^{3.142}$, $2^{3.1416}$, ...

Law of exponents For $a, b \in (0, \infty)$ and $x, y \in \mathbb{R}$, one has $a^{x+y} = a^x a^y, \ a^{x-y} = a^x/a^y, \ (a^x)^y = (a^y)^x = a^{xy}, \ (ab)^x = a^x b^x.$

Remark 1.1. Let $f(x) = b^x$. Then, f is increasing if b > 1 and decreasing if 0 < b < 1.

The number e Consider the function $f(x) = b^x$ and let m be the slope of the line "tangent" to the curve y = f(x) at (0,1). Then, m > 0 if b > 1; m < 0 if 0 < b < 1; m = 0 if b = 1. The slope m changes along with the base b and, in fact, the slope m, as a function of b, is increasing. The number e can be defined in any of the following two way.

- e is the base b such that the slope of the line tangent to the curve $y = b^x$ at (0, 1) is 1.
- e is the base b such that the slope of the line tangent to the curve $y = b^x$ at (x, b^x) is exactly b^x for all $x \in \mathbb{R}$.

Note that $e = 2.71828 \cdots$.