1.2. Exponential functions. (Sec. 1.4 in the textbook) Generally, an exponential function is a function of the form

$$
f(x)=b^{x}
$$

where b is a positive constant, called the base, and x is any real number.

- In the case that x is an integer, say $n, b^{0}=1$ if $n=0$ and

$$
b^{n}=\underbrace{b \times b \times \cdots \times b}_{n}, \quad b^{-n}=1 / b^{n}, \quad \forall n \in \mathbb{N} .
$$

- In the case that x is a rational number, say p / q with $p, q \in \mathbb{N}$ and $q \neq 0$,

$$
b^{p / q}=\sqrt[q]{b^{p}}=(\sqrt[q]{b})^{p}
$$

To see the meaning of b^{x} when x is irrational, we consider the case $x=\pi$. Note that $\pi=3.14159 \cdots$. By the law of rational exponents, one can show that

$$
2^{3}<2^{3.1}<2^{3.14}<2^{3.141}<2^{3.1415}<\ldots
$$

and

$$
2^{4}>2^{3.2}>2^{3.15}>2^{3.142}>2^{3.1416}>\cdots
$$

Observe that $2^{3.2}-2^{3.1}=2^{3.1}\left(2^{0.1}-1\right)<16\left(2^{0.1}-1\right)$. Similarly, one can show that

$$
\begin{aligned}
2^{3.15}-2^{3.14} & <16\left(2^{0.01}-1\right) \\
2^{3.142}-2^{3.141} & <16\left(2^{0.001}-1\right) \\
2^{3.1416}-2^{3.1415} & <16\left(2^{0.0001}-1\right) \\
& \vdots
\end{aligned}
$$

Inductively, we may approximate 2^{π} using the sequence $2^{3.1}, 2^{3.14}, 2^{3.141}, 2^{3.1415}, \ldots$ or the sequence $2^{3.2}, 2^{3.15}, 2^{3.142}, 2^{3.1416}, \ldots$.

Law of exponents For $a, b \in(0, \infty)$ and $x, y \in \mathbb{R}$, one has

$$
a^{x+y}=a^{x} a^{y}, a^{x-y}=a^{x} / a^{y},\left(a^{x}\right)^{y}=\left(a^{y}\right)^{x}=a^{x y},(a b)^{x}=a^{x} b^{x} .
$$

Remark 1.1. Let $f(x)=b^{x}$. Then, f is increasing if $b>1$ and decreasing if $0<b<1$.
The number e Consider the function $f(x)=b^{x}$ and let m be the slope of the line "tangent" to the curve $y=f(x)$ at $(0,1)$. Then, $m>0$ if $b>1 ; m<0$ if $0<b<1 ; m=0$ if $b=1$. The slope m changes along with the base b and, in fact, the slope m, as a function of b, is increasing. The number e can be defined in any of the following two way.

- e is the base b such that the slope of the line tangent to the curve $y=b^{x}$ at $(0,1)$ is 1 .
- e is the base b such that the slope of the line tangent to the curve $y=b^{x}$ at $\left(x, b^{x}\right)$ is exactly b^{x} for all $x \in \mathbb{R}$.
Note that $e=2.71828 \cdots$.

