1.3. Inverse functions and logarithms. (Sec. 1.5 in the textbook) Consider the following function. Let $D=\{1,2,3\}, E=\{a, b, c\}$ and let $f: D \rightarrow E$ be a function defined by

$$
f(1)=a, \quad f(2)=f(3)=b .
$$

Given a, there is only one x such that $f(x)=a$. But, given b, the equation $f(x)=b$ has two solutions, which are 2 and 3 .

Definition 1.5. A function f with domain D is one-to-one (briefly, 1-1) or injective if

$$
\forall x, y \in D, x \neq y \quad \Rightarrow \quad f(x) \neq f(y) .
$$

Equivalently, $f(x)=f(y)$ implies $x=y$.
Remark 1.2. A function is one-to-one if and only if no horizontal line intersects its graph more than once. This criterion is called the horizontal line test. Equivalently, f is one-to-one if $f(x)=c$ has at most one solution for all $c \in \mathbb{R}$.
Example 1.4. Let $f(x)=x^{3}$ and $g(x)=x^{2}$. Clearly, g is not 1-1 because $g(1)=g(-1)=1$. For f, consider the follow computation,

$$
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)=(x-y)\left[(x+y)^{2}+x^{2}+y^{2}\right] / 2 .
$$

If $x \neq y$, then $x^{2}+y^{2}>0$, which implies $x^{3} \neq y^{3}$. This proves that f is $1-1$.
Definition 1.6. Let f be a one-to-one function with domain D and range R. The inverse function of f (denoted by f^{-1} and read as " f inverse") is defined by

$$
f^{-1}(y)=x \quad \Leftrightarrow \quad f(x)=y,
$$

for all $y \in R$.
Remark 1.3. We write the reciprocal of $f(x)$ as $[f(x)]^{-1}$ or $(1 / f)(x)$.
Remark 1.4. If f is $1-1$, then the domain of f^{-1} is the range of f and the range of f^{-1} is the domain of f. Furthermore, one has $\left(f^{-1}\right)^{-1}=f$.

Cancellation equations If f is one-to-one with domain D and range R, then

$$
\left(f^{-1} \circ f\right)(x)=x, \quad \forall x \in D, \quad \text { and } \quad\left(f \circ f^{-1}\right)(y)=y, \quad \forall y \in R .
$$

Example 1.5. Let $f(x)=x+2$ and $g(x)=x^{1 / 3}$. Then, $f^{-1}(y)=y-2$ and $g^{-1}(y)=y^{3}$.
Computing the inverse function Write $y=f(x)$ and solve x in term of y, say $x=g(y)$. Then, g is the inverse of f.
Example 1.6. Let $f(x)=\left(x^{3}-2\right)^{1 / 5}$ for $x \in \mathbb{R}$. Write $y=f(x)$ and solve this equation to obtain $x=\left(y^{5}+2\right)^{1 / 3}$ for $y \in \mathbb{R}$. Then, the function $f^{-1}(y)=\left(y^{5}+2\right)^{1 / 3}$ is the inverse of f.
Example 1.7. Let $f(x)=\sqrt{x}+1$ for $x \in[0, \infty)$. Solving $y=f(x)$ yields $x=(y-1)^{2}$. This implies $f^{-1}(y)=(y-1)^{2}$ with $y \in[1, \infty)$ is the inverse of f.
Remark 1.5. The graph of f^{-1} is the reflection of the graph of f with respect to $y=x$.
Logarithmic functions Let $b>0$ and $b \neq 1$. Note that $b^{x}=b^{y}$ implies $b^{x-y}=1$ and, hence, $x=y$. This proves that $f(x)=b^{x}$ is $1-1$ with domain $(-\infty, \infty)$ and range $(0, \infty)$. The inverse function of f is called the logarithmic function with base b and denoted by $f^{-1}(y)=\log _{b} y$ with domain $(0, \infty)$ and range $(-\infty, \infty)$. By definition, one has $\log _{b} y=x$ if and only if $b^{x}=y$ for $y \in(0, \infty)$. This implies

$$
b^{\log _{b} y}=y, \quad \forall y \in(0, \infty), \quad \underset{4}{\text { and }} \quad \log _{b}\left(b^{x}\right)=x, \quad \forall x \in \mathbb{R}
$$

Law of logarithms For $b, x, y \in(0, \infty)$ and $r \in \mathbb{R}$, one has

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y, \quad \log _{b}(x / y)=\log _{b} x-\log _{b} y, \quad \log _{b}\left(x^{r}\right)=r \log _{b} x
$$

Remark 1.6. When $b=e$, we also write $\ln x$ for $\log _{e} x$ and call it the natural logarithm.
Change of base formula Let a, b, x be positive constants and assume that $a, b \neq 1$. Then,

$$
\log _{b} x=\frac{\log _{a} x}{\log _{a} b}
$$

In particular, $\log _{b} x=\ln x / \ln b$.
Proof. It suffices to show the specific case, while the general case follows immediately. Set $y=\log _{b} x$. Then, $x=b^{y}=\left(e^{\ln b}\right)^{y}=e^{(\ln b) y}$. This implies $(\ln b) y=\ln x$.

Inverse trigonometric functions It is clear that none of the trigonometric functions is one-to-one on \mathbb{R}, unless it is restricted on a specific region. For example, $\sin x$ is one-to-one on $[-\pi / 2, \pi / 2]$ and we write $\sin ^{-1}$ or arcsin for the inverse function, which has domain $[-1,1]$ and range $[-\pi / 2, \pi / 2]$. This means that, for $x \in[-1,1]$ and $y \in[-\pi / 2, \pi / 2]$,

$$
\sin ^{-1} x=y \quad \Leftrightarrow \quad \sin y=x
$$

Similarly, the inverse functions of the other trigonometric functions can be defined by

$$
\begin{aligned}
& \cos ^{-1} x=y \Leftrightarrow \cos y=x, \\
& \tan ^{-1} x=y \Leftrightarrow \tan y=x, \\
& \sec ^{-1} x=y \Leftrightarrow \sec y=x, \\
& \cot ^{-1} x=y \Leftrightarrow \cot y=x, \\
& \cot ^{-1} x, y \in[0, \pi / 2) \cup(\pi / 2, \pi], x \in(-\infty,-1] \cup[1, \infty), \\
& \csc ^{-1} x=y \Leftrightarrow \csc y=x, \quad \forall y \in[0, \pi), x \in \mathbb{R} \\
& \hline
\end{aligned}
$$

Remark 1.7. Note that the range of $\sec ^{-1}$ and $\csc ^{-1}$ are not universally agreed on.
Example 1.8. To compute $\left(\cos \circ \sin ^{-1}\right)\left(\frac{1}{\sqrt{2}}\right)$, note that $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\pi / 4$. This implies

$$
\left(\cos \circ \sin ^{-1}\right)\left(\frac{1}{\sqrt{2}}\right)=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} .
$$

Example 1.9. To simplify $\sin \left(\tan ^{-1} x\right)$, we set $y=\tan ^{-1} x$ or, equivalently, $\tan y=x$ with $y \in(-\pi / 2, \pi / 2)$. Suppose $x>0$ and consider the right triangle with sides of lengths $1, x$ and $\sqrt{x^{2}+1}$. Observe that y is exactly the radian of the angle opposite to the side of length x. This gives $\sin \left(\tan ^{-1} x\right)=\sin y=x / \sqrt{x^{2}+1}$. For $x<0$, the discussion is similar and skipped.

