10. Parametric equations and polar coordinates

10.1. Curves defined by parametric equations. (Sec. 10.1 in textbook)

Definition 10.1. A parametric curve on \mathbb{R}^{2} refers to a curve parametrized by a third variable other than x and y. That is, there are functions f, g with common domain D such that

$$
x=f(t), \quad y=g(t), \quad \forall t \in D
$$

These two equations are called parametric equations and the parametric curve refers to the set

$$
\{(f(t), g(t)) \mid t \in D\}
$$

The variable t is called the parameter.
Remark 10.1. In the case that $D=[a, b],(f(a), g(a))$ is called the initial point and $(f(b), g(b))$ is called the terminal point of the parametric curve.
Example 10.1. To sketch the parametric curve given by

$$
x=t^{2}-2 t, \quad y=t+1
$$

one may write

$$
t^{2}-2 t=(t+1)^{2}-4(t+1)+3
$$

to get

$$
x=y^{2}-4 y+3
$$

The graph of the above equation displays the parametric curve.
Example 10.2. For the parametric equations,

$$
x=\cos t, \quad y=\sin t, \quad \forall t \in[0,2 \pi],
$$

it is easy to see that its parametric curve is a unit circle, since

$$
x^{2}+y^{2}=\cos ^{2} t+\sin ^{2} t=1
$$

Note that the initial point is also the end point.
Example 10.3. For the parametric equations,

$$
x=\cos t, \quad y=\sin (2 t) \quad t \in[0,2 \pi]
$$

one may relate x and y through the following equations,

$$
y= \begin{cases}2 x \sqrt{1-x^{2}} & \forall t \in[0, \pi] \\ -2 x \sqrt{1-x^{2}} & \forall t \in[\pi, 2 \pi]\end{cases}
$$

Example 10.4. Consider a circle of radius r rolls along a straight line. A cycloid is the trajectory of a fixed point, say P, on the circumference of a circle. In detail, assume that the circle contact the x-axis at the origin and let $P=(x, y)$ be the point of the circle at the origin. As the circle rotates with angle θ, we obtain

$$
x=r \theta-r \sin \theta=r(\theta-\sin \theta), \quad y=r-r \cos \theta=r(1-\cos \theta)
$$

