
10.2. Calculus with parametric curves. (Sec. 10.2 in textbook)

Tangent lines Consider the parametric equation x = f(t) and y = g(t). Assume that the

curve can be expressed as y = F (x) and further F, f, g are differentiable. Then, g(t) = F (f(t))
and, by the chain rule,

g′(t) = F ′(f(t))f ′(t) ⇒ F ′(x) = F ′(f(t)) =
g′(t)

f ′(t)
if f ′(t) ̸= 0.

Following the notation of Leibniz, this identity can be rewritten as dy
dx = dy

dt /
dx
dt if dx

dt ̸= 0. If
F, f, g are twice differentiable, then

F ′′(x) =
d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dt

(
dy
dx

)
dx
dt

=
g′′(t)f ′(t)− g′(t)f ′′(t)

[f ′(t)]3
.

Note that d2y
dx2 ̸= g′′(t)

f ′′(t) .

Example 10.5. Let y = F (x) be the parametric curve of the cycloid x = r(θ − sin θ) and
y = r(1− cos θ) with θ ∈ R. Then, F ′(x) = sin θ

1−cos θ and the slope of the tangent line at (πr, 2r)

is F ′(πr) = 0.

Area Recall that if F is continuous on [a, b], then the area A bound by y = F (x), x = a,
x = b and the x-axis equals

A =

∫ b

a
|F (x)|dx =

∫ b

a
|y|dx.

Suppose y = F (x) is given by the parametric curve x = f(t) and y = g(t) and f is increasing
with domain [α, β]. Then,

A =

∫ f(β)

f(α)
F (x)dx =

∫ β

α
F (f(t))f ′(t)dt =

∫ β

α
g(t)f ′(t)dt.

Example 10.6. The area A bounded by the cycloid, x = 0, x = 2πr and the x-axis is

A = r2
∫ 2π

0
(1− cos θ)2dθ = r2

∫ 2π

0

[
1− 2 cos θ +

1 + cos 2θ

2

]
dθ = 3πr2.

Arc length Let L be the length of the curve {(f(t), g(t))|t ∈ [α, β]}. If the curve traverses

exactly once and f, g are differentiable on [α, β], then

L = lim
n→∞

n∑
i=1

√
[f(ti−1)− f(ti)]2 + [g(ti−1)− g(ti)]2,

where ti = α + i∆t and ∆t = (β − α)/n. By the mean value theorem, we may choose
t∗i , t

∗∗
i ∈ [ti−1, ti] such that

f(ti)− f(ti−1) = f ′(t∗i )∆t, g(ti)− g(ti−1) = g′(t∗∗i )∆t.

If f ′ and g′ are continuous on [α, β], then

L =

∫ β

α

√
[f ′(t)]2 + [g′(t)]2dt.

Following the notation of Leibniz, one has

L =

∫ √
(dx)2 + (dy)2 =

∫ √(
dx

dt

)2

+

(
dy

dt

)2

dt.
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Example 10.7. The length L of the cycloid with θ ∈ [0, 2π] is equal to

L =

∫ 2π

0
r

√
(1− cos θ)2 + sin2 θdθ = r

∫ 2π

0

√
2(1− cos θ)dθ.

Note that 1− cos θ = 2 sin2 θ
2 and sin θ

2 ≥ 0 for θ ∈ [0, 2π]. This implies

L = 2r

∫ 2π

0
sin

θ

2
dθ = 8r.

Surface area Let Ax and Ay be the area of the surface obtained by rotating the curve
(f(t), g(t)) with t ∈ [α, β] about the x-axis and the y-axis. If f, g are continuously differentiable
with g ≥ 0 on [α, β] and the curve traverses exactly once, then

Ax =

∫
2πyds =

∫
2πy

√
(dx)2 + (dy)2 =

∫ β

α
2πg(t)

√
[f ′(t)]2 + [g′(t)]2dt.

Similarly, f, g are continuously differentiable with f ≥ 0 on [α, β] and the curve traverses
exactly once, then

Ay =

∫
2πxds =

∫
2πx

√
(dx)2 + (dy)2 =

∫ β

α
2πf(t)

√
[f ′(t)]2 + [g′(t)]2dt.

Example 10.8. Consider the curve y = b
√

1− x2

a2
with 0 < a < b and let A be the area of the

surface obtained by rotating the curve y = b
√

1− x2

a2
with x ∈ [−a, a] about the x-axis. Note

that the curve can be parametrized as x = a cos θ and y = b sin θ with θ ∈ [0, π]. This implies

A =

∫ π

0
2π(b sin θ)

√
(−a sin θ)2 + (b cos θ)2dθ = 2πb

∫ π

0
sin θ

√
a2 + (b2 − a2) cos2 θdθ.

By setting u =
√
b2−a2

a cos θ, one has du = −
√
b2−a2

a sin θdθ and

A =
2πa2b√
b2 − a2

∫ √
b2−a2/a

−
√
b2−a2/a

√
1 + u2du =

4πa2b√
b2 − a2

∫ √
b2−a2/a

0

√
1 + u2du.

Recall that ∫ √
1 + u2du =

1

2

(
u
√

1 + u2 + ln |u+
√

1 + u2|
)
+ C.

Setting c = b/a, leads to

A = 2πb2 + 2πab× ln(c+
√
c2 − 1)√

c2 − 1
.
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