10.2. Calculus with parametric curves. (Sec. 10.2 in textbook)

Tangent lines Consider the parametric equation $x=f(t)$ and $y=g(t)$. Assume that the curve can be expressed as $y=F(x)$ and further F, f, g are differentiable. Then, $g(t)=F(f(t))$ and, by the chain rule,

$$
g^{\prime}(t)=F^{\prime}(f(t)) f^{\prime}(t) \quad \Rightarrow \quad F^{\prime}(x)=F^{\prime}(f(t))=\frac{g^{\prime}(t)}{f^{\prime}(t)} \quad \text { if } f^{\prime}(t) \neq 0
$$

Following the notation of Leibniz, this identity can be rewritten as $\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}$ if $\frac{d x}{d t} \neq 0$. If F, f, g are twice differentiable, then

$$
F^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{g^{\prime \prime}(t) f^{\prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)}{\left[f^{\prime}(t)\right]^{3}}
$$

Note that $\frac{d^{2} y}{d x^{2}} \neq \frac{g^{\prime \prime}(t)}{f^{\prime \prime \prime}(t)}$.
Example 10.5. Let $y=F(x)$ be the parametric curve of the cycloid $x=r(\theta-\sin \theta)$ and $y=r(1-\cos \theta)$ with $\theta \in \mathbb{R}$. Then, $F^{\prime}(x)=\frac{\sin \theta}{1-\cos \theta}$ and the slope of the tangent line at $(\pi r, 2 r)$ is $F^{\prime}(\pi r)=0$.

Area Recall that if F is continuous on $[a, b]$, then the area A bound by $y=F(x), x=a$, $x=b$ and the x-axis equals

$$
A=\int_{a}^{b}|F(x)| d x=\int_{a}^{b}|y| d x .
$$

Suppose $y=F(x)$ is given by the parametric curve $x=f(t)$ and $y=g(t)$ and f is increasing with domain $[\alpha, \beta]$. Then,

$$
A=\int_{f(\alpha)}^{f(\beta)} F(x) d x=\int_{\alpha}^{\beta} F(f(t)) f^{\prime}(t) d t=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t .
$$

Example 10.6. The area A bounded by the cycloid, $x=0, x=2 \pi r$ and the x-axis is

$$
A=r^{2} \int_{0}^{2 \pi}(1-\cos \theta)^{2} d \theta=r^{2} \int_{0}^{2 \pi}\left[1-2 \cos \theta+\frac{1+\cos 2 \theta}{2}\right] d \theta=3 \pi r^{2}
$$

Arc length Let L be the length of the curve $\{(f(t), g(t)) \mid t \in[\alpha, \beta]\}$. If the curve traverses exactly once and f, g are differentiable on $[\alpha, \beta]$, then

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left[f\left(t_{i-1}\right)-f\left(t_{i}\right)\right]^{2}+\left[g\left(t_{i-1}\right)-g\left(t_{i}\right)\right]^{2}}
$$

where $t_{i}=\alpha+i \Delta t$ and $\Delta t=(\beta-\alpha) / n$. By the mean value theorem, we may choose $t_{i}^{*}, t_{i}^{* *} \in\left[t_{i-1}, t_{i}\right]$ such that

$$
f\left(t_{i}\right)-f\left(t_{i-1}\right)=f^{\prime}\left(t_{i}^{*}\right) \Delta t, \quad g\left(t_{i}\right)-g\left(t_{i-1}\right)=g^{\prime}\left(t_{i}^{* *}\right) \Delta t .
$$

If f^{\prime} and g^{\prime} are continuous on $[\alpha, \beta]$, then

$$
L=\int_{\alpha}^{\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Following the notation of Leibniz, one has

$$
L=\int \sqrt{(d x)^{2}+(d y)^{2}}=\int_{64} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .
$$

Example 10.7. The length L of the cycloid with $\theta \in[0,2 \pi]$ is equal to

$$
L=\int_{0}^{2 \pi} r \sqrt{(1-\cos \theta)^{2}+\sin ^{2} \theta} d \theta=r \int_{0}^{2 \pi} \sqrt{2(1-\cos \theta)} d \theta
$$

Note that $1-\cos \theta=2 \sin ^{2} \frac{\theta}{2}$ and $\sin \frac{\theta}{2} \geq 0$ for $\theta \in[0,2 \pi]$. This implies

$$
L=2 r \int_{0}^{2 \pi} \sin \frac{\theta}{2} d \theta=8 r
$$

Surface area Let A_{x} and A_{y} be the area of the surface obtained by rotating the curve $(f(t), g(t))$ with $t \in[\alpha, \beta]$ about the x-axis and the y-axis. If f, g are continuously differentiable with $g \geq 0$ on $[\alpha, \beta]$ and the curve traverses exactly once, then

$$
A_{x}=\int 2 \pi y d s=\int 2 \pi y \sqrt{(d x)^{2}+(d y)^{2}}=\int_{\alpha}^{\beta} 2 \pi g(t) \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Similarly, f, g are continuously differentiable with $f \geq 0$ on $[\alpha, \beta]$ and the curve traverses exactly once, then

$$
A_{y}=\int 2 \pi x d s=\int 2 \pi x \sqrt{(d x)^{2}+(d y)^{2}}=\int_{\alpha}^{\beta} 2 \pi f(t) \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

Example 10.8. Consider the curve $y=b \sqrt{1-\frac{x^{2}}{a^{2}}}$ with $0<a<b$ and let A be the area of the surface obtained by rotating the curve $y=b \sqrt{1-\frac{x^{2}}{a^{2}}}$ with $x \in[-a, a]$ about the x-axis. Note that the curve can be parametrized as $x=a \cos \theta$ and $y=b \sin \theta$ with $\theta \in[0, \pi]$. This implies

$$
A=\int_{0}^{\pi} 2 \pi(b \sin \theta) \sqrt{(-a \sin \theta)^{2}+(b \cos \theta)^{2}} d \theta=2 \pi b \int_{0}^{\pi} \sin \theta \sqrt{a^{2}+\left(b^{2}-a^{2}\right) \cos ^{2} \theta} d \theta
$$

By setting $u=\frac{\sqrt{b^{2}-a^{2}}}{a} \cos \theta$, one has $d u=-\frac{\sqrt{b^{2}-a^{2}}}{a} \sin \theta d \theta$ and

$$
A=\frac{2 \pi a^{2} b}{\sqrt{b^{2}-a^{2}}} \int_{-\sqrt{b^{2}-a^{2}} / a}^{\sqrt{b^{2}-a^{2}} / a} \sqrt{1+u^{2}} d u=\frac{4 \pi a^{2} b}{\sqrt{b^{2}-a^{2}}} \int_{0}^{\sqrt{b^{2}-a^{2}} / a} \sqrt{1+u^{2}} d u
$$

Recall that

$$
\int \sqrt{1+u^{2}} d u=\frac{1}{2}\left(u \sqrt{1+u^{2}}+\ln \left|u+\sqrt{1+u^{2}}\right|\right)+C
$$

Setting $c=b / a$, leads to

$$
A=2 \pi b^{2}+2 \pi a b \times \frac{\ln \left(c+\sqrt{c^{2}-1}\right)}{\sqrt{c^{2}-1}} .
$$

