10.3. Polar coordinates. (Sec. 10.3 in textbook)

The polar coordinate system is given by, first, choosing a point in the plane as the pole, which is usually labelled as O, and then drawing a ray from the pole, which is named the polar axis. For any point P on the plane, we use r and θ to denote the length and the radian from the polar axis of $\overrightarrow{O P}$ and call the ordered pair (r, θ) the polar coordinate of P. In convention, the angle is positive if it is measured counterclockwise and negative otherwise. If (x, y) is the Cartesian coordinate of P, then

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta, \quad \Rightarrow \quad r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x} . \tag{10.1}
\end{equation*}
$$

It is natural to extend the polar coordinate (r, θ) to the case that r is negative by identifying (r, θ) with $(-r, \theta+\pi)$ when $r<0$. Clearly, (10.1) is preserved under such a generalization.

The graph of a polar equation, $r=f(\theta)$ or $\theta=g(r)$ or more generally $F(r, \theta)=0$, is called a polar curve.
Example 10.9. Consider the polar curves of (1) $r=2$, (2) $\theta=\pi / 6$, (3) $r=\sin \theta$, (4) $r=1+\sin \theta$ and (5) $r=\cos 2 \theta$. Let (x, y) be the Cartesian coordinate of these curves. For (1), it is clear that $x^{2}+y^{2}=4$. For (2), $x=r \cos (\pi / 6)=\frac{\sqrt{3} r}{2}$ and $y=r \sin (\pi / 6)=\frac{r}{2}$. This implies $x=\sqrt{3} y$ with $y \in \mathbb{R}$. For (3), one has $x^{2}+y^{2}=r^{2}=r \sin \theta=y$ or $x^{2}+(y-1 / 2)^{2}=1 / 4$, which is a circle of radius $1 / 2$ and centered at $(0,1 / 2)$. For (4) and (5), we refer the read to the textbook for details. It's worthwhile to know that (4) is called cardioid and (5) is a four-leaved rose.

Symmetry of polar curves

(1) If θ is replaced by $-\theta$, then the curve is symmetric about the polar axis.
(2) If r is replaced by $-r$ or when θ is replaced by $\theta+\pi$ or $\theta-\pi$, then the curve is symmetric about the pole.
(3) If θ is replaced by $\pi-\theta$, then the curve is symmetric about the line $\theta=\pi / 2$.

Tangents to polar curves For the polar curve $r=f(\theta)$, if f is differentiable, then the tangent line to $r=f(\theta)$ at the point $(x, y)=(f(\theta) \cos \theta, f(\theta) \sin \theta)$ is equal to

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta}{f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta} .
$$

Example 10.10. The tangent line to the curve $r=1 / \theta$ at $\theta=\pi$ has slope

$$
\frac{d y}{d x}=\frac{\frac{d r \sin \theta}{d \theta}}{\frac{d r \cos \theta}{d \theta}}=\frac{\theta \cos \theta-\sin \theta}{-\theta \sin \theta-\cos \theta} .
$$

For $\theta=\pi$, the tangent line to the curve at $(-1 / \pi, 0)$ is $y=(-\pi)(x+1 / \pi)=-\pi x-1$.
Example 10.11. For the cardioid $r=1+\sin \theta$, the slope of the tangent line is given by

$$
\frac{d y}{d x}=\frac{\frac{d\left(\sin \theta+\sin ^{2} \theta\right)}{d \theta}}{\frac{d\left(\cos \theta+\frac{1}{2} \sin 2 \theta\right)}{d \theta}}=\frac{\cos \theta+\sin 2 \theta}{-\sin \theta+\cos 2 \theta} .
$$

When $\theta=\pi / 3, d y / d x=-1$ and the tangent line is $x+y=(5+3 \sqrt{3}) / 4$.

