10.4. Areas and lengths in polar coordinates. (Sec. 10.4 in textbook)

Area Let A be the area of the region enclosed by the polar curves $r = f(\theta)$, $\theta = a$ and $\theta = b$ with a < b. To compute A, we follow the idea of Riemann sum approximation. Set $\Delta \theta = (b - a)/n$, $\theta_i = a + i\Delta \theta$ and select $\theta_i^* \in [\theta_{i-1}, \theta_i]$. Note that the area of the region enclosed by $r = f(\theta)$, $\theta = \theta_{i-1}$ and $\theta = \theta_i$ is roughly the area of the sector of a circle with radius $|f(\theta_i^*)|$ and angle $\Delta \theta$, which is equal to $\frac{1}{2}|f(\theta)|^2\Delta \theta$. As a result, if f is continuous on [a, b], then

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{2} f(\theta_i^*)^2 \Delta \theta = \int_a^b \frac{1}{2} f(\theta)^2 d\theta = \int_a^b \frac{1}{2} r^2 d\theta.$$

Example 10.12. Consider the area enclosed by the four-leaved rose $r = \cos 2\theta$. By the symmetry of the curve, the area is four times of the area bounded by $r = \cos 2\theta$ with $\theta \in [-\pi/4, \pi/4]$. This implies

$$A = 4 \int_{-\pi/4}^{\pi/4} \frac{1}{2} \cos^2 2\theta d\theta = \int_{-\pi/4}^{\pi/4} (1 + \cos 4\theta) d\theta = \frac{\pi}{2}$$

Example 10.13. Consider the area inside the circle $r = 3 \sin \theta$ but outside the cardioid $r = 1 + \sin \theta$. In some computations, one has $3 \sin \theta = 1 + \sin \theta$ if and only if $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$. This implies $3 \sin \theta \ge 1 + \sin \theta$ if and only if $\theta \in [\pi/6, 5\pi/6]$. As a consequence, the desired area equals

$$\frac{1}{2} \int_{\pi/6}^{5\pi/6} [(3\sin\theta)^2 - (1+\sin\theta)^2] d\theta = \frac{1}{2} \int_{\pi/6}^{5\pi/6} [8\sin^2\theta - 2\sin\theta - 1] d\theta$$
$$= \frac{1}{2} \int_{\pi/6}^{5\pi/6} [3-4\cos2\theta - 2\sin\theta] d\theta = \frac{1}{2} (3\theta - 2\sin2\theta + 2\cos\theta) \Big|_{\pi/6}^{5\pi/6} = \pi$$

Arc length Recall that the length of a parametric curve is $L = \int ds = \int \sqrt{(dx)^2 + (dy)^2}$. For the polar curve $r = f(\theta)$, one has $x = f(\theta) \cos \theta$, $y = f(\theta) \sin \theta$. This implies

$$\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 = r^2 + \left(\frac{dr}{d\theta}\right)^2$$

and then the length of the curve $r = f(\theta)$ with $\theta \in [a, b]$ equals

$$L = \int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta$$

Example 10.14. Consider the cardioid $r = 1 + \sin \theta$. The curve has length

$$\int_{0}^{2\pi} \sqrt{(1+\sin\theta)^2 + \cos^2\theta} d\theta = \int_{0}^{2\pi} \sqrt{2+2\sin\theta} d\theta.$$

By writing $\sqrt{2+2\sin\theta} = \frac{2|\cos\theta|}{\sqrt{2-2\sin\theta}}$, we have

$$\int_{0}^{2\pi} \sqrt{2 + 2\sin\theta} d\theta$$

= $\int_{0}^{\pi/2} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta + \int_{3\pi/2}^{2\pi} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta - \int_{\pi/2}^{3\pi/2} \frac{2\cos\theta}{\sqrt{2 - 2\sin\theta}} d\theta$
= $-2\sqrt{2 - 2\sin\theta} \Big|_{0}^{\pi/2} - 2\sqrt{2 - 2\sin\theta} \Big|_{3\pi/2}^{2\pi} + 2\sqrt{2 - 2\sin\theta} \Big|_{\pi/2}^{3\pi/2} = 8.$