10.4. Areas and lengths in polar coordinates. (Sec. 10.4 in textbook)

Area Let A be the area of the region enclosed by the polar curves $r=f(\theta), \theta=a$ and $\theta=b$ with $a<b$. To compute A, we follow the idea of Riemann sum approximation. Set $\Delta \theta=(b-a) / n, \theta_{i}=a+i \Delta \theta$ and select $\theta_{i}^{*} \in\left[\theta_{i-1}, \theta_{i}\right]$. Note that the area of the region enclosed by $r=f(\theta), \theta=\theta_{i-1}$ and $\theta=\theta_{i}$ is roughly the area of the sector of a circle with radius $\left|f\left(\theta_{i}^{*}\right)\right|$ and angle $\Delta \theta$, which is equal to $\frac{1}{2}|f(\theta)|^{2} \Delta \theta$. As a result, if f is continuous on $[a, b]$, then

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2} f\left(\theta_{i}^{*}\right)^{2} \Delta \theta=\int_{a}^{b} \frac{1}{2} f(\theta)^{2} d \theta=\int_{a}^{b} \frac{1}{2} r^{2} d \theta .
$$

Example 10.12. Consider the area enclosed by the four-leaved rose $r=\cos 2 \theta$. By the symmetry of the curve, the area is four times of the area bounded by $r=\cos 2 \theta$ with $\theta \in[-\pi / 4, \pi / 4]$. This implies

$$
A=4 \int_{-\pi / 4}^{\pi / 4} \frac{1}{2} \cos ^{2} 2 \theta d \theta=\int_{-\pi / 4}^{\pi / 4}(1+\cos 4 \theta) d \theta=\frac{\pi}{2} .
$$

Example 10.13. Consider the area inside the circle $r=3 \sin \theta$ but outside the cardioid $r=$ $1+\sin \theta$. In some computations, one has $3 \sin \theta=1+\sin \theta$ if and only if $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$. This implies $3 \sin \theta \geq 1+\sin \theta$ if and only if $\theta \in[\pi / 6,5 \pi / 6]$. As a consequence, the desired area equals

$$
\begin{aligned}
& \frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left[(3 \sin \theta)^{2}-(1+\sin \theta)^{2}\right] d \theta=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left[8 \sin ^{2} \theta-2 \sin \theta-1\right] d \theta \\
= & \frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}[3-4 \cos 2 \theta-2 \sin \theta] d \theta=\left.\frac{1}{2}(3 \theta-2 \sin 2 \theta+2 \cos \theta)\right|_{\pi / 6} ^{5 \pi / 6}=\pi .
\end{aligned}
$$

Arc length Recall that the length of a parametric curve is $L=\int d s=\int \sqrt{(d x)^{2}+(d y)^{2}}$. For the polar curve $r=f(\theta)$, one has $x=f(\theta) \cos \theta, y=f(\theta) \sin \theta$. This implies

$$
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=r^{2}+\left(\frac{d r}{d \theta}\right)^{2}
$$

and then the length of the curve $r=f(\theta)$ with $\theta \in[a, b]$ equals

$$
L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Example 10.14. Consider the cardioid $r=1+\sin \theta$. The curve has length

$$
\int_{0}^{2 \pi} \sqrt{(1+\sin \theta)^{2}+\cos ^{2} \theta} d \theta=\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta
$$

By writing $\sqrt{2+2 \sin \theta}=\frac{2|\cos \theta|}{\sqrt{2-2 \sin \theta}}$, we have

$$
\begin{aligned}
\int_{0}^{2 \pi} & \sqrt{2+2 \sin \theta} d \theta \\
& =\int_{0}^{\pi / 2} \frac{2 \cos \theta}{\sqrt{2-2 \sin \theta}} d \theta+\int_{3 \pi / 2}^{2 \pi} \frac{2 \cos \theta}{\sqrt{2-2 \sin \theta}} d \theta-\int_{\pi / 2}^{3 \pi / 2} \frac{2 \cos \theta}{\sqrt{2-2 \sin \theta}} d \theta \\
& =-\left.2 \sqrt{2-2 \sin \theta}\right|_{0} ^{\pi / 2}-\left.2 \sqrt{2-2 \sin \theta}\right|_{3 \pi / 2} ^{2 \pi}+\left.2 \sqrt{2-2 \sin \theta}\right|_{\pi / 2} ^{3 \pi / 2}=8
\end{aligned}
$$

